
HAL Id: hal-01705455
https://hal.science/hal-01705455v1

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IoTChain: A Blockchain Security Architecture for the
Internet of Things

Olivier Alphand, Michele Amoretti, Timothy Claeys, Simone Dall ’Asta,
Andrzej Duda, Gianluigi Ferrari, Franck Rousseau, Bernard Tourancheau,

Luca Veltri, Francesco Zanichelli

To cite this version:
Olivier Alphand, Michele Amoretti, Timothy Claeys, Simone Dall ’Asta, Andrzej Duda, et al..
IoTChain: A Blockchain Security Architecture for the Internet of Things. IEEE Wireless Com-
munications and Networking Conference, Apr 2018, Barcelona, Spain. �hal-01705455�

https://hal.science/hal-01705455v1
https://hal.archives-ouvertes.fr

IoTChain: A Blockchain Security Architecture for
the Internet of Things

Olivier Alphand†, Michele Amoretti∗, Timothy Claeys†, Simone Dall’Asta∗, Andrzej Duda†,
Gianluigi Ferrari∗, Franck Rousseau†, Bernard Tourancheau†, Luca Veltri∗, Francesco Zanichelli∗

∗Department of Engineering and Architecture, University of Parma, Italy
†Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

Abstract—In this paper, we propose IoTChain, a combination
of the OSCAR architecture [1] and the ACE authorization frame-
work [2] to provide an E2E solution for the secure authorized
access to IoT resources. IoTChain consists of two components,
an authorization blockchain based on the ACE framework and
the OSCAR object security model, extended with a group key
scheme. The blockchain provides a flexible and trustless way to
handle authorization while OSCAR uses the public ledger to set
up multicast groups for authorized clients.

To evaluate the feasibility of our architecture, we have im-
plemented the authorization blockchain on top of a private
Ethereum network. We report on several experiments that assess
the performance of different architecture components.

Index Terms—Communication security, Internet of Things,
Group key distribution, Authorization, Blockchain

I. INTRODUCTION

The Internet of Things (IoT) concerns the integration of IP-
enabled constrained devices with the existing Internet infras-
tructure. IoT systems are increasingly deployed, but the design
of widely accepted standards to regulate the IoT ecosystem
is a tedious process. In particular, security issues, such as
authorization, verification and access control are still far from
being completely solved [3].

Recently, the Internet Engineering Task Force (IETF)
ACE [2] working group has proposed a generic framework for
authentication and authorization in constrained environments.
ACE based on OAuth2.0 [4] enables a third party, defined
as a client, to access protected resources from a resource
server, e.g., a smart device tracking the temperature. Instead
of requiring the owner of the device (the resource owner)
to disclose his/her credentials, access is regulated by tokens
provided by an authorization server. At the same time, Vučinić
et al. [1] proposed a promising architecture to provide end-
to-end (E2E) security for transporting IoT data. The Object
Security Architecture for the Internet of Things (OSCAR)
addresses the main limitations of the Datagram Transport
Layer Security (DTLS) protocol [5] by protecting the pay-
load at the application layer. Such an approach allows for
efficient multicast, asynchronous traffic, and caching. Resource
servers store their protected resources either locally or in an
encrypted and signed format on a proxy server. Clients request
the decryption keys from the responsible key server. Access
control can be provided by encrypting different resources with
different keys.

In this paper, we propose IoTChain, a scheme that combines
OSCAR and the ACE authorization framework to provide an
E2E solution for secure authorized access to IoT resources.
In the ACE framework, clients must set up an encrypted
and authenticated channel with a trusted authorization server
to securely exchange owner permissions and access tokens,
which requires the use of certificates or out-of-bound secret
sharing. Additionally, rogue authorization servers can freely
issue access tokens for every protected resource. We replace
the single trusted authorization server in the ACE framework
by a trustless authorization blockchain. The authorization
blockchain improves on the ACE authorization model by
making resource access control robust, flexible, and possi-
bly privacy-preserving. The blockchain consensus protocol
requires that an attacker controls at least 51% of the blockchain
before she can obtain illegitimate tokens. In IoTChain, the
resource owner describes the access rights in a smart contract,
which then automatically generates access tokens for the client
if certain conditions are met. Unlike ACE, the access token is
not transmitted to the client, but safely stored in the smart
contract internal storage. The smart contract can later be
queried by other entities to check the token validity.

