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Abstract

We study a class of discrete-time random dynamical systems with
compact phase space. Assuming that the deterministic counterpart of
the system in question possesses a dissipation property, its linearisation
is approximately controllable, and the driving noise has a decomposable
structure, we prove that the corresponding family of Markov processes has
a unique stationary measure, which is exponentially mixing in the dual-
Lipschitz metric. The abstract result is applicable to nonlinear dissipative
PDEs perturbed by a random force which affects only a few Fourier
modes and belongs to a certain class of random processes. We assume
that the nonlinear PDE in question is well posed, its nonlinearity is non-
degenerate in the sense of the control theory, and the random force is a
regular and bounded function of time which satisfies some decomposability
and observability hypotheses. This class of forces includes random Haar
series, where coefficients for high Haar modes decay sufficiently fast. In
particular, the result applies to the 2D Navier–Stokes system and the
nonlinear complex Ginzburg–Landau equations. The proof of the abstract
theorem uses the coupling method, enhanced by the Newton–Kantorovich–
Kolmogorov fast convergence.
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0 Introduction

The problem of uniqueness of a stationary measure for randomly forced dissipative
PDEs attracted a lot of attention in the last twenty years. It is by now well
understood that when all determining modes of the unforced PDEs are directly
affected by the noise, the problem has a unique stationary distribution, which is
exponentially stable as t→∞ in an appropriate metric. We refer the reader to
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the papers [FM95, KS00, EMS01, BKL02] for the first achievements and to the
book [KS12] for a detailed description of the results in this setting. The case in
which the random perturbation does not act directly on the determining modes
of the flow is much less understood (see the literature review below), and it is
the subject of the present article.

To describe our results, in this introduction we confine ourselves to the 2D
Navier–Stokes system perturbed by a Haar coloured noise. Namely, we consider
the equations

∂tu+ 〈u,∇〉u− ν∆u+∇p = η(t, x), div u = 0, (0.1)

where u = (u1, u2) and p are unknown functions, ν > 0 is a parameter, ∆ is
the Laplace operator, 〈u,∇〉 = u1∂1 + u2∂2, and η is an external (random)
force. We assume that all the functions are 2π-periodic with respect to the
space variables x = (x1, x2) and have zero mean value. Let us introduce the
trigonometric basis {ϕi} in the space of divergence-free vector fields with zero
mean value on the 2D torus T2 and write η in the form

η(t, x) =

N∑
i=1

biη
i(t)ϕi(x), (0.2)

where bi are non-zero numbers, and ηi are independent bounded real-valued
random processes that are distributed as a fixed process η̃(t) constructed as
follows. Let {h0, hjl} be the Haar system defined by relations (5.5) and (5.6);
cf. Section 22 in [Lam96]. We set

η̃(t) =

∞∑
k=0

ξkh0(t− k) +

∞∑
j=1

cj

∞∑
l=0

ξjlhjl(t), (0.3)

where {cj} is a sequence of non-zero numbers going to zero1 sufficiently fast,
and {ξk, ξjl} is a family of independent identically distributed (i.i.d.) real-valued
random variables. Processes of the form (0.2) are called coloured noises and are
widely used in engineering sciences; see [Van06]. We thus consider the dynamics
of the Navier–Stokes system subject to the coloured noise (0.2). Because of time
correlations of finite depth, the trajectories of (0.1) do not form a Markov process.
However, their restrictions to integer times do, and our aim is to describe the
large-time behaviour of the corresponding discrete-time processes. The following
theorem is one of the main results of this paper.

Main Theorem. In addition to the above hypotheses, assume that cj = Cj−q

for all j ≥ 1 and some C > 0 and q > 1, and the law of the random variables
{ξk, ξjl} has a Lipschitz-continuous density ρ such that 0 ∈ supp ρ ⊂ [−1, 1].
Then there is an integer N0 ≥ 1 such that, for any N ≥ N0 and ν > 0, the

1In the case when cj = 2j/2 for j ≥ 1 and {ξk, ξjl} are independent random variables
with centred normal law of unit dispersion, the series (0.3) converges to the white noise; see
Theorem 1 in [Lam96, Section 22].
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Markov process obtained by restricting the trajectories of (0.1), (0.2) to integer
times has a unique stationary measure µν . Moreover, for any solution u(t), we
have

D(u(k)) ⇀ µν as k →∞, (0.4)

where D(ζ) stands for the law of a random variable ζ, and the weak convergence
in (0.4) is understood in the sense of measures on the space of square-integrable
vector fields on T2. Finally, convergence (0.4) holds exponentially fast in the
dual-Lipschitz metric (defined below in Notation and conventions).

To prove this theorem, we shall establish a general result on exponential
mixing for discrete-time Markov processes and show that it applies to the prob-
lem (0.1), (0.2). Moreover, our general result is applicable to other dissipative
PDEs, such as various complex Ginzburg–Landau equations and multidimen-
sional Burgers system in non-potential2 setting (the latter will not be treated in
this paper for reasons of space). As was mentioned above, there are only a few
works dealing with highly degenerate noise not acting directly on the determining
modes of the unperturbed dynamics. Namely, the existence of densities for finite-
dimensional projections of stationary measures for solutions of the Navier–Stokes
system was studied in [MP06, AKSS07]. Hairer and Mattingly [HM06, HM11]
investigated the Navier–Stokes system perturbed by a finite-dimensional white
noise and established the uniqueness of stationary measure and its exponential
stability in the dual-Lipschitz metric. Földes at al. [FGRT15] proved a similar
result for the Boussinesq system, assuming that the random noise acts only on
the equation for temperature. Finally, the case in which the random perturbation
is localised in the physical space and time was studied in [Shi15] (see also [Shi18]
for the boundary-driven Navier–Stokes system).

Bounded random forces versus white in time forces

In our work we study nonlinear PDEs perturbed by random forces that are,
as a function of time, bounded processes of the type of random Haar series
(see (0.3)), while it is somewhat more traditional in mathematical physics to use
the forces that are random processes white in time. What are the advantages
and disadvantages of the former class of forces compared to the latter? A first
disadvantage is the tradition: one hundred years ago, in Langevin’s era, the
white in time forces were successfully used to model systems from statistical
physics, and since then they were exploited in other problems, usually without
serious discussion of their adequacy. Secondly, white-forced equations have
useful algebraical features coming from Ito’s formula. On the other hand,
bounded random forces, exactly due to their boundedness, serve better to
build models for some specific physical problems (e.g., they are being used
in modern meteorology). Secondly, they have a number of serious analytical
advantages. Namely, the corresponding stochastic equations always are well
posed if so are the deterministic equations, and—what is more important—for

2The one-dimensional Burgers equation and multi-dimensional Burgers system in the
potential setting can be treated by softer tools; see [Sin91, Bor16, Shi17].
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systems with the random forces which we advocate, the mixing property can be
established for significantly broader class of PDEs. Indeed, if the nonlinearity
of the unperturbed deterministic equation is Hamiltonian and polynomial, and
the random perturbation is white in time, then the existing techniques apply
to establish the mixing only if the nonlinearity is at most cubic.3 At the same
time, the main theorem of our work can be used to prove the mixing property
for equations with nonlinearity of any degree, see in Section 4 below. For the
2D stochastic Navier–Stokes equation (0.1) (where the nonlinearity is quadratic)
with degenerate white in time force η, the exponential mixing is proved in the
papers [HM06, HM11] based on an infinite-dimensional version of the Malliavin
calculus developed in [MP06]. If the random force η is bounded and degenerate,
then the proof of the exponential mixing, presented in our work, is significantly
shorter and, we believe, conceptually clearer. A subclass of the random forces
which we consider—the random Haar series (0.3)—has a number of similarities
with the white forces (and the latter may be obtained as a limiting case of
the former, see footnote 1). In particular, the forces (0.3) have independent
components with arbitrarily short time scales, which simplifies the verification
for them of various non-degeneracy properties (e.g., see Section 5.2, where we
show that these forces are Lipschitz-observable).

The paper is organised as follows. In Section 1, we formulate our main result
on the uniqueness and exponential mixing of a stationary measure for discrete-
time Markov processes possessing some controllability properties and describe
briefly its applications. To simplify the reading of the rest of the paper, we also
describe the general philosophy of the proof of the main result and discuss some
analogies between the coupling schemes for PDEs with regular noise that are
used in our proof and the Newton–Kantorovich–Kolomogorov fast convergence.
Section 2 is devoted to establishing some auxiliary tools used in the proof of the
main theorem. The latter is given in Section 3. In Section 4, we apply our result
to the 2D Navier–Stokes system and the complex Ginzburg–Landau equation
perturbed by a random noise. Sections 5 and 6 describe some classes of random
noises that are allowed in our approach. Finally, the Appendix gathers some
auxiliary results used in the main text.
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Notation and conventions

Let X be a Polish (i.e., complete separable metric) space with a distance dX(u, v)
and the Borel σ-algebra B(X). We denote by BX(a,R) the closed ball of radius
R > 0 centred at a ∈ X and write ḂX(a,R) for the corresponding open ball.
If X is a Banach space and a = 0, we write BX(R) instead of BX(0, R). We
use the following notation in which all abstract Banach and metric spaces are
assumed to be separable:

L(E,F ) is the space of bounded linear operators between two Banach spaces E
and F . It is endowed with the operator norm.

Lp(J,E) is the space of Borel-measurable functions f on an interval J ⊂ R with
range in E such that

‖f‖Lp(J,E) =

(∫
J

‖f(t)‖pEdt

)1/p

<∞,

with an obvious modification for p =∞.

Cb(X) is the space of bounded continuous functions f : X → R endowed with
the norm ‖f‖∞ = supX |f |.
Lb(X) is the space of functions f ∈ Cb(X) such that

‖f‖L := ‖f‖∞ + sup
0<dX(u,v)≤1

|f(u)− f(v)|
dX(u, v)

<∞.

P(X) denotes the set of Borel probability measures on X. For any µ ∈ P(X)
and µ-integrable function f : X → R, we set

〈f, µ〉 =

∫
X

f(u)µ(du).

The total variation metric on P(X) is defined by

‖µ1 − µ2‖var := sup
Γ∈B(X)

|µ1(Γ)− µ2(Γ)| = 1

2
sup
‖f‖∞≤1

|〈f, µ1〉 − 〈f, µ2〉| . (0.5)

We shall also use the dual-Lipschitz metric

‖µ1 − µ2‖∗L := sup
‖f‖L≤1

|〈f, µ1〉 − 〈f, µ2〉| .

Note that ‖µ1 − µ2‖∗L ≤ 2‖µ1 − µ2‖var.

We denote by C, C1, etc. unessential positive constants.

If B1 and B2 are real Banach spaces and O ⊂ B1 is an open domain, then
analyticity of a map F : O → B2 is understood in the sense of Fréchet. In
addition, for an analytic map F , we always assume that

the norms of all the derivatives DkF are bounded on bounded subsets of O.
(0.6)

Moreover, if F depends on a parameter u varying in a compact metric space X,
then we assume that all the derivatives Dk

ηF (u, η) are bounded on bounded
subsets, uniformly in u ∈ X, and are continuous functions of (u, η).
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1 Mixing for Markovian random dynamical sys-
tems

1.1 Setting of the problem

Let H and E be separable Hilbert spaces and let S : H×E → H be a continuous
mapping. We consider the random dynamical system (RDS) given by

uk = S(uk−1, ηk), k ≥ 1, (1.1)

where {ηk} is a sequence of i.i.d. random variables in E. Let us denote by ` the
law of ηk and assume that it has a compact support K ⊂ E. Suppose there is
a compact set X ⊂ H such that S(X ×K) ⊂ X, so that one can consider the
restriction of the RDS (1.1) to X. The hypotheses imposed on ηk imply that the
trajectories of (1.1) form a discrete-time Markov process in X; we shall denote it
by (uk,Pu), where Pu is the probability measure corresponding to the trajectories
issued from u (e.g., see Section 2.5.B in [KS91] or Section 1.3.1 in [KS12]). We
write Pk(u,Γ) for its transition function and denote by Pk : Cb(X) → Cb(X)
and P∗k : P(X) → P(X) the corresponding Markov operators. Recall that a
measure µ ∈ P(H) is said to be stationary for (uk,Pu) if P∗1µ = µ. Since X is
compact, the Bogolyubov–Krylov argument implies that there is at least one
stationary measure. Our goal is to study its uniqueness and long-time stability
under the dynamics. In what follows, we assume that the four hypotheses below
are satisfied.

(H1) Regularity. The mapping S : H × E → H is twice continuously differ-
entiable, and its second order derivative is bounded on bounded subsets.
Moreover, the mapping η 7→ S(u, η) is analytic for any u ∈ H, and the
derivatives (Dj

ηS)(u, η) are bounded on bounded subsets of H×E; cf. (0.6).
Finally, there is a Banach space V compactly embedded into H such that
the derivative (DuS)(u, η) acts continuously from H to V , and the corre-
sponding operator norm is bounded on bounded subsets of H × E.

(H2) Dissipativity. There is a number a ∈ (0, 1) and vectors η̂ ∈ K and û ∈ X
such that

‖S(u, η̂)− û‖ ≤ a‖u− û‖ for any u ∈ X. (1.2)

To formulate the third hypothesis, for any point u ∈ X, we denote by Ku the
set of those η ∈ K for which the image of (DηS)(u, η) : E → H is dense in H. It
is easy to see that Ku is a section of a Borel subset in the product space X × E
and, hence, is a Borel subset of E.4

4To see this, consider a measurable space (Y,Y) and a measurable mapping A : Y → L(E,H)
and denote by GA the set of points y ∈ Y for which the image of A(y) is dense in H is
measurable. Choosing countable dense subsets {fi} ⊂ E and {hj} ⊂ H, it is easy to see that
GA =

{
y ∈ Y : infi≥1 ‖A(y)fi − hj‖H = 0 for any j ≥ 1

}
. In the case under study, we have

Y = H × E, A = (DηS)(u, η), and Ku = K ∩ Gu, where Gu = {η ∈ E : (u, η) ∈ GA}.
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(H3) Approximate controllability of linearisation. For any u ∈ X, we
have `(Ku) = 1.

(H4) Decomposability of the noise. There is an orthonormal basis {ej}
in E such that

ηk =

∞∑
j=1

bjξjkej , (1.3)

where ξjk are independent random variables and bj are positive numbers
with the property such that |ξjk| ≤ 1 a.s., and

∞∑
j=1

b2j <∞. (1.4)

Moreover, there are Lipschitz-continuous functions ρj : R→ R such that

D(ξjk) = ρj(r)dr for all j ≥ 1. (1.5)

Before turning to the formulation of our main result, let us make some
comments about the above hypotheses. The dissipation property ensures that,
for a particular choice of the driving force, the dynamics has a drift towards a
fixed point û ∈ X. In the context of randomly forced PDEs, this condition is
certainly satisfied if the unperturbed deterministic equation has a stationary
solution which is globally exponentially stable. The approximate controllability
implies that, for a typical realisation of the driving force η, the linearised system
DηS exhibits the energy transfer to high frequencies, without specifying the rate
of the transfer. As we show in the proof, this condition, together with some
analyticity argument, implies that, with high probability, the trajectories of (1.1)
can be locally stabilised by a finite-dimensional modification of the driving force.
Finally, the hypothesis on the structure of the noise implies that the random
forcing possesses a weak non-degeneracy property.

Let us also mention that the controllability of the linearised operator (or,
equivalently, the existence of its right inverse) is well known to be important
when studying mixing properties for random dynamical systems. In particular,
it arises in the Malliavin calculus and plays an important role when proving the
absolute continuity of the laws of solution of SDE with respect to the Lebesgue
measure; see Chapter 2 in [Nua06]. The approximate controllability of the
linearised equation was used by Hairer and Mattingly [HM06, HM11] in their
proof of exponential mixing of the 2D Navier–Stokes system perturbed by a
degenerate noise, white in time and finite-dimensional in x.

A nonlinear PDE of parabolic type, perturbed by a random force, leads to a
system (1.1) via the following construction. Let us formally write the PDE in
question as a differential equation in a function space H:

u̇(t) = V (u) + ζ(t), (1.6)

where V (u) is an unbounded nonlinear vector field in H (which is not necessarily
defined everywhere), and ζ(t) is a bounded random process in a subspace H ⊂ H.
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Assume that a.e. trajectory of ζ is a locally square-integrable function of time such
that the random variables {ζ|[k−1,k)}k≥1 are independent. Next, for 0 ≤ τ ≤ 1
and k ≥ 1, define ηk(τ) = ζ(k − 1 + τ), so that ηk ∈ E := L2(0, 1;H) almost
surely, and denote by S : H ×E → H the mapping which takes a pair (v, ζ|[0,1])
to u(1), where u(t) is a solution of (1.6) satisfying u(0) = v. With this notation, a
solution of (1.6) evaluated at integer times t ≥ 0 satisfies (1.1). Assumption (H1)
means that Eq. (1.6) is well posed in H and possesses a regularising property
usual for parabolic equations, (H2) holds for û = 0 if the trajectories of (1.6) with
ζ ≡ 0 converge to zero as t→ +∞ (which is often the case), and (H4) specifies
the noise. Finally, (H3) holds if the nonlinearity V satisfies a Hörmander-type
condition and may be checked for many nonlinear PDEs; see Section 4 for two
examples.

1.2 Main result and examples

Let us denote by ‖ · ‖∗L the dual-Lipschitz metric in the space of probability
measures on X (cf. Notation and conventions). The following theorem is the
main result of this paper.

Theorem 1.1. Suppose that Hypotheses (H1)–(H4) are satisfied. Then the
Markov process (uk,Pu) has a unique stationary measure µ ∈ P(X), and there
are positive numbers C and γ such that

‖P∗kλ− µ‖∗L ≤ Ce−γk for all k ≥ 0 and λ ∈ P(X). (1.7)

A proof of this result is given in Section 3. It is based on an application of
the Kantorovich functional method, described in Section 3.1.1 of [KS12] and
repeated here as Theorem 7.1 in the appendix. By that result, to prove the
theorem it suffices to check the contraction inequality (7.4) for some Kantorovich
functional KF . This requires subtle analysis based on ideas from the optimal
control and theory of analytic functions. It is carried out in Section 3, after
developing some auxiliary tools (of independent interest) in Section 2. In
Section 4, we discuss in detail two examples which are briefly sketched below.

Example 1.2 (Navier–Stokes system). Let T2
a = R2/(2πa1)Z ⊕ (2πa2)Z be a

rectangular torus, where a = (a1, a2) is a vector with positive coordinates, and
let

H =

{
u ∈ L2(T2

a,R2) : div u = 0 in T2
a,

∫
T2
a

u(x) dx = 0

}
. (1.8)

We consider the Navier–Stokes system in T2
a perturbed by a random process.

Applying the Leray projection Π : L2(T2
a,R2) → H to the equations for the

velocity field, we reduce the system to the following nonlocal PDE:

∂tu+ νLu+B(u) = η(t, x). (1.9)

Here ν > 0 is the viscosity coefficient, L = −Π∆ is the Stokes operator,
B(u) = Π(〈u,∇〉u), and η is a random process which is assumed to be of
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the form

η(t, x) =

∞∑
k=1

I[k−1,k)(t)ηk(t− k, x), (1.10)

where I[k−1,k) is the indicator function of the interval [k − 1, k), and {ηk} is a
sequence of i.i.d. random variables in L2(J,H) with J = [0, 1].

To formulate some further hypotheses on ηk, let us take a finite or infinite
dimensional Hilbert space H that is continuously embedded into H3(T2

a,R2) and
denote E := L2(J,H). We shall assume that {ηk} are i.i.d. random variables
in E whose law ` = D(ηk) has a compact support K ⊂ E, containing the origin
and satisfying the two conditions below.

Decomposability. The random variables ηk are decomposable in the sense
that they satisfy Hypothesis (H4).

We emphasise that the decomposability can be regarded as a condition on
the measure `, since any other random variable with law ` has the same structure
as ηk. To describe the second condition, we need the concepts of observable5

function and observable measure.

Definition 1.3. Let (·, ·)H be an inner product and {ϕi}i∈I an orthonormal basis
in H. We say that a function ζ ∈ L2(J,H) is Lipschitz-observable with respect
to {ϕi}i∈I if for any Lipschitz-continuous functions ai : J → R, i ∈ I and
continuous function b : J → R such that∑

i∈I
‖ai‖2C(J) <∞ (1.11)

the equality6 ∑
i∈I

ai(t)(ζ(t), ϕi)H − b(t) = 0 in L1(J) (1.12)

implies that ai, i ∈ I and b vanish identically.
A probability measure ` on L2(J,H) is said to be Lipcshitz-observable with

respect to {ϕi} if `-almost every trajectory η ∈ L2(J,H) is Lipschitz-observable
with respect to {ϕi}.

Observability. The measure ` is Lipschitz-observable with respect to an or-
thonormal basis {ϕi} of the space H.

The properties of decomposability and observability are not very restrictive,
and some examples are given in Section 5. In particular, as we show in Section 5.2,
the coloured noise (0.2), (0.3) satisfies both.

5The concept of observability is widely used in the control theory and means, roughly
speaking, that if a functional of a non-zero solution of a homogeneous linear differential
equation vanishes identically in time, then it must be zero. In Definition 1.3 below, we have a
similar property for functions: the left-hand side of (1.12) defines an affine function, and if it
vanishes on ζ, then it must be zero.

6The convergence in L1(J) of the series in (1.12) (when I is infinite) follows easily
from (1.11).
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Remark 1.4. If dimH <∞, then property of Lipschitz-obvervability does not
depend on the basis. Indeed, if we change {ϕi}i∈I to another orthogonal
basis in H, then the vector-function a(t) = (a1(t), . . . aN (t)) will be replaced
by a′(t) = Ua(t), where U : RN → RN is an orthogonal transformation. The
function a′(t) vanishes identically in t if and only if a(t) does, and the components
of a′ are Lipschitz-continuous if and only if those of a are. This implies the
required assertion.

We also note that, in the case of a finite I, the Lipschitz-observability means
that the elements {(ζ(t), ϕi)} of the space L2(J)/C(J) are linearly independent
over the ring of Lipschitz-continuous functions on J .

We shall prove that Theorem 1.1 applied to the Navier–Stokes system (1.9)
implies the following result: if the law ` = D(ηk) is decomposable and observable,
and if the space H possesses a saturation property (see Section 4.1), then the
Markov process associated with (1.9) has a unique stationary measure, which is
exponentially mixing in the dual-Lipschitz metric.

Example 1.5 (Ginzburg–Landau equation). Let T3 ⊂ R3 be a rectangular torus.
We consider the equation

∂tu− (ν + i)∆u+ γu+ ic|u|p−1u = η(t, x), (1.13)

where u = u(t, x) is an unknown complex-valued function, ν, γ, and c are
positive parameters, and p ∈ {3, 5}. Equation (1.13) is well posed in the Sobolev
space H1(T3,C). Assuming again that the random force η has the form (1.10)
and satisfies the decomposability and observability hypotheses, we shall prove
uniqueness and exponential mixing of stationary measure for (1.13).

1.3 Coupling in infinite dimension and Newton–Kantoro-
vich–Kolmogorov fast convergence

In this subsection, we describe the general scheme of the proof of Theorem 1.1, a
coupling construction, and discuss its relation to the technique of fast convergence
due to Newton–Kantorovich–Kolmogorov. To prove convergence (1.7), it suffices
to verify that any two trajectories {uk} and {u′k} with random initial data u
and u′ converge in distribution when k → ∞. Very often this property is
proven with the help of a coupling argument, originated in 1930’s in the work of
Doeblin [Doe40] (see also [Doe00]), and we recall now the main idea.

Let us consider the following dynamics in the space X ×X:

(u0, v0) = (u, u′),

(uk, vk) = (S(uk−1, ηk), S(vk−1, η
′
k)), k ≥ 1,

where (ηk, η
′
k) is a sequence of independent random variables such that

D(η′k) = D(ηk) = ` for all k ≥ 1. (1.14)

It is clear that {uk} is a trajectory of (1.1) starting from u, while {vk} coincides
with that issued from u′ in the sense of law: D(vk) = P∗kD(u′) = D(u′k). Our
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goal is to choose a sequence {η′k} satisfying (1.14) such that, with probability 1,
{vk} is asymtotically close to {uk} as k →∞. To construct η′k, we fix a small
parameter δ0 > 0 and distinguish between the following two cases:

(a) If ‖u − u′‖ > δ0, we choose for η′k an independent copy of η1 as long as
‖uk−1 − vk−1‖ > δ0. Due to the dissipativity, at some random time τ , we
shall have ‖vτ − uτ‖ ≤ δ0. The Markov time τ is no bigger than the first
instance when both trajectories are in the δ0

2 -neighbourhood of û, and the
latter can be controlled due to Hypotheses (H2).

(b) The case ‖u − u′‖ ≤ δ0 contains the main difficulty. We seek η′1 in the
form η′1 = Ψu,u

′
(η1), where the transformation Ψu,u

′
satisfying

Ψu,u
′

∗ (`) = ` (1.15)

has to be constructed. Relation (1.15) implies (1.14) (with k = 1), and the
goal is to find Ψu,u

′
such that the inequality ‖u1 − v1‖ � ‖u− u′‖ holds

with high probability.

In the best case, we may have v1 = u1 almost surely, that is

S(u, η1)− S(u′, η′1) = 0, a.s. (1.16)

This is not likely to be possible because, for deterministic initial states u and u′,
it would imply that D(u1) = D(v1) = D(u′1), which is not necessarily the case.

The situation is reminiscent of that treated by Kolmogorov’s celebrated
theorem on nearly-integrable Hamiltonians

Hδ(p, q) = h1(p) + δf1(p, q), (p, q) ∈ Bn × Tn, (1.17)

where Bn ⊂ Rn is a ball and δ > 0 is a small parameter. Since the hamiltonian
dynamics for a Hamiltonian depending only on p is integrable, a naive idea to
study that corresponding to Hδ is to find a symplectic transformation Sδ such
that

Hδ ◦ Sδ(p, q) = hδ(p). (1.18)

However, it was shown by Poincaré that, in general, such a transformation Sδ
does not exist. Kolmogorov’s well-known idea to bypass this obstruction is to
achieve (1.18) only up to a higher order term:

Hδ ◦ S1(p, q) = h2(p) + δ2f2(p, q). (1.19)

This relation holds if the symplectic transformation S1 is a time-1 flow of a
Hamiltonian δg1(p, q), with some function g1 satisfying the linear homological
equation

{h1(p), g1(p, g)} = f1(p, q)− 〈f1〉(p), (1.20)

where 〈 · 〉 stands for the averaging in q ∈ Tn. If h1 meets a mild non-degeneracy
condition, then (1.20) can be solved with a disparity of order δ, for all q and for p
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outside a small-measure set B1 ⊂ Bn. The corresponding transformation S1

reduces Hδ to a Hamiltonian (1.19) which is much closer to be integrable
than Hδ. Iterating this argument, Kolmogorov constructed symplectomorphisms
{S1 ◦ · · · ◦ Sj}j≥1 transforming Hδ to some Hamiltonians Hδ,j that are δ2j

-close
to be integrable, for all q and for p outside a set B1 ∪ · · · ∪ Bj ⊂ B. When
j →∞, the transformations S1 ◦ · · · ◦ Sj converge, super-exponentially fast, to a
limiting transformation Sδ which satisfies (1.18) for all p outside the set ∪jBj
which turns out to be of a small measure. This implies the assertions made by
Kolmogorov in his seminal paper7 [Kol54].

Going back to our problem and denoting δ = ‖u − u′‖ ≤ δ0, we write
u′ = u+δv, where ‖v‖ = 1, and seek a transformation of the form Ψu,u

′
= Id +δΦ.

Similar to Kolmogorov’s approach, let us rewrite relation (1.16) as

δ
(
DηS(u, η1)Φ(η1)− S′(u, u′, η1)

)
+O(δ2) = 0,

where S′ = δ−1(S(u+δv, η1)−S(u, η1)) is of order 1. Neglecting the term O(δ2),
consider the equation

DηS(u, η1)Φ(η1) = S′(u, u′, η1). (1.21)

This is the homological equation of our proof, analogous to Eq. (1.20) from
Kolmogorov’s theorem. Equation (1.21), as well as (1.20), cannot be solved
exactly or approximatively for a.a. η1. However, in view of Hypothesis (H3), it
can be solved approximately for η1 /∈ N u, where N u is a suitable “bad” set of
small `-measure in the support K of `. It is proved in Section 2.2 that, for any
ε > 0, an approximate solution Φ(η1) solving (1.21) up to a term of order ε can
be found in the form

Φ(η1) = Rε(u, η1)S′,

where Rε(u, η1) is a finite-dimensional linear operator satisfying the inequality

‖Rε(u, η1)‖ ≤ C(ε, `(N u)) <∞ (1.22)

with some function C(ε, r) going to +∞ as ε→ 0 or r → 0. Setting

Ψu,u
′
(η1) = η1 + δΦ(η1) = η1 + δRε(u, η1)S′(u, u′, η1),

we make the left-hand side of (1.16) of order

δ1 = O(δε) + δ2C(ε, `(N u))2 for η1 /∈ N u. (1.23)

In the KAM theory, the usual strategy is to choose ε = δγ1 with some γ1 > 0.
Then, if we knew that δ2C(δγ1 , `(N u))2 ≤ δ1+γ2 with some γ2 > 0, this would
lead to a super-exponential convergence ‖vk − uk‖ → 0, typical for the theory.

7The paper contained a scheme of the proof, and a complete proof appeared only 10
years later in the works by Arnold and Moser, resulting in creation of the KAM theory;
see [Arn63, Mos66].
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However, such a choice is now impossible, since the constant C(ε, `(N u)) is
practically out of control. Instead, we derive from (1.23) that

δ1 ≤ C1δ
(
ε+ δ0C(ε, `(N u))2

)
and choose ε = (4C1)−1 and δ0 =

(
4C1C(ε, `(N u))2

)−1
. This implies that

δ1 ≤ 1
2δ and leads to an exponential convergence ‖vk − uk‖ → 0, which is

sufficient for our purposes.

Construction of vectors {η′k}k≥1 encounters two8 difficulties, which we de-
scribe for the first step:

(1) The transformation η1 7→ Ψu,u
′
(η1) does not preserve the measure `,

so (1.15) does not necessarily hold.

(2) The transformation Ψu,u
′
(η1) is not defined for η1 ∈ N u.

The first difficulty is overcome due to the observation that, in our situation,

the distance between the measures ` and Ψu,u
′

∗ ` is of order
(
δ‖Rε(u, η1)‖

)κ
with

some κ > 0, which is small by (1.22). Thus, even though the laws of v1 and u′1
are not the same, the two are close, which allows to bound the distance between
the laws of u1 and u′1 by the triangle inequality, provided that v1 is close to u1.

To handle the second difficulty, we extend the definition of Ψu,u
′

to N u as
follows:

(c) If η1 ∈ N u, then Ψu,u
′
(η1) = η1.

Since the mapping S is Lipschitz on the compact set X × K, for η1 ∈ N u we
have ‖u1 − v1‖ ≤ Cδ. We then iterate Steps (a)–(c) depending on the value of
the difference ‖uk − vk‖.

The growth of the constant C(ε, r) as r → 0 is difficult to control, and
we cannot make the `-measure set N u very small. As a consequence, case (c)
happens rather often. This slows down the fast convergence, usually associated
with the quadratic scheme. However, combining this construction with some
techniques based on the study of the behaviour of Kantorovich functionals on
a pair of trajectories enables one to prove that the Markov operator defines a
contraction on the space of measures. This proves Theorem 1.1.

To summarise, the proof of Theorem 1.1 is based on the classical coupling
scheme, enhanced with the quadratic convergence à la Kolmogorov to cope with
difficulties (1) and (2) described above. The realisation of this scheme meets
serious analytic difficulties. In Section 3, we implement the scheme, using some
technical lemmas proved in Section 2. Moreover, these ideas apply also to the
case in which the dissipativity hypothesis (H2) is replaced by a weaker condition
of global approximate controllability to a point; that possibility will be analysed
in a subsequent publication.