Furthermore, we use OSCAR in combination with a self-
healing group key distribution scheme to enable efficient
multicasting of IoT resources. A client sends a request to
the key server to join the key distribution groups associated
with the desired resources. The key server checks the smart
contract storage on the blockchain to verify if a client has
been authorized. Once the client has obtained the group keys,
it downloads and decrypts the protected resources.

The paper is organized as follows. Section II presents the
IoTChain architecture. Section III analyzes and discusses the
security of the IoTChain architecture. Section IV illustrates an
IoTChain prototype together with performance considerations.
Section V summarizes the related work. Section VI concludes
the paper with an outline of open issues and the future work.

II. IOTCHAIN ARCHITECTURE

In this section, we introduce the IoTChain architecture
and present its main advantages. Fig. 1 illustrates the main
elements of the architecture and presents the sequence of
operations leading to authorized access to IoT resources. To
avoid confusion concerning the nomenclature and the roles of

Authorization Blockchain

Proxy
server

Resource Servers

Request keys

Request e
xec

smart c
ontra

ct

Verify if client’s
token exist in blockchain

Fetch data

Clients

2

4

5

7

Receive keys6

Token generation for client
1 Resource Owner publishes

smart contract

3

Resource
Owner

Key Servers

Fig. 1. The IoTChain blockchain-based security architecture (source of icons: [6]).

different entities, we follow the terminology specified by the
IETF:

• Resource Servers generate and store protected resources.
• Resource Owners are the legal owners of the resource

servers and their generated resources.
• Clients are third-parties that request access to the pro-

tected resources.
• Proxy Servers store the resources in an encrypted form

when the resource servers are highly constrained.
• Key Servers generate the necessary keys to encrypt and

decrypt the resources.
• Access tokens describe the access rights for a specific

client and a specific resource.
• Authorization Servers generate access tokens.

A. Authorization blockchain
In general, a blockchain can be considered as a persistent

log whose records are stored in timestamped blocks. Each
block contains transactions. A block is identified by its crypto-
graphic hash and it references the hash of the preceding block.
Anything that is stored in the blockchain is public.

The blockchain is maintained by nodes having a copy of at
least the last n blocks. In our architecture, the authorization
servers, key servers, and clients act as nodes, although not
all of them necessarily store the whole blockchain and par-
ticipate in the consensus protocol. The authorization servers
and key servers are full nodes, which means that they store
the complete history of the blockchain. The authorization
servers also act as miners. They verify the transactions on
the blockchain and store them in blocks. The blocks are then
sealed through a Proof-of-X consensus protocol, e.g., Proof-
of-Stake or Proof-of-Work, and appended to the blockchain.
The blockchain is a public network, anybody can run an
authorization server. The key servers are responsible for the
keying material of the resource servers and are set up by the
resource owners. Each client and resource owner is identified
by at least one blockchain address, i.e., an asymmetric key
pair. Interactions with the smart contracts and between clients
and resource owners are made through transactions, which are

signed with the private key part of the respective addresses.
To send transactions, clients and resource owners either take
part in the network storing the blocks or they connect to
a blockchain node that broadcasts their transactions on the
blockchain network.

B. OSCAR

The key server in OSCAR [1] generates personal keys and
passes them to resource servers that use them to take part in
the self-healing group key distribution process (see Subsection
II-E for details). The keys that result from such a process
are used by the resource servers to encrypt their protected
resources. Different resources, generated on the same resource
server might be encrypted with different keys to enforce access
control and different privilege levels. The personal keys are
sent over a DTLS channel between the key server and the
resource server. In a later stage, authorized clients obtain the
group keys through the key server using DTLS. We assume
that the key server and resource servers have valid certificates
issued by a certification authority.

C. Authorization Flow

In the first phase, the resource owner creates a smart
contract and publishes it to the blockchain, see (1) in Fig. 1.
A smart contract is a compiled program that has its own
blockchain address. The contract generates an access token
for a client when certain conditions are met. The access token
describes the specific access rights for the protected resources.
The specific layout of a token is application dependent, but a
generic form is described by Jones et al. [7].