8The first difficulty does not have an analogue in the KAM theory, whereas the second is
almost always present and manifests itself in the fact that the homological equation (1.20)
cannot be solved for all actions p ∈ B.
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2 Auxiliary tools

In this section, we establish some results that will be used in the proof of
Theorem 1.1. Their demonstration is based on well known methods. However,
since the results are not available in the literature in the form we need, we
provide rather detailed proofs.

2.1 Transformation of probability measures under piece-
wise Lipschitz mappings

In what follows, we denote by E a separable Hilbert space, by K ⊂ E a compact
subset, and by Ψ : K → E a mapping of the form Ψ(η) = η + Φ(η), where
Φ : K → E is a Borel-measurable “small” mapping vanishing outside K. Our
goal is to study the transformation of measures on K under Ψ . We shall consider
the situation in which the mappings Φ and Ψ are piecewise Lipschitz in the
following sense: their restrictions to a “large” closed subset K1 ⊂ K is Lipschitz,
while outside K1 they are, respectively, the zero-map and the identity-map.

Let E be the direct sum of closed subspaces E and E ′, where dim E < +∞,
and let PE and PE′ be the associated projections. We assume that the image
of Φ is contained in E . Given any subset A ⊂ E, we denote by A′ its projection
to E ′, and for any w ∈ A′, we write A(w) = {v ∈ E : v + w ∈ A}. Let ` ∈ P(E)
be a measure that is supported by K and is representable as the tensor product
of its projections `E and `E′ under PE and PE′ , respectively. We assume that `E
has a Lipschiz-continuous density ρ with respect to the Lebesgue measure on E .

Theorem 2.1. Let Φ : K → E ⊂ E be a Borel-measurable mapping that possesses
the following properties:

(a) There is a positive number κ and a closed subset K1 ⊂ K such that
Φ
∣∣
K\K1

= 0 and

‖Φ(η)‖ ≤ κ, ‖Φ(η)− Φ(η′)‖ ≤ κ‖η − η′‖ for η, η′ ∈ K1. (2.1)

(b) There are positive numbers c and γ such that, for any w ∈ K′1 and r ∈ [0, 1],
we have

Leb
{
v ∈ E : dist

(
v, ∂wK1

)
≤ r
}
≤ c rγ , (2.2)

where ∂wK1 = K1(w) ∩ K1(w)c and K1(w)c = K(w) \ K1(w).

Let ` ∈ P(E) be a measure satisfying the above hypotheses such that supp ` ⊂ K.
Then there are positive numbers C and β depending only on `, c, and γ such that

‖`− Ψ∗(`)‖var ≤ Cκβ . (2.3)

Proof. Note that the assertion of the theorem is trivial if κ is separated from zero,
so that we shall consider the case κ ≤ 1

2 . We wish to estimate the supremum of
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the absolute value of the expression 〈f ◦Ψ, `〉−〈f, `〉 over all indicator functions f
of Borel sets in K. To this end, we use the Fubini theorem to write

〈f ◦ Ψ, `〉 =

∫
K′
`E′(dw)

∫
K(w)

f(v + w + Φ(v + w))ρ(v)dv, (2.4)

〈f, `〉 =

∫
K′
`E′(dw)

∫
K(w)

f(v + w)ρ(v)dv. (2.5)

Suppose we have shown that∣∣∣∣∫
K1(w)

(
f(v + w + Φ(v + w))− f(v + w)

)
ρ(v)dv

∣∣∣∣ ≤ C1κβ , (2.6)

where C1 and β do not depend on w, f , and κ. In this case, taking the absolute
value of the difference between (2.4) and (2.5), using that Φ is zero outside K1,
and estimating the interior integral with the help of (2.6), for any indicator
function f we derive

|〈f ◦ Ψ, `〉 − 〈f, `〉| ≤ Cκβ .

Since f is arbitrary, we arrive at the required estimate (2.3). Thus, we need to
establish (2.6).

We first outline the main idea. Suppose that K1(w) coincides with the whole
space E . In this case, we can make a change of variable v 7→ v + Φ(v + w) = v′

and rewrite the integral
∫
E f(v + w + Φ(v + w))ρ(v)dv in the form∫

E
f(v′ + w)

ρ(Θw(v′))

det
(
I + (DΦ)(Θw(v′) + w)

)dv′,

where Θw(v′) is the inverse of v + Φ(v + w) with respect to v. This expression
is easy to compare with

∫
E f(v + w)ρ(v)dv due to inequalities (2.1). However,

the set K1(w) may have a complicated structure, and to carry out the above
mentioned change of variables, we need to extend Φ to the whole space and to
introduce some truncations not to change much the values of the integrals.

Let us turn to the accurate proof of (2.6). We first extend the mapping Φ
from K1 to E. To this end, we use the following result, whose proof can be
found in [Val45] (see also Section 2.10.43 of [Fed69] for the finite-dimensional
case, which is not sufficient for our purposes).

Proposition 2.2 (Kirszbraun theorem). Let E1 and E2 be two Hilbert spaces,
let A ⊂ E1 be a set and Φ : A → E2 be a Lipschitz-continuous function, with
a Lipschitz constant κ. Then there is a function Φ̃ : E1 → E2 that coincides
with Φ on A and is Lipschitz continuous with the same constant κ.

Let us denote by Φ̃ : E → E a Lipschitz-continuous function, with Lipschitz
constant ≤ κ, that coincides with Φ on K1. Since K1 is compact, we can
multiply Φ̃ by a cut-off function, so that there is no loss of generality in assuming
that Φ̃ has a bounded support and Lipschitz constant ≤ Cκ, where C > 0 does
not depend on κ.
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To introduce truncations, we define the sets

K+
r (w) = {v ∈ K(w) : dist(v,K1(w)) ≤ r},
K−r (w) = {v ∈ K(w) : dist(v,K1(w)c) ≤ r},

where r > 0 is a small parameter chosen below. Let us consider the functions

χ+
r (v, w) =

dist(v,K+
r (w)c)

dist(v,K+
r (w)c) + dist(v,K1(w))

,

χ−r (v, w) =
dist(v,K1(w)c)

dist(v,K1(w)c) + dist(v,K−r (w)c)
.

These are non-negative functions bounded by 1 and Lipschitz continuous with
constant r−1. Since f is a non-negative function and the support of ρ is equal
to K(w), we can write∫
K1(w)

f(v + w + Φ(v + w))ρ(v)dv ≤
∫
E
f(v + w + Φ̃(v + w))χ+

r (v, w)ρ(v)dv,∫
K1(w)

f(v + w)ρ(v)dv ≥
∫
E
f(v + w)χ−r (v, w)ρ(v)dv

≥
∫
E
f(v + w)χ+

r (v, w)ρ(v)dv − c ‖ρ‖∞rγ ,

where we used the fact that |χ−r (v, w) − χ+
r (v, w)| is a function bounded by 1

and supported in the set entering the left-hand side of (2.2). Now note that, for
κ ≤ 1

2 , the mapping v 7→ v + Φ̃(v + w) is a bi-Lipschitz homeomorphism of E .
Therefore, denoting by δ(f) the expression under the absolute value in (2.6) and
using, for instance, Theorem 3.2.5 in [Fed69] to make a change of variable, we
obtain

δ(f) ≤
∫
E
f(v + w)

χ+
r (Θw(v), w)ρ(Θw(v))

det
(
I + (DΦ̃)(Θw(v) + w)

) dv

−
∫
E
f(v + w)χ+

r (v, w)ρ(v)dv + C1r
γ

≤
∫
B

f(v + w)|∆(v, w)|dv + C1r
γ , (2.7)

where B ⊂ E is a large ball containing the supports of ρ and ρ ◦Θw, and we set

∆(v, w) =
χ+
r (Θw(v), w)ρ(Θw(v))

det
(
I + (DΦ̃)(Θw(v) + w)

) − χ+
r (v, w)ρ(v).

Since v 7→ Θw(v) is a 2-Lipschitz function satisfying the inequality |Θw(v)−v| ≤
κ for all v ∈ E , we have |∆(v, w)| ≤ C2κ(1 + r−1). Substituting this into (2.7),
we derive

δ(f) ≤ C3κ(1 + r−1) + C1r
γ .
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Choosing r = κ1/(1+γ), we get

δ(f) ≤ C4κγ/(1+γ). (2.8)

A similar argument shows that δ(f) ≥ −C5κγ/(1+γ). Combining this with (2.8),
we arrive at inequality (2.6) with β = γ

1+γ . This completes the proof of the
theorem.

2.2 Approximate right inverse of linear operators with
dense image

Let F and H be separable Hilbert spaces and let A : F → H be a continuous
linear operator. Consider the equation Aζ = f . In general, it does not have a
solution, and when it does, the solution may not be unique. The following result
shows that, under some additional conditions, one may construct an approximate
solution that linearly depends on f .

Proposition 2.3. In addition to the above hypotheses, let the image of A be
dense in H and let V be a Banach space compactly embedded into H. Then
for any ε > 0 there is a continuous linear operator Rε : H → F with a finite-
dimensional range such that

‖ARεf − f‖H ≤ ε‖f‖V for any f ∈ V . (2.9)

Proof. Let us define the operator G = AA∗ : H → H. Since the image Im(A)
is dense in H, the kernel of the self-adjoint operator G is trivial, and therefore
the image Im(G) is dense in H. Let us recall that the operator A∗G−1 defined
on Im(G) is called the Moore–Penrose pseudo-inverse and singles out the solution
of the least norm for the equation Aζ = f (when it exists). We shall need the
following lemma giving a natural approximation of the right inverse of A.

Lemma 2.4. Let G : H → H be a non-negative self-adjoint operator. Then the
mapping (0,+∞) 3 γ 7→ (G+ γ)−1 is a well-defined smooth operator function
such that ∆f (γ) := ‖G(G + γ)−1f − f‖2 decreases with γ for every f ∈ H.
Moreover, the norms of the operators G(G+ γ)−1 and (G+ γ)−1 are bounded,
respectively, by 1 and γ−1, and if G has dense image

lim
γ→0
‖G(G+ γ)−1f − f‖ = 0 for any f ∈ H. (2.10)

We now construct Rε by truncating A∗(G+ γ)−1 to ensure that the image
is finite-dimensional. Namely, choosing an orthonormal basis {fj} in F and
denoting by PM the orthogonal projection to the vector space spanned by the
first M vectors, we define Rγ,M = PMA

∗(G+ γ)−1. We now fix any ε > 0. By
Lemma 2.4, for any f ∈ H there is γε(f) > 0 such that

‖AA∗(G+ γ)−1f − f‖ ≤ ε

3
for 0 < γ ≤ γε(f).
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Since the norm of the operator AA∗(G+ γ)−1 is bounded by 1, for any f ∈ H
there is δε(f) > 0 such that

‖AA∗(G+ γ)−1g − g‖ ≤ 2ε

3
for 0 < γ ≤ γε(f), ‖g − f‖ ≤ δε(f). (2.11)

The open balls {Of := ḂH(f, δε(f))}f∈H form a covering of the compact set
BV (1) ⊂ H. Choosing a finite sub-covering {Ofj , 1 ≤ j ≤ m} and setting
γε := min{γε(fj), 1 ≤ j ≤ m}, we derive from (2.11) that

‖AA∗(G+ γε)
−1f − f‖ ≤ 2ε

3
for f ∈ BV (1).

Since the sequence {ARγε,M}M≥1 converges to AA∗(G+ γε)
−1 as M → ∞ in

the strong operator topology and the convergence is uniform on compact subsets,
we can find Mε ≥ 1 such that

‖ARγε,Mεf − f‖H ≤ ε for f ∈ BV (1).

By homogeneity, this implies (2.9) with Rε = Rγε,Mε
.

Proof of Lemma 2.4. Since G ≥ 0, it follows that (G+ γI)−1 is well defined and
smooth in γ > 0. When proving that ∆f decreases with γ, we can assume, by the
spectral theorem, that G acts in a Lebesgue space L2(X, λ) as the multiplication
by a bounded non-negative function a(x). In this case,

∆f (γ) = ‖G(G+ γI)−1f − f‖2 =

∫
X

γ2|f(x)|2

(a(x) + γ)2
λ(dx).

It remains to note that the integrand is an increasing function of γ > 0.
The above representation of the operator G readily implies the assertions

concerning the norms of G(G+γ)−1 and (G+γ)−1. To prove (2.10) for operators
with a dense image, we first note that

G(G+ γ)−1 − I = −γ(G+ γ)−1 (2.12)

Since the norm of the operator γ(G+ γ)−1 is bounded by 1, it suffices to prove
that the right-hand side of (2.12) goes to zero for a dense subset of vectors f ∈ H.
Let us take any f in the (dense) image of G. Then there is h ∈ H such that
f = Gh, so that

‖γ(G+ γ)−1f‖ ≤ γ‖h‖+ γ2‖(G+ γ)−1h‖ ≤ 2γ‖h‖.

This implies (2.10) and completes the proof.

In what follows, we shall need a version of Proposition 2.3 for the case when
the operator A depends on a parameter and degenerates for some of its values.
Namely, let X be a compact metric space, let E be a separable Hilbert space,
and let ` ∈ P(E) be a Borel measure with a compact support K. Consider a
continuous mapping A : X × E → L(F,H) such that A(u, ·) : E → L(F,H)
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is analytic for any u ∈ X (we recall (0.6) and the convention for analytic
mappings with parameter). As in Proposition 2.3, we denote by V a Banach
space compactly embedded into H. Finally, we fix an orthonormal basis {fj}
in F and denote by FN the vector span of f1, . . . , fN .

Proposition 2.5. In addition to the above hypotheses, let us assume that,
for any u ∈ X, there is a set of full measure Ku ⊂ K such that the image
of the linear operator A(u, η) is dense in H for any η ∈ Ku. Then, for any
~ε = (ε1, ε2) ∈ (0, 1)2, there is an integer M~ε ≥ 1, positive numbers νε2 , C~ε, and
a non-negative continuous function F~ε(u, η), defined on X ×E and analytic in η,
such that the following properties hold.

Bound on the measure. The `-measure of the sets

Ku~ε := {η ∈ K : F~ε(u, η) ≤ νε2} (2.13)

satisfies the inequality

`(Ku~ε ) ≥ 1− ε1 for u ∈ X. (2.14)

Right inverse. Let us define the compact set

D~ε = {(u, η) ∈ X ×K : F~ε(u, η) ≤ 2νε2}. (2.15)

Then there is a continuous mapping R~ε : D~ε → L(H,F ) such that

Im
(
R~ε(u, η)

)
⊂ FM~ε

, ‖R~ε(u, η)‖L(H,F ) ≤ C~ε for (u, η) ∈ D~ε, (2.16)

‖A(u, η)R~ε(u, η)f − f‖H ≤ ε2‖f‖V for (u, η) ∈ D~ε, f ∈ V . (2.17)

Proof. We essentially repeat the proof of Proposition 2.3, following the depen-
dence on the parameters. Namely, we set G(u, η) = A(u, η)A(u, η)∗, and given
an integer M ≥ 1 and a number γ > 0, define

Rγ(u, η) = A(u, η)∗
(
G(u, η) + γI

)−1
, RM,γ(u, η) = PMRγ(u, η), (2.18)

where PM : F → F denotes the orthogonal projection to FM . We shall prove
that, for any given ~ε = (ε1, ε2) ∈ (0, 1)2 and an appropriate choice of M and γ,
the operator RM,γ possesses all the required properties.

The fact that the image of RM,γ is contained in the subspace FM follows
immediately from the definition. Furthermore, since the norm of the inverse
(G+ γI)−1 is bounded by γ−1, we have

‖RM,γ(u, η)‖L(H,F ) ≤ C1γ
−1, C1 = sup

(u,η)∈X×K
‖A(u, η)‖L(F,H),

so that the inequality in (2.16) holds for any fixed M and γ. Thus, we need to
construct a function F~ε and to prove (2.14) and (2.17).
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Let us show that for any γ > 0 there is an integer Mγ,~ε ≥ 1 with the following
property: if for some closed subset D~ε ⊂ X ×K we have

sup
(u,η)∈D~ε

‖A(u, η)Rγ(u, η)f − f‖ < ε2 for f ∈ BV (1), (2.19)

then inequality (2.17) with R~ε = RM,γ is true for M ≥Mγ,~ε. Indeed, let us note
that

∆M,γ(u, η)f := ARγf −ARM,γf = A(u, η)(I − PM )Rγ(u, η).

Since the mapping (u, η, f) 7→ Rγ(u, η)f acting from X × K × H to H is
continuous, the image of the compact set D~ε×BV (1) is compact. The convergence
of PM to I in the strong operator topology implies that

sup
(u,η,f)∈D~ε×BV (1)

‖∆M,γ(u, η)f‖ → 0 as M →∞.

Combining this with (2.19), we see that (2.17) is true for M ≥Mγ . We thus need
to construct a function F~ε and numbers γ, νε2 > 0 for which (2.14) and (2.19)
hold.

To this end, note that, by Lemma 2.4, for any u ∈ X, η ∈ Ku, and f ∈ H,

lim
γ→0
‖A(u, η)Rγ(u, η)f − f‖ = 0. (2.20)

Let {fj , 1 ≤ j ≤ N} ⊂ H be an (ε2/4)-net for the compact set BV (1) ⊂ H. For
γ > 0, we define the continuous function

Fγ(u, η) =

N∑
j=1

‖A(u, η)Rγ(u, η)fj − fj‖2 (2.21)

and notice that it is analytic in η and decreases with γ > 0 for each (u, η) in view
of Lemma 2.4. Furthermore, setting νε2 = ε2

2/32, we see that if Fγ(u, η) ≤ 2νε2 ,
then for any f ∈ BV (1) we have

‖A(u, η)Rγ(u, η)f − f‖ ≤ min
1≤j≤N

(
‖ARγ(f − fj)‖+ ‖f − fj‖

)
+ Fγ(u, η)1/2

≤ 3ε2/4, (2.22)

where we used the fact that the norm of the operator G(G+ γI)−1 is bounded
by 1. Suppose we have established the following lemma.

Lemma 2.6. Under the hypotheses of Proposition 2.5, for any ν > 0 we have

`
(
{η ∈ K : Fγ(u, η) < ν}

)
→ 1 uniformly in u ∈ X as γ → 0+. (2.23)

Applying this result with ν = νε2 , we can find γ = γ(~ε) > 0 such that (2.14)
holds for the set Ku~ε defined by relation (2.13) with F~ε = Fγ(~ε). It remains to
note that inequality (2.19) follows immediately from (2.22). This completes the
proof of the proposition.
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Proof of Lemma 2.6. By assumption, the image of A(u, η) is dense for any u ∈ X
and η ∈ Ku. It follows from (2.20) that

Fγ(u, η)→ 0 as γ → 0 for each η ∈ Ku.

Since `(Ku) = 1 and the almost sure convergence implies convergence in prob-
ability, we see that the family of functions {mγ : X → [0, 1]}γ∈(0,1) defined
by

mγ(u) = `
(
{η ∈ K : Fγ(u, η) < ν}

)
(2.24)

converges to 1 as γ → 0+ for any u ∈ X and ν > 0. We need to prove that
this convergence is uniform. Suppose we have established the following two
properties:

Semicontinuity. For any γ ∈ (0, 1), the function mγ : X → [0, 1] is lower
semicontinuous.

Monotonicity. For any γ1 ≤ γ2 and u ∈ X, we have mγ1(u) ≥ mγ2(u).

In this case, the required uniform convergence follows from Dini’s theorem for
a sequence of increasing functions, which remains true when the functions are
lower semicontinuous; see [Dud02, Theorem 2.4.10].

Let us prove the semicontinuity. We denote by µu ∈ P(R) the image of ` under
the mapping Fγ(u, ·). Thus, for any bounded continuous function g : R→ R, we
have ∫

R
g(r)µu(dr) =

∫
E

g
(
Fγ(u, η)

)
`(dη).

It follows from the Lebesgue theorem on dominated convergence that the function
u 7→ µu acting from X to the space P(R) endowed with the weak topology is
continuous. By the portemanteau theorem (see [Dud02, Theorem 11.1.1]), for
any open set O ⊂ R the function u→ µu(O) is lower semicontinuous. It remains
to note that mγ(u) = µu(O) with O = (−∞, ν).

To prove the monotonicity, it suffices to note that, by Lemma 2.4, the
function ∆f (γ) := ‖G(G + γ)−1f − f‖2 decreases with γ, so that the same is
true for Fγ(u, η). The proof of the lemma is complete.

2.3 Measure of a tubular neighbourhood of a nodal set

As before, let X be a compact metric space, let E be a separable Hilbert space,
and let ` ∈ P(E) be a probability measure with a compact support K. We
assume that ` is decomposable in the sense that there is an orthonormal basis {ej}
in E such that ` can be represented as the direct of product its projections
to the one-dimensional subspaces spanned by ej . Let us fix a bounded convex
open set O ⊃ K and consider a continuous function F : X ×O → R such that
F(u, ·) : O → R is analytic and not identically zero for any u ∈ X.

Lemma 2.7. In addition to the above hypotheses, let us assume that the one-
dimensional projections of ` to the spaces span(ej) possess continuous densities
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with respect to the Lebesgue measure. Then there are positive numbers C and c
such that, for any u ∈ X and r ∈ [0, 1],

`
(
{η ∈ O : |F(u, η)| ≤ r}

)
≤ C rc. (2.25)

As an immediate consequence of this lemma, we obtain the following estimate
for the measure of a tubular neighbourhood of the nodal set for an analytic
function. Namely, for any u ∈ X, we denote

N (u) = {η ∈ O : F(u, η) = 0}.

Corollary 2.8. Under the hypotheses of Lemma 2.7, there are numbers C, c > 0
such that, for any u ∈ X and r ∈ [0, 1],

`
(
{η ∈ O : dist(η,N (u)) ≤ r}

)
≤ C rc. (2.26)

Proof. We first recall that ‖(DηF)(u, η)‖L(E) ≤ C < ∞ for (u, η) ∈ X ×O, in
view of our convention concerning analytic functions. By the convexity of O, it
follows that

{η ∈ O : dist(η,N (u)) ≤ r} ⊂ {η ∈ O : |F(u, η)| ≤ C ′r},

where C ′ > 0 does not depend on u ∈ X and r ∈ [0, 1]. The required result is
now implied by (2.25).

Proof of Lemma 2.7. It suffices to establish (2.25) for r ≤ r0, for a suitable
r0 > 0. Let us denote by Z(u, r) the set in the left-hand side of (2.25) and
take any u0 ∈ X and η0 ∈ K. If F(u0, η0) 6= 0, then for sufficiently small balls
X ⊃ Ou0 3 u0 and E ⊃ Oη0 3 η0, we have

|F(u, η)| > σ(u0, η0) > 0 for u ∈ Ou0 , η ∈ Oη0 . (2.27)

Now assume that F(u0, η0) = 0. Since F(u0, ·) is analytic and not identically
zero, we can find a vector e ∈ E belonging to the span of finitely many first
vectors of the basis {ej} such that the function t 7→ fu0,η0(t) := F(u0, η0 + te)

does not vanish identically. It follows that f
(m)
u0,η0(0) 6= 0 for some m = m(u0, η0),

so that we can find a number δ > 0 and open balls Ou0 3 u0 and Oη0 3 η0 such
that

|f (m)
u,η (t)| ≥ γ(u0, η0) > 0 for u ∈ Ou0 , η ∈ Oη0 , |t| ≤ δ.

This implies that (see Lemma 2 in [Bak86] or Lemma B.1 in [Eli02])

Leb
(
{t ∈ [−δ, δ] : |f(t)| ≤ r}

)
≤ C(u0, η0) r1/m (2.28)

for u ∈ Ou0 , η ∈ Oη0 , and r ∈ [0, 1]. Since the projection of ` to any subspace
spanned by finitely many vectors of the basis {ej} possesses a bounded density
with respect to the Lebesgue measure, applying the Fubuni theorem, we conclude
from (2.28) that

`
(
Z(u, r) ∩Oη0

)
≤ C(u0, η0) rc(u

0,η0). (2.29)

23



Now let us choose a finite system of domains Ouj × Oηj which covers the
compact set X × K such that (2.27) or (2.29) hold with u0 = uj and η0 = ηj .
Denoting by r0 the minimum of all involved constants σ(uj , ηj), by C the
maximum of the constants C(uj , ηj), and by c the minimum of all exponents
c(uj , ηj), we see that (2.25) follows from (2.27) and (2.29).

In Section 5.2, we shall need the following particular case of Lemma 2.7
when E is a finite-dimensional space and X is a singleton.

Corollary 2.9. Let F : Rn → R be a non-zero analytic function and let ξ1, . . . , ξn
be independent random variables whose joint law possesses a density (with respect
to the Lebesgue measure) that is bounded by λρ, where λ > 0 is a number, and ρ
is a continuous function with compact support. Then

P{|F(ξ1, . . . , ξn)| ≤ r} ≤ C(ρ) rcλ for any r ∈ [0, 1], (2.30)

where C(ρ) and c are positive numbers depending on F (but not on λ and the
random variables ξ1, . . . , ξn).

3 Proof of the main result

3.1 General scheme and reduction to a coupling

We wish to apply a sufficient condition for exponential mixing from [KS12,
Section 3.1.1], stated below as Theorem 7.1. To this end, we shall construct
a symmetric measurable function F : X ×X → R+ satisfying (7.1) and prove

that (7.4) holds for it. Replacing S by the mapping S̃(u, η) = S(u+ û, η+ η̂)− û,
we may assume without loss of generality that û = 0 and η̂ = 0.

Our construction will depend on four parameters q, b ∈ (0, 1) and R, d > 0,
three of which are fixed now. Namely, let b = a+1

2 , where a ∈ (0, 1) is the
number in (1.2), let R > 0 be such that X ⊂ BH(R), and let q ∈ (0, 1) satisfy
the inequality

‖S(u1, ζ)− S(u2, ζ)‖ ≤ q−1‖u1 − u2‖ for any u1, u2 ∈ X, ζ ∈ K; (3.1)

the existence of such a number q is implied by Hypothesis (H1). We denote
by N = N(d) ≥ 1 the least integer satisfying the inequality bNR ≤ d/2, define
X = X ×X, and introduce the sets

X∞ =
{

(u, u′) ∈X : u = u′
}
, (3.2)

Xn =
{

(u, u′) ∈X : qn+1d < ‖u− u′‖ ≤ qnd
}
, (3.3)

Xk =
{

(u, u′) ∈X : ‖u− u′‖ > d,RbN+k+1 < ‖u‖ ∨ ‖u′‖ ≤ RbN+k
}
, (3.4)

where n ≥ 0 and −N ≤ k ≤ −1. It is straightforward to check that X is the
union of the sets {Xn,−N ≤ n ≤ ∞}. Recall that Pk(u,Γ) stands for the
transition function of the Markov process defined by (1.1). A key observation
when proving (7.4) is the following result.
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Proposition 3.1. Under the hypotheses of Theorem 1.1, there are γ ∈ (0, 1] and
C > 0 such that, for any ν ∈ (0, 1), there is d0 ∈ (0, 1) possessing the following
property: for any d ∈ (0, d0) we can construct a number p ∈ (0, 1), a probability
space (Ω,F ,P) and measurable functions V, V ′ : X ×X ×Ω→ X (a coupling)
such that the following assertions hold.

(a) For any (u, u′) ∈ X, the laws of V (u, u′; ·) and V ′(u, u′; ·) coincide with
P1(u, ·) and P1(u′, ·), respectively. Moreover, V (u, u; ·) = V ′(u, u; ·) almost
surely for any (u, u) ∈X∞.

(b) For any (u, u′) ∈Xn, we have

P
{(
V (u, u′), V ′(u, u′)

)
∈Xm for some m ≥ n+ 1

}
≥ 1− ν, (3.5)

P
{(
V (u, u′), V ′(u, u′)

)
∈Xm for some m ≤ n− 2

}
≤ C ‖u− u′‖γ ,

(3.6)

where n ≥ 0 in (3.5) and n ≥ 1 in (3.6).

(c) For −N ≤ k ≤ −1 and (u, u′) ∈Xk, we have

P
{(
V (u, u′), V ′(u, u′)

)
∈Xm for some m ≥ k + 1

}
≥ p. (3.7)

Taking this result for granted, let us complete the proof of the theorem. Let
γ ∈ (0, 1] and C > 0 be the numbers constructed in Proposition 3.1. We fix
ν > 0 so small that9

qγ/2 + q−γ/2ν < 1, (3.8)

qγ/2 + 3ν < 1. (3.9)

Let d0 > 0 be the constant constructed in Proposition 3.1 for the above choice
of ν and let d ∈ (0, d0) be a number that will be chosen below; once it is fixed,
the integer N and the sets Xn with −N ≤ n ≤ +∞ are uniquely determined.
We define

F (u, u′) =


0 for (u, u′) ∈X∞,

(qnd)γ/2 for (u, u′) ∈Xn,
Mk for (u, u′) ∈Xk,

(3.10)

where n ≥ 0, −N ≤ k ≤ −1, and Mk ≥ 2dγ/2 is a decreasing sequence to be
chosen below. It is straightforward to see that F satisfies (7.1). We shall prove
that inequality (7.4) holds with some κ ∈ (0, 1).

To this end, we first reduce the proof to the particular case in which µ1, µ2

are Dirac masses. Namely, suppose we have proved that

KF (P∗1δu,P
∗
1δu′) ≤ κKF (δu, δu′) = κF (u, u′) for any (u, u′) ∈X. (3.11)

Let us take any measures µ1, µ2 ∈ P(X). For any θ > 0, there are X-valued
random variables ξ1, ξ2 such that

KF (µ1, µ2) ≥ EF (ξ1, ξ2)− θ. (3.12)

9The role of inequalities (3.8) and (3.9) will be clarified below.
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Now let (V (u, u′), V ′(u, u′)) be the random variables constructed in Proposi-
tion 3.1. They can be assumed to be independent of (ξ1, ξ2). In this case,
the pair (V (ξ1, ξ2), V ′(ξ1, ξ2)) is a coupling for (P∗1µ1,P

∗
1µ2). Using again the

independence and relations (3.11) and (3.12), we derive

KF (P∗1µ1,P
∗
1µ2) ≤ EF

(
V (ξ1, ξ2), V ′(ξ1, ξ2)

)
≤ κ EF (ξ1, ξ2) = κ (KF (µ1, µ2) + θ).

Since θ > 0 was arbitrary, this proves (7.4).
To establish (3.11), notice that there is nothing to prove when (u, u′) ∈X∞.

For (u, u′) /∈X∞, we abbreviate F (u, u′) =: F and distinguish between four cases.
For the reader’s convenience, we outlined in Figure 1 the mutual dependence of
parameters and the way they are chosen, assuming that b, R, q, C, and γ are
already fixed (see (3.1) and Proposition 3.1).

Case 1: (u, u′) ∈Xn with n ≥ 1, so F = (qnd)γ/2. Since (V, V ′) is a coupling
for (P∗1δu,P

∗
1δu′), it follows from of (3.5), (3.6), and (3.10) that

KF (P∗1δu,P
∗
1δu′) ≤ EF

(
V (u, u′), V ′(u, u′)

)
≤ qγ/2F P(G1

n) +M−N P(G2
n) + q−γ/2F P(G3

n)

≤ F
(
qγ/2 P(G1

n) + q−γ/2P(G3
n) +M−N (qnd)−γ/2P(G2

n)
)

=: Fκ1,

where G1
n and G2

n denote the events on the left-hand sides of (3.5) and (3.6),
respectively, G3

n is the complement of G1
n ∪ G2

n corresponding to the event
{(V, V ′) ∈Xn∪Xn−1}, and we used the fact that {Mk} is a decreasing sequence.
The required inequality (3.11) will be established if we prove that κ1 < 1,
uniformly in n ≥ 1. To this end, notice that P(G3

n) ≤ ν in view of (3.5), so that

qγ/2 P(G1
n) + q−γ/2P(G3

n) ≤ qγ/2 + q−γ/2ν. (3.13)

Furthermore, it follows from (3.6) that

M−N (qnd)−γ/2P(G2
n) ≤ CM−N (qnd)γ/2 ≤ CM−Ndγ/2.

Combining this with (3.13) and (3.8), we see that κ1 < 1, provided that

CM−Nd
γ/2 < 1− qγ/2 − q−γ/2ν. (3.14)

Let us note that N depends on the choice of d, so that the parameters M−N
and d are not independent. Our choice of Mk will ensure that M−N ≤ 3dγ/2, so
that (3.14) will be satisfied if

3Cdγ < 1− qγ/2 − q−γ/2ν. (3.15)

In what follows, we fix d ∈ (0, d0) satisfying (3.15). Together with b, they
determine N ≥ 1 as the least positive integer satisfying bNR ≤ d/2.
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Case 2: (u, u′) ∈X0, so F = dγ/2. Let us set

Mk = 2dγ/2 + ε(BN−1 −BN+k), (3.16)

where ε > 0 and B > 1 will be chosen below. Arguing as above, using (3.5), and
assuming that ε ≤ B1−Ndγ/2 (so that M−N ≤ 3dγ/2), we derive

KF (P∗1δu,P
∗
1δu′) ≤ qγ/2F P(G1

0) +M−N
(
1− P(G1

0)
)

≤ F
(
qγ/2 + d−γ/2M−Nν

)
≤ F

(
qγ/2 + 3ν

)
=: Fκ2.

In view of (3.9), we have κ2 < 1.

Case 3: (u, u′) ∈ X−1, so F = M−1 = 2dγ/2. It follows from (3.7) with
m = −1 that

KF (P∗1δu,P
∗
1δu′) ≤ pdγ/2 + (1− p)

(
2dγ/2 + ε(BN−1 − 1)

)
≤ F

(
1− p

2 + ε(2dγ/2)−1(1− p)BN−1
)

=: Fκ3.

It is straightforward to check that κ3 ≤ 1− p
4 < 1, provided that

ε ≤ p(1− p)−1B−Ndγ/2, B ≥ 2.

Case 4: (u, u′) ∈Xk with −N ≤ k ≤ −2, so F = Mk. Using (3.7) and (3.16),
we derive

KF (P∗1δu,P
∗
1δu′) ≤ p

(
2dγ/2 + ε(BN−1 −BN+k+1)

)
+ (1− p)

(
2dγ/2 + ε(BN−1 − 1)

)
= 2dγ/2 + ε(BN−1 − pBN+k+1 − 1 + p).

Let us set B = 2/p ≥ 2. Then the right-most term in the above inequality does
not exceed κ4F with

κ4 = 1− 1

3
εd−γ/2.

Comparing the restrictions imposed on the parameters, we see that (3.11) holds
with κ = max{κi, 1 ≤ i ≤ 4}, provided that

ε = B−Ndγ/2 min
{
p(1− p)−1, B

}
. (3.17)

ν: (3.8) & (3.9) d0: Proposition 3.1 d: (3.15) N : bNR ≤ d/2

p: Proposition 3.1B = 2/p

ε: (3.17) Mk: (3.16)

Figure 1: The parameters are chosen in the following order: ν, d0, d,N, p,B, ε
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Relation (3.11) implies inequality (7.4), and the exponential mixing (1.7)
follows. Thus, to complete the proof of Theorem 1.1, it remains to establish
Proposition 3.1. To this end, we first prove two auxiliary results. The construction
of (V, V ′) is given in Section 3.3.

3.2 Two auxiliary results

Recall that the number a ∈ (0, 1) is defined in Hypothesis (H2), which is assumed
to hold with û = 0 and η̂ = 0, and that b = 1+a

2 .

Proposition 3.2. Let ζ be a random variable with law `. Then, for any r > 0
and any u, u′ ∈ X with ‖u‖ ∨ ‖u′‖ ≥ r, we have

P
{
‖S(u, ζ)‖ ∨ ‖S(u′, ζ)‖ ≤ b(‖u‖ ∨ ‖u′‖)

}
> 0. (3.18)

Proof. By Hypothesis (H2) and the Lipschitz property of S(u, ·) : K → H, for
any u, u′ ∈ X with ‖u‖ ∨ ‖u′‖ ≥ r and η ∈ K we have

‖S(u, ζ)‖ ≤ ‖S(u, 0)‖+ C‖ζ‖E ≤ a‖u‖+ C(r−1‖u‖ ∨ ‖u′‖)‖ζ‖
≤
(
a+ Cr−1‖ζ‖

)
‖u‖ ∨ ‖u′‖. (3.19)

The right-most term of this inequality does not exceed b(‖u‖∨‖u′‖) provided that
‖ζ‖ ≤ C−1r(b−a), and a similar estimate holds for ‖S(u′, ζ)‖. It follows that the
probability on the left-hand side of (3.18) is minorised by P{‖ζ‖ ≤ C−1r(b−a)}.
This quantity is positive because η̂ = 0 is in the support of the law `.

Given a number δ > 0, we set Dδ = {(u, u′) ∈ X ×H : ‖u− u′‖ ≤ δ}.

Proposition 3.3. For any σ, θ ∈ (0, 1) there are positive numbers C, β, and δ,
a Borel-measurable mapping Φ : X × H × E → E, and a family of subsets
{Ku,σ,θ ⊂ Ku}u∈X such that Φu,u

′
(η) = 0 if η /∈ Ku,σ,θ or u′ = u, and we have

the following inequalities, in which Ψu,u
′
(η) = η + Φu,u

′
(η) :

`(Ku,σ,θ) ≥ 1− σ, (3.20)

‖`− Ψu,u
′

∗ (`)‖var ≤ C ‖u− u′‖β , (3.21)

‖S(u, η)− S(u′, Ψu,u
′
(η))‖ ≤ θ ‖u− u′‖, (3.22)

where (u, u′) ∈ Dδ and η ∈ Ku,σ,θ.

Proof. We first outline the main idea. We seek a vector ζ ∈ E depending on u,
u′, and η such that

‖S(u, η)− S(u′, η + ζ)‖ ≤ θ‖u− u′‖, (3.23)

provided that ‖u − u′‖ is sufficiently small. Since S is a C2-function of its
arguments, we can write

S(u′, η+ζ) = S(u, η)+(DuS)(u, η)(u′−u)+(DηS)(u, η)ζ+r(u, u′, η, ζ), (3.24)
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where r is a remainder term of order ‖u−u′‖2 +‖ζ‖2. We see that a good choice
of ζ would be defining it as a solution of the equation

(DηS)(u, η)ζ = −(DuS)(u, η)(u′ − u).

This equation is not necessarily soluble. However, by Hypothesis (H3), the image
of (DηS)(u, η) is dense in H. Therefore, by Proposition 2.5, for any ε > 0, we
can construct an approximate right inverse Rε(u, η) : H → E such that

‖(DηS)(u, η)Rε(u, η)f − f‖ ≤ ε‖f‖V for any f ∈ V , (3.25)

where V is the Banach space in (H1). The mapping (DuS)(u, η) is continuous
from H to V , so that in (3.25) we can take f = −(DuS)(u, η)(u′ − u). We shall
show that, for a sufficiently small ε = ε(θ) > 0, the mapping

Φu,u
′
(η) = −Rε(u, η)(DuS)(u, η)(u′ − u) (3.26)

satisfies all required properties. Let us turn to an accurate proof, which is divided
into four steps.

Step 1. Construction of Φ. Let us fix a small parameter ε > 0 that will be
chosen later. Let νε, Kuε , Dε, Fε, and Rε be the objects described in Proposi-
tion 2.5 with ~ε = (ε, ε), E = F , and A(u, η) = (DηS)(u, η). We now construct

the sets Ku,σ,θ ⊂ Ku on which Φu,u
′
(·) will be defined by (3.26). The main point

is to choose them in such a way that inequality (2.2) is true with K1 = Ku,σ,θ
(so that we can apply Theorem 2.1 to prove (3.21)).

Let us recall that Kuε , Dε, and Rε have the form

Kuε = {η ∈ K : Fε(u, η) ≤ νε} for u ∈ X, (3.27)

Dε = {(u, η) ∈ X ×K : Fε(u, η) ≤ 2νε}, (3.28)

Rε(u, η) = PMRγ(u, η) for (u, η) ∈ Dε, (3.29)

where the operator Rγ is defined in (2.18), and the number γ = γ(ε) > 0 and
the integer M = M(ε) ≥ 1 are chosen appropriately. Let us denote by D′ε the
projection of Dε to the space X × E⊥M . In other words,

D′ε = {(u,w) ∈ X × E⊥M : there is v ∈ EM such that w + v ∈ Kuε }.

Since Dε is compact, so is its projection D′ε. We shall need the following lemma
established at the end of this subsection.

Lemma 3.4. The set D′ε can be represented as the disjoint union of finitely
many sets D′1, . . . ,D′m such that the following property holds: for any integer
l ∈ [1,m] there is νl ∈ (νε, 3νε/2) such that, for any (u,w) ∈ D′l, the function
v 7→ Fε(u,w + v)− νl is not identically zero.

We now set

Ku,σ,θ =

m⋃
l=1

{
η ∈ K : η = v + w, (u,w) ∈ D′l,Fε(u,w + v) ≤ νl

}
(3.30)
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and introduce a function Φ : X × H × E → E as follows: Φu,u
′
(η) is defined

by (3.26) if η ∈ Ku,σ,θ, and Φu,u
′
(η) = 0 otherwise. This is a measurable mapping

with range in EM . We claim that (3.20)–(3.22) hold for an appropriate choice
of ε.

Step 2. Proof of (3.20). Up to now, the parameter ε > 0 was arbitrary. Let
us choose it so small that ε ≤ σ. In view of (2.14), the required inequality will be
established if we prove that Ku,σ,θ ⊃ Kuε . But this relation immediately follows
from (3.27) and (3.30) since νl > νε.

Step 3. Proof of (3.22). We first note that (3.28) and (3.30) imply the
inclusion Ku,σ,θ ⊂ {η ∈ K : (u, η) ∈ Dε}. In view of relations (3.24) and (3.25),
in which ζ = Φu,u

′
(η) and f = −(DuS)(u, η)(u′ − u), for u ∈ X, u′ ∈ H, and

η ∈ Ku,σ,θ, we have

‖S(u, η)− S(u′, η + Φu,u
′
(η))‖

≤ ε ‖(DuS)(u, η)(u′ − u)‖V + ‖r(u, u′, η, Φu,u
′
(η))‖. (3.31)

Hypothesis (H1) implies that

‖(DuS)(u, η)(u′ − u)‖V ≤ C1‖u′ − u‖, (3.32)

where we denote by Ci positive numbers not depending on ε, u, u′, and η.
Furthermore, since S is a C2 function whose second derivative is bounded on
bounded subsets, for any ρ > 0 and ‖u‖+ ‖u′‖+ ‖η‖E + ‖ζ‖E ≤ ρ, we have

‖r(u, u′, η, ζ)‖ ≤ C2

(
‖u− u′‖2 + ‖ζ‖2E

)
. (3.33)

Recalling the definition of Φu,u
′

(see (3.26)) and using the inequality in (2.16),
we derive

‖Φu,u
′
(η)‖ ≤ C3(ε)‖u− u′‖ for u ∈ X, η ∈ Ku,σ,θ, u′ ∈ H. (3.34)

Substituting (3.32)–(3.34) into (3.31), we obtain

‖S(u, η)− S(u′, η + Φu,u
′
(η))‖ ≤

(
C4ε+ C5(ε)‖u− u′‖

)
‖u− u′‖.

For a given θ ∈ (0, 1), we can choose first ε and then δ so that (C4ε+C5(ε)δ) ≤ θ.
We thus obtain (3.22) for (u, u′) ∈ Dδ and η ∈ Ku,σ,θ.

Step 4. Proof of (3.21). We shall use Theorem 2.1 with K1 = Ku,σ,θ. Let us
fix (u, u′) ∈ Dδ. The mapping Φu,u

′
(·) : K → E is measurable, and its image is

contained in EM . By Hypothesis (H4), the measure ` can be written as the direct
product of its projections to EM and E⊥M . Inequality (3.21) will be established

if we show that Properties (a) and (b) of Theorem 2.1 are true for Φu,u
′
(·) with

κ = C‖u− u′‖, where C is an absolute constant.
By construction, Φu,u

′
vanishes outside Ku,σ,θ. In view of (3.34), the first

inequality in (2.1) is satisfied. To prove10 the second, let us fix any smooth

10Notice that we cannot apply the mean value theorem, since we do not know if Ku,σ,θ is
convex.
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function h(t) that is equal to 1 for |t| ≤ 3νε/2 and vanishes for |t| ≥ 2νε. Then
we can write

Φu,u
′
(η) = −h

(
Fε(u, η)

)
Rε(u, η)(DuS)(u, η)(u′ − u) for η ∈ Ku,σ,θ. (3.35)

The right-hand side of (3.35) is obviously locally Lipschitz in η ∈ E, with a
Lipschitz constant proportional to ‖u − u′‖. It follows that Φu,u

′
satisfies the

Lipschitz condition on Ku,σ,θ with a constant of the form C‖u− u′‖. We have
thus established (a).

To prove (b), we denote by Kl, l = 1, . . . ,m, the sets entering the right-hand
side of (3.30). Let us note

∂wKu,σ,θ =

m⋃
l=1

∂wKl,

so that it suffices to establish (2.2) for each of the sets Kl. Denoting by OM a
sufficiently large ball in EM , it is easy to see that

∂wKl = {v ∈ Ku,σ,θ(w) : Fε(u,w + v) = νl}
⊂ {v ∈ OM : Fε(u,w + v)− νl = 0}.

Since the analytic function OM 3 v 7→ Fε(u,w + v) − νl does not vanish
identically for (u,w) ∈ Dl, applying Corollary 2.8 to it and to the Lebesgue
measure on EM , we conclude that (2.2) is valid for ∂wKl. This completes the
proof of Proposition 3.3.

Proof of Lemma 3.4. For any (u,w) ∈ D′ε, the function v 7→ Fε(u,w + v) is
analytic on the finite-dimensional space EM . Therefore, by Sard’s theorem,
almost every real number is a regular value for it. Hence, we can find a number
νu,w ∈ (νε, 3νε/2) such that each of the functions v 7→ Fε(u,w+ v)− νu,w is not
identically equal to zero. By continuity, v 7→ Fε(u

′, w′+ v)− νu,w will not vanish
identically, provided that (u′, w′) belongs to a non-degenerate closed ball Bu,w
centred at (u,w). Since the corresponding open balls form a covering of the
compact set D′ε, we can find a finite sub-covering Buj ,wj , j = 1, . . . ,m. We can

now set D′l = (D′ε ∩Bul,wl
) \
(
∪l−1
j=1D′j

)
, where the union is empty for l = 1.

3.3 Proof of Proposition 3.1

Let us fix an arbitrary ν ∈ (0, 1). To define the mappings V and V ′, we first
consider the case in which either u = u′ or ‖u−u′‖ > d, where d > 0 is arbitrary
for the moment. Let us denote by ζ a random variable such that D(ζ) = `. We
set

V (u, u′, ·) = S(u, ζ), V ′(u, u′, ·) = S(u′, ζ).

Then (V, V ′) satisfies property (a). Moreover, it follows from Proposition 3.2
that

P
{
‖V ‖ ∨ ‖V ‖ ≤ b(‖u‖ ∨ ‖u′‖)

}
≥ p, (3.36)
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where p > 0 is a number depending only on d (but not on the vectors u, u′ ∈ X).
Recalling (3.4), we see that (3.7) holds.

Let us turn to the case ‖u − u′‖ ≤ d, assuming that d ≤ δ, where δ > 0 is
the number constructed in Proposition 3.3 with some parameters σ and θ to
be chosen below. We denote by η an E-valued random variable with law ` and
by Mu,u′ ∈ P(E × E) the law of the pair (η, Ψu,u

′
(η)), where Ψu,u

′
: E → E

is the mapping constructed in Proposition 3.3. Let Nu,u′ ∈ P(E × E) be a

maximal coupling for the pair (Ψu,u
′

∗ (`), `). That is, Nu,u′ is a probability

measure on E × E with marginals Ψu,u
′

∗ (`) and ` such that

Nu,u′
(
{(ζ, ζ ′) ∈ E × E : ζ 6= ζ ′}

)
= ‖Ψu,u

′

∗ (`)− `‖var. (3.37)

In view of Theorem 1.2.28 in [KS12], we can choose Nu,u′ to be a random
probability measure on E × E with the underlying space Dδ. By construction,
the projections of Mu,u′ and Nu,u′ to, respectively, the second and the first
components coincide for any (u, u′) ∈ Dδ. Therefore, by Theorem 7.3 and
the remark following it, there is a probability space (Ω,F ,P) and measurable

functions ζ, ζ̂, ζ ′ : Dδ × Ω→ E such that, for any (u, u′) ∈ Dδ,

D
(
ζ(u, u′, ·), ζ̂(u, u′, ·)

)
= Mu,u′ , D

(
ζ̂(u, u′, ·), ζ ′(u, u′, ·)

)
= Nu,u′ . (3.38)

The very definition of ζ and ζ ′ implies that their laws coincide with ` for any
(u, u′) ∈ Dδ. Therefore, defining the functions

V (u, u′, ω) = S(u, ζ(u, u′, ω)), V ′(u, u′, ω) = S(u, ζ ′(u, u′, ω)),

we see that their laws coincide with P1(u, ·) and P1(u′, ·), respectively. Let us
prove (3.5) and (3.6).

To this end, for any (u, u′) ∈ Dδ we introduce the events11

Ωu,u
′

1 := {ζ ∈ Ku,σ,θ} ∩ {ζ̂(u, u′) = ζ ′(u, u′)},

Ωu,u
′

2 := {ζ ∈ Ku,σ,θ} ∩ {ζ̂(u, u′) 6= ζ ′(u, u′)},

Ωu,u
′

3 := {ζ /∈ Ku,σ,θ}.

These events form a partition of the probability space Ω, and it follows from (3.20),
(3.21), (3.37), and (3.38) that

P(Ωu,u
′

1 ) ≥ 1− σ − C1δ
β , (3.39)

P(Ωu,u
′

2 ) ≤ C1‖u− u′‖β , (3.40)

where C1, β, and δ depend on σ and θ. Moreover, it follows from (3.22) and (3.1)

that, on the event Ωu,u
′

1 , we have

‖V (u, u′)− V ′(u, u′)‖ = ‖S(u, ζ(u, u′))− S(u′, ζ̂(u, u′))‖ ≤ θ‖u− u′‖, (3.41)

11We shall often omit the argument ω to simplify formulas.
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whereas on Ωu,u
′

3 ,

‖V (u, u′)−V ′(u, u′)‖ = ‖S(u, ζ(u, u′))−S(u′, ζ(u, u′))‖ ≤ q−1‖u−u′‖. (3.42)

We now specify our choice of the parameters. Let

σ =
ν

2
, θ = q, (3.43)

let C =: C1, β and δ be the constants constructed in Proposition 3.3, and let
d0 ∈ (0, δ) be so small that C1d

δ
0 ≤ ν

2 . It follows from (3.41), (3.42), and (3.43)
that, for (u, u′) ∈Xn, we have

{(V, V ′) ∈Xm for some m ≥ n+ 1} ⊃ Ωu,u
′

1 ,

{(V, V ′) ∈Xm for some m ≤ n− 2} ⊂ Ωu,u
′

2 ,

where n ≥ 0 for the first inclusion and n ≥ 1 for the second. The required
inequalities (3.5) and (3.6) (with γ = β and C = C1) follow now from (3.39)
and (3.40), respectively. This completes the proof of Proposition 3.1.

4 Applications

4.1 Two-dimensional Navier–Stokes system

We consider the Navier–Stokes system on the torus T2
a = R2/(2πa1)Z⊕ (2πa2)Z,

written in the form (1.9) after projecting to the space H of divergence-free
square-integrable vector fields on T2

a with zero mean value. The random forcing
is assumed to be of the form (1.10), where {ηk} is a sequence of i.i.d. random
variables in E := L2(J,H) for some Hilbert space H embedded into H. Let
S(u0, ζ) be the time-1 resolving operator for (1.9). That is, S maps H ×E to H
and takes (u0, η) to u(1), where u(t) stands for the solution of (1.9) satisfying
the initial condition u(0) = u0. Let us denote by Hs(T2

a,R2) the usual Sobolev
space of order s ∈ Z and by Hs its subspace of divergence-free vector functions.
Standard dissipativity and regularisation results enable one to prove that, for
any compact subset K ⊂ E, there is a compact absorbing set X ⊂ H, bounded
and closed in H2, such that S(X × K) ⊂ X; see [KS01, Section 2] or [Shi15,
Section 4.1]. Thus, if {ηk} is a sequence of i.i.d. random variables in E whose
law ` has a compact support K ⊂ E, then (1.1) defines a homogeneous Markov
process (uk,Pu) in H for which X is a closed invariant subset. Our aim is to
study the large-time asymptotics of (uk,Pu).

To formulate the main result, we need the concept of a saturating subspace.
Given a subspace H ⊂ H3, we define a non-decreasing sequence of closed
subspaces Hk ⊂ H3, k ≥ 0, by the following rule:

• H0 coincides with the closure of H in H3;
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• if Hk is already defined, then Hk+1 is the closure in H3 of the subspace
H′ ⊂ H3 such that, for any η1 ∈ H′, there is an integer n ≥ 1 and vectors
η, ζl ∈ Hk and ξl ∈ H with 1 ≤ l ≤ n satisfying

η1 = η +

n∑
l=1

Q(ζl, ξl), (4.1)

where Q(ζ, ξ) = Π(〈ζ,∇〉ξ + 〈ξ,∇〉ζ).

Definition 4.1. A subspace H ⊂ H3 is said to be saturating if the union
of {Hk}k≥0 is dense in H.12

Theorem 4.2. Let H ⊂ H3 be a saturating subspace that is a Hilbert space with
an orthonormal basis {ϕi}i∈I satisfying∑

i∈I
‖ϕi‖21 <∞, (4.2)

and let η be a random process of the form (1.10) that satisfies the decomposability
and observability hypotheses introduced in Example 1.2. Assume, in addition,
that the support of the law ` of ηk contains the origin. Then, for any ν > 0,
the Markov process (uk,Pu) has a unique stationary measure µν ∈ P(X), which
satisfies inequality (1.7).13

Proof. In view of Theorem 1.1, it suffices to check Hypotheses (H1)–(H4), in
which H is defined by (1.8), and E = L2(J,H). The regularity condition is a
consequence of some well-known properties of the resolving semigroup for the
2D Navier–Stokes system (see Section 6 in [BV92, Chapter 1] and [Kuk82]).
Condition (H2) with η̂ = 0 and û = 0 follows immediately from the dissipativity
of the homogeneous Navier–Stokes system. Hypothesis (H4) is implied by the
decomposability condition on the noise (see Example 1.2). Thus, we only need
to check (H3). The proof is divided into three steps.

Step 1. Reduction. We recall that X ⊂ H2 stands for a closed bounded set
that is invariant and absorbing under the dynamics of Eq. (1.9) restricted to
the integer lattice. Given u ∈ X and η ∈ E, let ũ ∈ L2(J,H3) ∩W 1,2(J,H1)
be the solution of Eq. (1.9) with the initial condition u at time t = 0 and let
Rũ(t, s) : H → H (with 0 ≤ s ≤ t ≤ 1) be the two-parameter process solving the
linearised problem

v̇ + νLv +Q(ũ(t))v = 0, v(s) = v0, (4.3)

12We emphasise that condition of saturation depends on the parameters a1 and a2 of the
torus and the quadratic term Q, but not on the viscosity ν.

13Even though the convergence to the stationary measure is formulated in Theorem 4.2
for initial functions supported by X, the exponential convergence to µν holds for any initial
measure with a finite first moment. Our choice of presentation is dictated only by the simplicity
of formulation and the fact that generalisation to arbitrary measures can be carried out by a
well-known simple argument.
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where Q(ũ)v = Q(ũ, v) and v0 ∈ H. In other words, Rũ(t, s) takes v0 to v(t),
where v : [s, 1] → H is the solution of (4.3). Denote by A(u, η) the operator
DηS(u, η). This is the resolving operator for the non-homogeneous equation (4.3)
(that is, zero in the right-hand side should be replaced by ζ) with v0 = 0. It can
be written as

A(u, η) : E → H, ζ 7→
∫ 1

0

Rũ(1, s)ζ(s) ds.

Denoting by L(u, η) its image, we need to prove that L(u, η) is dense in H for any
fixed u ∈ X and `-a.e. η ∈ K. In view of Theorem 2.5 in [Zab08, Part IV], the
density of L(u, η) is equivalent to the triviality of the kernel for the operator 14

Gũ :=

∫ 1

0

Rũ(1, t)PHR
ũ(1, t)∗dt, (4.4)

where Rũ(1, t)∗ : H → H is the adjoint of Rũ(1, t), and PH : H → H stands for
the orthogonal projection to the closure of H in H.

Step 2. Description of Rũ(1, t)∗. Together with (4.3), let us consider the
dual problem

ẇ − νLw −Q∗(ũ(t))w = 0, w(1) = w0, (4.5)

where Q∗(ũ) is the (formal) L2-adjoint of Q(ũ) given by

Q∗(ũ)w = −Π
(
〈ũ,∇〉w + (∇⊗ w)ũ

)
,

where ∇⊗w is a 2× 2 matrix with the elements ∂iwj . Problem (4.5) is a linear
backward parabolic equation, and for any w0 ∈ H, it possesses a unique solution
w ∈ L1(J,H1)∩W 1,2(J,H−1). It is well known, and can be proved easily, that w
can be written as

w(t) = Rũ(1, t)∗w0. (4.6)

Step 3. Inductive argument . We wish to prove that Ker(Gũ) = {0} for any
u ∈ X and `-a.e. η ∈ E. Since the union of Hk is dense in H, it suffices to show
that any element of Ker(Gũ) is orthogonal to Hk for all k ≥ 0.

Let us fix any realisation η ∈ K that is observable with respect to {ϕi}i∈I ,
and suppose that w0 ∈ Ker(Gũ). In view of (4.4), we have

(Gũw0, w0) =

∫ 1

0

‖PHRũ(1, t)∗w0‖2dt = 0,

whence we see that PHR
ũ(1, t)∗w0 = 0 for any t ∈ J . Thus,

(ζ,Rũ(1, t)∗w0) = 0 for t ∈ J, (4.7)

where ζ ∈ H0 is arbitrary. Taking t = 1, we see that w0 must be orthogonal
to H0. Suppose we have proved that relation (4.7) holds for all ζ ∈ Hk with

14The operator Gũ is called the Gramian of the linear control problem associated with (4.3).
It is a central object for studying controllability properties and enables one to formulate them
in terms of observability of solutions for the dual problem; see Chapter 1 in [Cor07].
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some integer k ≥ 0 (so that taking again t = 1 we see that w0 must be orthogonal
to Hk). By induction, the verification of (H3) will be completed once we show
that (4.7) holds for all ζ ∈ Hk+1.

For any given ζ ∈ Hk, differentiating (4.7) in time and using (4.5), we derive15(
νLζ +Q(ũ(t))ζ, w(t)

)
= 0 for t ∈ J, (4.8)

where w is given by (4.6). If we set

y(t) = ũ(t)−
∫ t

0

η(s)ds = ũ(t)−
∑
i∈I

ϕi(x)

∫ t

0

ηi(s) ds, (4.9)

where ηi(t) = (η(t), ϕi)H, then (4.8) can be rewritten as

(
νLζ +Q(y(t))ζ, w(t)

)
+
∑
i∈I

(
Q(ϕi)ζ, w(t)

) ∫ t

0

ηi(s)ds = 0.

Differentiating this relation in time and setting

ai(t) =
(
Q(ϕi)ζ, w(t)

)
,

b(t) =
d

dt

(
νLζ +Q(y(t))ζ, w(t)

)
+
∑
i∈I

(
Q(ϕi)ζ, ẇ(t)

) ∫ t

0

ηi(s)ds,

we derive
b(t) +

∑
i∈I

ai(t)η
i(t) = 0 for all t ∈ J. (4.10)

The function b is continuous, and {ai, i ∈ I} are differentiable. Moreover,
condition (4.2) implies that (1.11) holds. By observability of `, it follows that
ai ≡ 0 for all i ∈ I, whence, recalling the definition of Hk+1, we conclude
that (4.7) holds for any ζ ∈ Hk+1. This completes the proof of Theorem 4.2.

4.2 Complex Ginzburg–Landau equation

We now turn to Eq. (1.13). To simplify the presentation, we confine ourselves
to the most interesting case p = 5. In addition, we shall consider only finite-
dimensional random forces; the extension to infinite-dimensional forces is simpler
than in the case of the Navier–Stokes system.

We thus fix a vector a = (a1, a2, a3) with positive coordinates and denote
by Z3

a the integer lattice generated by the vectors akιk, where (ι1, ι2, ι3) is the
standard basis in R3. Let us set T3

a = R3/2πZ3
a and consider the equation

∂tu− (ν + i)∆u+ γu+ ic|u|4u = η(t, x), x ∈ T3
a. (4.11)

15Here and henceforth, the time derivatives of the functions ũ and w should be understood
in appropriate functional spaces. We leave it to the reader to check that the regularity of ũ
and w is sufficient to differentiate all the inner products.
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Here u = u(t, x) is an unknown complex-valued function, ν, γ, and c are given
positive numbers, and η is a random process of the form (1.10), where {ηk} is
a sequence of i.i.d. random variables in L2(J,H2), and we set Hs := Hs(T3

a,C)
for s ∈ Z. Equation (4.11) is supplemented with the initial condition

u(0) = u0 ∈ H1. (4.12)

We shall consider L2 := L2(T3
a,C) as a real Hilbert space with the inner product

(u, v) = Re

∫
T3
a

uv̄ dx

and endow the Sobolev spaces Hs with the associated norms and inner products.
As in the case of the Navier–Stokes system, if the law of ηk has a compact
support K in L2(J,H2), then discrete-time Markov process (uk,Pu) associated
with (1.1) (in which S : H1 × L2(J,H2)→ H1 is the time-1 resolving operator
for (4.11)) possesses a compact absorbing set X ⊂ H1, that is closed and bounded
in H2.

Let us introduce a concept of a saturating subspace for (4.11). Given a
finite-dimensional subspace H ⊂ H2 invariant under complex conjugation (that
is, ζ̄ ∈ H for all ζ ∈ H), we define a sequence of closed subspaces Hk ⊂ H2,
k ≥ 0, by the following rule:

• H0 coincides with H;

• if Hk is already defined, then Hk+1 is the vector span of Hk and the
products ζξ with ζ ∈ Hk and ξ ∈ H.

It is straightforward to check that {Hk} is a non-decreasing sequence of finite-
dimensional subspaces in H2 that are invariant under complex conjugation.

Definition 4.3. The subspace H ⊂ H2 is said to be saturating if the union
of {Hk}k≥0 is dense in L2.

Let us write B(u) = ic|u|4u for the nonlinear term in (4.11) and note that it
is a real-analytic function in the space H2, and its derivative Q(u) : H2 → H2

acts essentially as a multiplication operator:

Q(u)v = ic
(
3|u|4v + 2|u|2u2v̄

)
.

Theorem 4.4. Let H ⊂ H2 be a finite-dimensional subspace that is invariant
under complex conjugation, contains the function identically equal to 1, and is
saturating. Let {ϕi}i∈I be an orthonormal basis in H and let η be a random
process of the form (1.10) in which {ηk} is an i.i.d. sequence in E = L2(J,H)
such that the following conditions are fulfilled.

Decomposability. The law ` ∈ P(E) of ηk has a compact support K ⊂ E
containing the origin and satisfies the decomposability hypotheses of Exam-
ple 1.2.
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Observability. There is T ∈ (0, 1) such that the law `′ of the restriction of the
random variables ηk to the interval J ′ = [0, T ] is Lipschitz-observabile with
respect to {ϕi}.

Then, for any ν > 0, the Markov process (uk,Pu) has a unique stationary
measure µν ∈ P(X), which satisfies inequality (1.7).

Remark 4.5. Theorem 4.4 remains valid in a slightly more general setting: it
suffices to require that H should contain a subspace H′ satisfying the hypotheses
imposed on H in the theorem. The proof of this observation is straightforward,
and we skip the details.

Proof of Theorem 4.4. As in the case of the Navier–Stokes system, we only need
to check that, for any u ∈ X and `-a.e. realisation of η ∈ E, the image of the
derivative (DS)(u, η) : H1 → H1 is dense. To this end, we fix u ∈ X and η ∈ E,
denote by ũ ∈ L2(J,H3)∩W 1,2(J,H1) the solution of (4.11) issued from u, and
consider the linearised problem

v̇ + Lv +Q(ũ)v = g, v(0) = v0, (4.13)

where L = −(ν + i)∆ + γ, g ∈ E, and v0 ∈ H1. Let us denote by v(t; v0, g)
the solution of (4.13). We need to prove that, for `-a.e. η ∈ E, the vector
space {v(1; 0, g), g ∈ E} is dense in H1. In view of parabolic regularisation, the
resolving operator for (4.13) with g ≡ 0 is continuous from L2 to H1 on an
arbitrary interval J ′ = [T, 1] with 0 < T < 1. Since the restriction at t = 1 of
the space of solutions v(t) for the homogeneous equation on J ′ with v(T ) ∈ L2

is dense in H1 (see Proposition 7.4), the required property will be established if
we prove that the vector space {v(T ; 0, g), g ∈ E} is dense in L2. To this end, we
repeat the scheme used in the case of the Navier–Stokes system. The difference
is that the operator Q is no longer linear in ũ, which makes the argument slightly
more involved.

Let us denote by Rũ(t, s) : L2 → L2 (with 0 ≤ s ≤ t ≤ T ) the two-parameter
process solving the linearised problem (4.13) with g ≡ 0 and let

Gũ :=

∫ T

0

Rũ(T, t)PHR
ũ(T, t)∗dt, (4.14)

where Rũ(T, t)∗ : L2 → L2 is the adjoint of Rũ(T, t), and PH : L2 → L2 stands
for the orthogonal projection to H. We wish to prove that Ker(Gũ) = {0} for
any u ∈ X and `-a.e. η ∈ E. Since the union of Hk is dense in H, it suffices to
show that any element of Ker(Gũ) is orthogonal to Hk for all k ≥ 0.

To this end, we fix u ∈ X and take any w0 ∈ Ker(Gũ). In view of (4.14), we
have PHR

ũ(T, t)∗w0 = 0 for any t ∈ J ′, so that

(ζ,Rũ(T, t)∗w0) = 0 for t ∈ J ′, (4.15)

where ζ ∈ H0 is an arbitrary vector. Assuming that relation (4.15) is true for
any ζ ∈ Hk, we now prove its validity for ζ ∈ Hk+1. Once this is established, we
can complete the proof by taking t = T .
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Differentiating (4.15) in time and using an analogue of relation (4.6) for (4.13),
we derive (

Lζ +Q(ũ(t))ζ, w(t)
)

= 0 for t ∈ J ′, (4.16)

where w(t) is given by (4.6). Let us write

η(t) =
∑
i∈I

ηi(t)ϕi(x),

where ηi(t) = (η(t), ϕi)H. Differentiating (4.16) in time and using (4.11), we
obtain(
Lζ +Q(ũ)ζ, ẇ

)
−
(
B2(ũ; ζ, Lũ+B(ũ)), w

)
+
∑
i∈I

(
B2(ũ; ζ, ϕi), w

)
ηi(t) = 0,

(4.17)
where Bk(u; ·) stands for the kth derivative of B(u) (so that Q = B1, and Bk = 0
for k ≥ 6). We thus obtain relation (4.10), in which J = J ′,

ai(t) =
(
B2(ũ(t); ζ, ϕi), w(t)

)
,

b(t) =
(
Lζ +Q(ũ(t))ζ, ẇ(t)

)
−
(
B2(ũ(t); ζ, Lũ(t) +B(ũ(t))), w(t)

)
.

These are Lipschitz-continuous and continuous functions, respectively, and the
observability of `′ implies that (cf. (4.16))(

B2(ũ(t); ζ, ϕi), w(t)
)

= 0 for i ∈ I, t ∈ J ′.

Applying exactly the same argument three more times, we see that(
B5(ζ, ϕi, ϕj , ϕm, ϕn), w(t)

)
= 0 for i, j,m, n ∈ I, t ∈ J ′, (4.18)

where we used the fact that the fifth derivative of B(u) does not depend
on u. We see that w(t) must be orthogonal to the vector space V spanned
by {(B5(ζ, ϕi, ϕj , ϕm, ϕn)}. Now note that

B5(ζ, ϕ, 1, 1, 1) = 12ic (3ζϕ+ ζ̄ϕ̄+ 3ζ̄ϕ+ 3ζϕ̄). (4.19)

Since both H and Hk are invariant under complex conjugation, it follows from
relation (4.19) that V must contain all the products ζξ with ζ ∈ Hk and ξ ∈ H.
Thus, we have Hk+1 ⊂ V, which completes the proof.

5 Observable processes with decomposable laws

5.1 Observable functions

Let H be a (finite or infinite-dimensional) Hilbert space with an inner product
(·, ·), let {ϕi}i∈I be an orthonormal basis in H, and let η : J → H be a function
in L2(J,H). Recall that the concept of an observable function was introduced
in Definition 1.3. The following two results provide sufficient conditions for a
function to be observable.
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Proposition 5.1. Let η : J → H be a bounded measurable function such that,
for any i ∈ I, the projection (η, ϕi) has left and right limits at any point of J
and is discontinuous on a countable dense set Di and continuous on J \ Di.
Suppose, in addition, that Di ∩ Dj = ∅ for i 6= j. Then η is observable with
respect to {ϕi}.

Proof. We confine ourselves to the infinite-dimensional case. Let ai be Lipschitz-
continuous functions and b a continuous function satisfying (1.11) and (1.12). The
boundedness of η implies that the series

∑
i ai(t)(η(t), ϕi) converges uniformly in

t ∈ J . It follows that its sum ζ(t) has left and right limits at any point of J . Let
us fix any i ∈ I and s ∈ Di. Since s /∈ Dj for j 6= i and (η(t), ϕj) is continuous
on J \ Dj , we see that

∆ζ(s) := ζ(s+)− ζ(s−) = ai(s)
(
η(s+)− η(s−), ϕi

)
. (5.1)

Since b is continuous on J , it follows from (1.12) that the expression in (5.1)
must vanish. By the hypotheses of the proposition, the function (η, ϕi) has
a jump at s, whence we conclude that ai(s) = 0. Since s ∈ Di is arbitrary
and Di is dense, the function ai is identically zero for any i ∈ I, so that b also
vanishes.

We now consider the case of a finite set I and write I = {1, . . . , N}. Let us
fix an orthonormal basis {ϕi} and set η = (η1, . . . , ηN ).

Proposition 5.2. Let the functions ηi have left and right limits at any point
of J , and denote by ∆ηi(t) the jump of ηi at t. Suppose that, for any s ∈ J and
ε ∈ (0, 1], there are tε1, . . . , t

ε
N ∈ [s− ε, s+ ε] such that the N ×N matrix Rε(s)

with the entries ril := ∆ηi(tεl ) is invertible and satisfies the inequality∥∥R−1
ε (s)

∥∥ ≤ Cε−θ, (5.2)

where C > 0 and θ ∈ (0, 1) do not depend on ε. Then η is observable.

Proof. Let a1, . . . , aN be real-valued Lipschitz-continuous functions and let b a
continuous function such that (1.12) holds. We fix an arbitrary s ∈ J and, given
ε > 0, find points tε1, . . . , t

ε
N satisfying the properties mentioned in the statement.

It follows from (1.12) that

N∑
i=1

rilai(t
ε
l ) = 0, l = 1, . . . , N.

Setting a = (a1, . . . , aN ) and using the Lipschitz-continuity of a, we derive the
relation

Rε(s)a(s) = dε(s),

where |dε(s)| ≤ C1ε. Applying the matrix R−1
ε (s) and recalling (5.2), we obtain

|a(s)| ≤ C2ε
1−θ, where C2 does not depend on ε. Since s and ε were arbitrary,

we see that a ≡ 0 and, hence, b ≡ 0.
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5.2 Processes satisfying the hypotheses of Section 1.2

We now construct some examples of stochastic processes on [0, 1] that possess
the decomposability and observability properties. The decomposability will be a
simple consequence of the explicit form of the processes, whereas observability will
follow from a finer analysis based on Propositions 5.1 and 5.2. In all the examples,
we deal with the observability on the interval J = [0, 1]; however, exactly the
same argument shows that the result remains true on the interval [0, T ] with
any T ∈ (0, 1).

Jump process

Let H be a Hilbert space with an orthonormal basis {ϕi}i∈I . Suppose that, for
any i ∈ I, we are given an orthonormal basis {ψil}l≥1 in L2(J) such that the
following properties hold:

(a) the function ψil is continuous outside a finite set Dil and has different left
and right limits at the points of Dil;

(b) the union ∪lDil := Di is dense in J for each i ∈ I;

(c) the intersection Di1 ∩ Di2 is empty for i1 6= i2.

Let us define a stochastic process by the relation

η(t) =
∑
i∈I

ηi(t)ϕi, ηi(t) =

∞∑
l=1

bilξ
i
lψ

i
l(t), (5.3)

where ξil are independent random variables whose laws possess Lipschitz-continuous
densities supported by [−1, 1] and bil ∈ R are non-zero numbers such that

∑
i∈I

∞∑
l=1

(
b2il + |bil| ‖ψil‖∞

)
<∞. (5.4)

It is obvious that the law ` of η is a decomposable measure 16 on L2(J,H). We
claim that ` is observable with respect to {ϕi}. Indeed, it follows from (5.4)
that the series in (5.3) converges uniformly in t and ω, so that the trajectories
of ηi have left and right limits at any point and are continuous outside Di. If we
prove that they are a.s. discontinuous at any point of Di, then Proposition 5.1
will immediately imply the observability of η with respect to {ϕi}.

Let us fix any point s ∈ Di and calculate the jump of ηi at s. It follows
from (5.3) that

∆ηi(s) =

∞∑
l=1

bilξ
i
l

(
ψil(s

+)− ψil(s−)
)
.

16Note that the index j in (1.3) is now replaced by the pair (l, i), and vectors ej are the
products ψil (t)ϕi.

41



This series converges absolutely, and at least one of the terms ψil(s
+)− ψil(s−)

is non-zero. Since the random variables ξil are independent, and laws have
densities, we conclude that so does the law of ∆ηi(s). Therefore, ∆ηi(s) 6= 0
with probability 1.

Haar process with exponentially decaying coefficients

Let us recall the definition of the Haar system {h0, hjl}. We set

h0(t) =

{
1 for 0 ≤ t < 1,

0 for t < 0 or t ≥ 1,
(5.5)

hjl(t) =


0 for t < l2−j or t ≥ (l + 1)2−j ,

1 for l2−j ≤ t <
(
l + 1

2

)
2−j ,

−1 for
(
l + 1

2

)
2−j ≤ t < (l + 1)2−j ,

(5.6)

where j ≥ 1 and l ≥ 0 are integers. It is well known that the restrictions of
the functions {h0, hjl, j ≥ 0, 0 ≤ l ≤ 2j − 1} to the interval J = [0, 1] form
an orthogonal basis in L2(J); see Section 22 in [Lam96]. This implies that
the system of functions {h0(· + k), hjl(·)}, where j ≥ 1 and k, l ≥ 0, form an
orthogonal basis of L2(R+).

Let us assume that H is an N -dimensional Euclidean space. We fix an
orthonormal basis {ϕi, 1 ≤ i ≤ N} and consider the following process in H:

η(t) =

N∑
i=1

bi

(
ξi0h0(t) +

∞∑
j=1

2j−1∑
l=0

cjξ
i
jlhjl(t)

)
ϕi, t ∈ J, (5.7)

where bi ∈ R are non-zero numbers, cj = A−j with some A > 1, and ξijl are

i.i.d. scalar random variables such that |ξijl| ≤ 1 almost surely, and their law
possesses a continous density with respect to the Lebesgue measure. For any
j ≥ 1, any point of J belongs to the support of at most two functions hjl, so
that the series in (5.7) absolutely converges, uniformly with respect to t ∈ J .
Since the functions {h0ϕi, hjlϕi} form an orthonormal basis in L2(J,H), the law
` ∈ P(L2(J,H)) of η is decomposable, and any random variable with law ` has
the form (5.7). Let us prove that, if A > 1 is sufficiently close to 1, then a.e.
trajectory of η is observable.

We shall apply Proposition 5.2. Let us fix a point s ∈ J and a number ε > 0
and consider the points

τ jl :=
(
l + 1

2

)
2−j , 0 ≤ l ≤ 2j − 1. (5.8)

It is clear that if an integer j of order C1 log 1
ε is fixed, then there are N points

τ jl1 =: τ1, . . . , τ jlN =: τN , lr = l0 + r,

that belong to the ε-neighbourhood of s. Consider the matrix Rε(s) corre-
sponding to the points τ1, . . . , τN . Its entries are rim = ∆ηi(τm) = ∆ηi(τ jlm),
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where

∆ηi(τ jl ) = bi

(
−2cjξ

i
jl +

∞∑
r=1

cj+r
(
ξij+r,(2l+1)2r−1 − ξij+r,(2l+1)2r−1−1

))
= biA

−jζil (j). (5.9)

Here {ζil (j)} are i.i.d. random variables whose law has a continuous density with
respect to the Lebesgue measure. It follows that the determinant of the matrix
Rε(s) can be written as

detRε(s) = b1 · · · bNA−NjΣ(j), (5.10)

where Σ(j) is the determinant of the matrix (ζilm(j), 1 ≤ i,m ≤ N). Notice that
the entries of this matrix are i.i.d. random variables whose law does not depend
on j. Since the determinant is a non-zero polynomial of the matrix entries,
Corollary 2.9 applies and gives the inequality

P{|Σ(j)| ≤ r} ≤ Crc for any r ∈ [0, 1], (5.11)

where C and c are positive numbers not depending on j. Taking r = e−δj , where
δ > 0 is sufficiently small and will be chosen below, we derive

P{|Σ(j)| ≤ e−δj} ≤ Ce−cδj for any j ≥ 0.

By the Borel–Cantelli lemma, there is an almost surely finite random integer
j0 ≥ 1 such that

|Σ(j)| > e−δj for j ≥ j0.

Combining this with (5.10), we derive

|detRε(s)| ≥ C2e
−j(N logA+δ), (5.12)

where j ≥ j0 is arbitrary. For j ∼ C1 log 1
ε (such a choice is possible for a.e. ω

and sufficiently small ε), we obtain

|detRε(s)| ≥ C2ε
θ,

where θ = C1(N logA + δ). Since the entries of Rε(s) are a.s. bounded by a
universal number, we conclude that (5.2) holds. Taking δ = logA and A > 1
sufficiently close to 1, we see that θ < 1, and Proposition 5.2 implies the required
result.

Haar process with polynomially decaying coefficients

We consider again process (5.7), in which the numbers cj go to zero at a
polynomial rate:

cj = Cj−q for all j ≥ 1, (5.13)

where C > 0 and q > 1 are some numbers. For the same reasons as in the
previous case, the series in (5.7) absolutely converges, uniformly in t ∈ J , and
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the law of η is a decomposable measure on L2(J,H). We claim that, for any
T ∈ (0, 1], a.e. trajectory of η is observable on J ′ = [0, T ]. To prove it, we apply
the same argument as before. The first line of (5.9) remains true, and the jumps
take the form ∆ηi(τ jl ) = Cbij

1−qζil (j), where

ζil (j) = −2j−1ξijl + j−1
∞∑
r=1

(1 + rj−1)−q
(
ξij+r,(2l+1)2r−1 − ξij+r,(2l+1)2r−1−1

)
.

It follows that the determinant of Rε(s) = (rim) can be written as (cf. (5.10))

detRε(s) = CNb1 · · · bN j−N(q−1)Σ(j),

where Σ(j) is the determinant of the matrix (ζilm(j)). A simple calculation

shows that {ζilm(j)} are independent random variables that are a.s. bounded by
a universal number, and their laws do not depend on i and m. Suppose we have
shown that the laws of (ζil (j)) possess densities ρj (with respect to the Lebesgue
measure) satisfying the inequality

ρj(r) ≤ jρ(r) for all j ≥ 1, r ∈ R, (5.14)

where ρ : R → R is a continuous function with compact support. Applying
Corollary 2.9, we conclude that inequality (5.11) remains valid with C replaced
by CjN . Hence, by the same argument as before, we obtain (cf. (5.12))

|detRε(s)| ≥ C2e
−δj−N(q−1) log j . (5.15)

The proof can now be completed as in the case of exponentially decaying
coefficients.

It remains to prove (5.14). To this end, we write ζil (j) = −2j−1ξijl + ηil(j),

where ηil (j) is a bounded random variable independent of ξijl. By the hypotheses,

the law of ξijl has a bounded continuous density not depending on i, j, and l. Let

us denote by M its maximum. Then the density ρ̃j of the law for −2j−1ξijl is
bounded by Mj/2. Since ρj is a convolution with ρ̃j , it is bounded by the same
constant. On the other hand, we know that ζil (j) is almost surely bounded by a
universal number. It follows that (5.14) holds for some continuous function ρ
with compact support.

6 Examples of saturating subspaces

In this section, we discuss some algebraic conditions that ensure the saturating
property of a given subspace. This type of conditions are rather well known in the
control theory and Malliavin calculus for PDEs; see [EM01, AS06, HM06, MP06].

Navier–Stokes system

Let us endow the space R2 with the scalar product

〈x, y〉a =

2∑
i=1

a−1
i xi yi
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and the corresponding norm |x|a =
√
〈x, x〉a. In the case a = (1, 1), we write

〈·, ·〉 and | · |. Let Z2
∗ be the set of non-zero integer vectors l = (l1, l2) ∈ Z2.

For l ∈ Z2
∗, we define the functions

eal (x) =

{
cal (x) if l1 > 0 or l1 = 0, l2 > 0,

sal (x) if l1 < 0 or l1 = 0, l2 < 0

on T2
a, where

cal (x) = l⊥a cos〈l, x〉a, sal (x) = l⊥a sin〈l, x〉a, l⊥a = (−a−1
2 l2, a

−1
1 l1).

For any subset I ⊂ Z2, let Z2
I be the set of all vectors in Z2 that can be

represented as finite linear combinations of elements of I with integer coefficients.
We shall say that I is a generator if Z2

I = Z2.

Let I ⊂ Z2
∗ be a finite symmetric set (i.e., −I = I) and let

H(I) = span{eal : l ∈ I}. (6.1)

We denote by Hk(I) ⊂ H3 the spaces defined in Section 4.1 with H = H(I).

Proposition 6.1. Let I ⊂ Z2
∗ be a finite symmetric set. Then the space H(I)

is saturating if and only if I is a generator and contains at least two non-parallel
elements m and n such that |m⊥a | 6= |n⊥a |.

This result implies that the space H(I) is saturating when

I = {(1, 0), (−1, 0), (1, 1), (−1,−1)} for a = (1, 1),

I = {(1, 0), (−1, 0), (0, 1), (0,−1)} for a = (λ, 1) with λ 6= 1.

Proof of Proposition 6.1. Step 1 . We first establish some relations for Leray’s
projection Π and the quadratic function Q defined in Section 4.1. For any l ∈ R2

∗,
let us denote by P (l) : R2 → R2 the orthogonal projection onto span(l) with
respect to the scalar product 〈·, ·〉, so that P (l)b = |l|−2〈b, l〉l. We claim that

Π
(
b cos〈l, x〉a

)
= P (l⊥a)b cos〈l, x〉a, (6.2)

Π
(
b sin〈l, x〉a

)
= P (l⊥a)b sin〈l, x〉a, (6.3)

2Q(cal , c
a
r) = Π

(
〈l⊥a , r〉ar⊥a − 〈r⊥a , l〉al⊥a

)
sin〈l − r, x〉a

−Π
(
〈l⊥a , r〉ar⊥a + 〈r⊥a , l〉al⊥a

)
sin〈l + r, x〉a, (6.4)

2Q(cal , s
a
r) = Π

(
〈l⊥a , r〉ar⊥a + 〈r⊥a , l〉al⊥a

)
cos〈l + r, x〉a

+ Π
(
〈l⊥a , r〉ar⊥a − 〈r⊥a , l〉al⊥a

)
cos〈l − r, x〉a, (6.5)

2Q(sal , s
a
r) = Π

(
〈l⊥a , r〉ar⊥a − 〈r⊥a , l〉al⊥a

)
sin〈l − r, x〉a

+ Π
(
〈l⊥a , r〉ar⊥a + 〈r⊥a , l〉al⊥a

)
sin〈l + r, x〉a, (6.6)

We confine ourselves to the proof of (6.2) and (6.4), since the other relations
can be established in a similar way. Let us recall that Leray’s projection of a
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function v ∈ L2(T2
a,R2) can be written as Πv = v−∇(∆−1 div v), where ∆−1 is

the inverse of the Laplacian with range in the space of functions with zero mean
value. Relation (6.2) is now implied by the following simple formulas:

div
(
b cos〈l, x〉a

)
= −〈b, l〉a sin〈l, x〉a , ∆−1 sin〈l, x〉a = −

∣∣l⊥a
∣∣−2

sin〈l, x〉a .

To prove (6.4), we write

〈cal ,∇〉car = 〈l⊥a , r〉ar⊥a cos〈l, x〉a sin〈r, x〉a.

Interchanging the roles of l and r, using elementary formulas for the product of
trigonometric functions, and recalling the definition of Q, we arrive at (6.4).

Step 2 . Let us prove that if l, r ∈ Z2
∗ are non-parallel vectors such that

|l⊥a | 6= |r⊥a |, car , sar ∈ H(I), and cal , s
a
l ∈ Hk(I) for some k ≥ 0, then the

functions cal+r, c
a
l−r, s

a
l+r, s

a
l−r belong to Hk+1(I). Indeed, a direct verification

shows that

P ((l − r)⊥a)
(
〈l⊥a , r〉ar⊥a − 〈r⊥a , l〉al⊥a

)
= |(l − r)⊥a |−2〈l⊥a , r〉a

(
|l⊥a |2 − |r⊥a |2

)
(l − r)⊥a . (6.7)

Let Ca(l, r) be the coefficient in front of (l− r)⊥a . Combining (6.4), (6.6), (6.3),
and (6.7), for any α, β ∈ R, we derive

Q(cal , 2αc
a
r) +Q(sal , 2βs

a
r) = Ca(l, r)(α+ β)(l − r)⊥a sin〈l − r, x〉a

− Ca(l,−r)(α− β)(l + r)⊥a sin〈l + r, x〉a. (6.8)

Since l and r are non-parallel vectors such that |l⊥a | 6= |r⊥a |, the numbers
Ca(l, r) and Ca(l,−r) are non-zero. This and relation (6.8) readily imply that
sal+r, s

a
l−r ∈ Hk+1(I). A similar argument using (6.2), (6.5), and (6.7) shows

that cal+r, c
a
l−r ∈ Hk+1(I).

Step 3 . We now take any symmetric set I ⊂ Z2
∗ and prove the necessity of

the hypotheses of Proposition 6.1. If I is not a generator, then there is a vector
l ∈ Z2\Z2

I . It follows from (6.2)–(6.6) that the function cal is orthogonal toH∞(I)
in H, so H(I) is not saturating. Furthermore, if any pair of elements (m,n) ∈ I
either are parallel or satisfy the relation |m⊥a | 6= |n⊥a |, then (6.4)–(6.7) imply
that Hk(I) = H(I) for all k ≥ 0, so that H(I) is not saturating.

To prove the sufficiency, let us assume that I is a generator containing at
least two non-parallel elements m and n such that |m⊥a | 6= |n⊥a |. We define a
sequence of symmetric sets Ik ⊂ Z2

∗ by the following rule: I0 = I, and for k ≥ 1,

Ik = Ik−1 ∪ {l + r : l ∈ Ik−1, r ∈ I, |l⊥a | 6= |r⊥a |, l and r are not parallel}.

Let I∞ be the union of the sets Ik with k ≥ 0 and of the point (0, 0). The
proof of Proposition 1 in [AS06] (see also Proposition 4.4 in [HM06]) implies
that I∞ coincides with Z2

I = Z2. It follows that the union of H(Ik) with k ≥ 0
contains all divergence-free trigonometric polynomials, whence we see that H(I)
is saturating.
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Ginzburg–Landau equation

Let us fix a vector a = (a1, a2, a3) with positive components and define the
functions

cal (x) = cos〈l, x〉a, sal (x) = sin〈l, x〉a for l ∈ Z3
∗,

where 〈l, x〉a =
∑
i a
−1
i lixi. We now set ea0 ≡ 1 and

eal (x) =

{
cal (x) if l1 > 0 or l1 = 0, l2 > 0 or l1 = l2 = 0, l3 > 0,

sal (x) if l1 < 0 or l1 = 0, l2 < 0 or l1 = l2 = 0, l3 < 0.

Given a finite symmetric set I ⊂ Z3 containing the origin, introduce the space
(cf. (6.1))

H(I) = span{eal , ieal : l ∈ I}.

We denote by Hk(I) the sets Hk defined in Section 4.2 for H = H(I).

Proposition 6.2. The subspace H(I) is saturating if and only if I is a generator.
In particular, the set I = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} gives rise to the
14-dimensional saturating subspace H(I).

Proof. The necessity of the condition is straightforward (cf. the case of the
Navier–Stokes system), so that we confine ourselves to the proof of sufficiency.
It is enough to show that if l, r ∈ Z3

∗ are two vectors such that car , s
a
r ∈ H(I)

and cal , s
a
l ∈ Hk(I) for some k ≥ 0, then the functions cal+r, c

a
l−r, s

a
l+r, s

a
l−r belong

to Hk+1(I).
To see this, let us note that

cal (x)car(x) =
1

2

(
cal−r(x) + cal+r(x)

)
, sal (x)sar(x) =

1

2

(
cal−r(x)− cal+r(x)

)
.

It follows that cal+r, c
a
l−r ∈ Hk+1(I). A similar argument applies to the func-

tions sal+r and sal−r. This completes the proof of the proposition.

7 Appendix

7.1 Sufficient condition for exponential mixing

Let X be a compact metric space and let (uk,Pu) be a discrete-time Markov
process in X possessing the Feller property. We denote by Pk(u,Γ) the corre-
sponding transition function, and by Pk and P∗k the Markov operators. Let us
consider a bounded Borel-measurable symmetric function F : X ×X → R+ such
that

F (u1, u2) ≥ c dX(u1, u2)β for any u1, u2 ∈ X, (7.1)

where β ≤ 1 and c are positive numbers not depending on u1 and u2. Recall
that the Kantorovich functional associated with F is defined by

KF (µ1, µ2) = inf
ξ1,ξ2

EF (ξ1, ξ2), (7.2)
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where the infimum is taken over all X-valued random variables ξ1, ξ2 such that
D(ξ1) = µ1 and D(ξ2) = µ2. It follows from inequality (7.1) and the definition
of the dual-Lipschitz distance that

‖µ1 − µ2‖∗L ≤ CKF (µ1, µ2) for any µ1, µ2 ∈ P(X), (7.3)

where C = c−1 diam(X)1−β . A proof of the following theorem17 can be found in
Section 3.1.1 of [KS12].

Theorem 7.1. Suppose there is a number κ ∈ (0, 1) and a bounded Borel-
measurable function F : X ×X → R+ satisfying (7.1) such that

KF (P∗1µ1,P
∗
1µ2) ≤ κKF (µ1, µ2) for any µ1, µ2 ∈ P(X). (7.4)

Then the Markov process (uk,Pu) has a unique stationary measure µ ∈ P(X),
which satisfies inequality (1.7) with some positive numbers C and γ.

7.2 Estimate for the total variation distance

Lemma 7.2. Let U and V be two random variables defined on a probability
space (Ω,F ,P) with range in a Polish space X and let Θ : Ω→ Ω be a measurable
mapping such that

U(Θ(ω)) = V (ω) for ω ∈ G, (7.5)

where G ∈ F . Then

‖D(U)−D(V )‖var ≤ 2P(Gc) + ‖P−Θ∗(P)‖var. (7.6)

Proof. Let µ = D(U) and ν = D(V ). Then, for any Γ ∈ F , we have

µ(Γ)− ν(Γ) = E
(
IΓ(U)− IΓ(V )

)
≤ P(Gc) + E

{
(IΓ(U)− IΓ(U ◦Θ))IG

}
≤ 2P(Gc) + E

(
IΓ(U)− IΓ(U ◦Θ)

)
≤ 2P(Gc) + ‖P−Θ∗(P)‖var,

where we used (7.5) for the first inequality. A similar argument enables one to
bound ν(Γ) − µ(Γ) by the same expression. Since Γ ∈ F was arbitrary, these
two estimates imply the required inequality (7.6).

7.3 Measurable version of gluing lemma

Let X be a Polish space and let (W,W) be a measurable space. Recall that
a family {µw, w ∈ W} ⊂ P(X) is called a random probability measure (RPM)
on X with the underlying space (W,W) if for any Γ ∈ B(X), the mapping
w 7→ µw(Γ) is measurable from W to R. The following result can be obtained by
repeating the argument of the proof of Lemma 7.6 in [Vil03], using a measurable
version of the disintegration theorem (see [Mal16, AY17]).

17In [KS12], the result is proved with β = 1. However, using (7.3), it is straightforward to
check that the proof remains valid for any β ∈ (0, 1).
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Theorem 7.3. Let X, Y , and Z be Polish spaces and let {Mw} and {Nw} be
RPM measures on X × Y and Y × Z, respectively, with the same underlying
space (W,W) such that the marginals of Mw and Nw on Y are the same for
any w ∈ W . Then there is a RPM {Lw} on X × Y × Z such that, for any
w ∈W , the marginals of Lw on X × Y and Y × Z coincide with Mw and Nw,
respectively.

This result can be reformulated as follows: under the hypotheses of the theo-
rem, there is a probability space (Ω,F ,P) and measurable functions ξw(ω), ηw(ω),
and ζw(ω) defined on W × Ω and taking values in X, Y , and Z, respectively,
such that

D(ξw, ηw) = Mw, D(ηw, ζw) = Nw for any w ∈W.

7.4 Density of solutions for linear parabolic PDEs

Retaining the notation of Section 2.2, let us consider the following linear parabolic
PDE on J = [0, 1]:

v̇ − µ∆v + b(t, x)v + c(t, x)v̄ = 0, x ∈ T3
a, (7.7)

where b, c ∈ H1(J×T3
a,C) are bounded functions, and µ ∈ C is a parameter with

a positive real part. We denote by U the space of all v ∈ L2(J,H2)∩W 1,2(J, L2)
satisfying (7.7) and, for s ∈ J , set Us = {u(s, ·) : u ∈ U} ⊂ H1. The following
result is a variation of the well-known property of approximate controllability
of (7.7) by a starting control.

Proposition 7.4. For any s ∈ J , the subspace Us is dense in H1.

Proof. The claim is trivial for s = 0, so without loss of generality, let us assume
that s = 1. We only outline the proof, which is based on a classical argument.

For τ ∈ [0, 1), let us denote by {R(t, τ), τ ≤ t ≤ 1} the resolving process for
Eq. (7.7) with an initial condition specified at t = τ . This means that, for any
v0 ∈ H1, the function v(t) = R(t, τ)v0 is the unique solution of (7.7) in the space
L2([τ, 1], H2) ∩W 1,2([τ, 1], L2) such that v(τ) = v0. We denote by R(1, t)∗ the
adjoint of R(1, t) with respect to the inner product in H1. Setting L = I−∆, it is
straightforward to check that, for any w1 ∈ H1, the function w : t 7→ R(1, t)∗w1

is the unique solution in L2(J,H2) ∩W 1,2(J, L2) for the dual problem

ẇ + µ̄∆w − L−1(b̄Lw)− L−1(cLw̄) = 0, w(1) = w1, (7.8)

and the inner product (v(t), w(t))1 does not depend on t.
Suppose now that U1 is not dense in H1. Then there is a non-zero w1 ∈ H1

such that

0 =
(
R(1, 0)v0, w1

)
1

=
(
v0, R(1, 0)∗w1

)
1

for any v0 ∈ H1, (7.9)

whence we conclude that R(1, 0)∗w1 = 0. Thus, the solution w(t) of problem (7.8)
vanishes at t = 0. By the backward uniqueness for (7.8) (e.g., see Section II.8
in [BV92]), we conclude that w1 = 0. This completes the proof of the proposition.
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