In the second phase, a client that wishes to access a
protected resource, activates the corresponding smart contract
by sending a transaction to the contract address (2). Because
the contracts are deployed through normal transactions, a client
can verify who published the contract by checking the address
that signed the publishing transaction. The transaction to the
contract is broadcast to all the nodes in the network. Every
miner that includes the transaction in its block, will validate
the transaction and execute the smart contract. The transaction

is only valid when the client includes the correct data for the
execution of the smart contract.

For example, an energy company, the resource owner, has
deployed a smart meter, a resource server, at the client house.
To authorize the clients, the energy company publishes a smart
contract on the blockchain. The smart contract can require a
proof that the client lives at a specific address. This proof is
added in the data field of the transaction, which is then sent to
the the smart contract. When executed, the contract generates
a token for the client. The token references the address of
the client (i.e., a public key). It has a lifetime and describes
which resources can be accessed. A resource owner can deploy
multiple smart contracts for the same resource server on the
blockchain. Each contract takes different input parameters and
generates tokens with different privileges.

In the third phase, the block containing the contract
transaction has been added to the blockchain and the token
has been added to the contract internal storage (3). The client
then requests the encryption keys necessary to decrypt the
resources from the key server (4). The key server has a copy
of the blockchain. The key server queries the internal storage
of the responsible smart contract for the access token (5). To
prove the authenticity of the client, the key server creates
a challenge-response based on the client address referenced
in the token. Only the legitimate client that triggered the
smart contract can solve the challenge. After successfully
completing the challenge, the client receives a personal key
(6) and takes part in the self-healing group key distribution
process (see Subsection II-E for details). To prevent issues
with temporary blockchain forks, the key server must wait for
n blocks to be built on top of the block containing the token
creation, n being a security parameter. Large n gives the key
server strong guarantees on the validity of the token but might
incur larger latency, e.g., in the Ethereum network 12 block
confirmations are required, which approximately corresponds
to 3 min latency.

During the final fourth phase, the client can download
the encrypted resources either from a proxy server or directly
from the resource server (7). Both entities provide a RESTful
CoAP API that allows to GET, PUT, POST resources based
on their Uniform Resource Identifier (URI). No authentication
is necessary as an unauthorized client cannot obtain the
cryptographic keys to decrypt the protected resources. When
the protected resources are directly obtained from the resource
server, the integrity of the protected resources can be secured
with a symmetric key. This integrity key is also obtained from
the key server. When the protected resources are published to
a proxy server, they need to be protected with an asymmetric
signature, which prevents colluding proxy servers and clients
from corrupting the integrity of the protected resources.

D. Adding and Revoking Entities

1) Clients: Clients can be easily added to the system. By
providing the necessary information in a transaction to a smart
contract, a token will be generated that allows the new client to
access the decryption keys for a specified resource. To easily

Client triggers contract

Client not authorized

Contract
storage

TX

Client not authorizedClient is authorized

Token expires Time (t)

BLOCK HASH

PREV. HASH

Token for
client

TX

BLOCK HASH

PREV. HASH

Contract
storage

TX

BLOCK HASH

PREV. HASH

Fig. 2. Token life time on the blockchain (source of icons: [6]).

revoke clients, new encryption keys should be issued on a
frequent basis by the key server. A token can for example be
valid for a month. The key server can distribute new personal
keys to the resource server on a daily basis. The resource
server will always use the latest keys to encrypt new resources,
e.g., new temperature measurements. As long as the client
token is valid, the client can recover every day the new keys
from the key server. When the token expires the client must
rerun the smart contract on the blockchain to generate a new
valid token and obtain the access rights for the keys, see
Fig. 2. When the client misbehaves, the authorization servers
in the blockchain network can add a transaction in block,
which removes the client access token from the smart contract
internal storage. The key server will receive this block once
it is added to the blockchain and will know that the client is
no longer authorized to receive the decryption keys to be a
member of the key distribution group.

2) Authorization and Key Servers: New blockchain nodes
(i.e., key or authorization servers) join the blockchain net-
work by contacting active nodes and downloading the whole
blockchain. The bootstrap information to join a blockchain
network can be provided by bootnodes. Bootnodes provide an
initial list of peers to which a new node can connect.

Every node is represented by a unique identifier generated
by a node when joining the network for the first time. The
nature of the blockchain protocol allows for rogue entities.
Revoking is therefore not necessary but would also not be
practical without an overseeing trusted third-party.

E. Self-Healing Group Key Distribution

The self-healing group key distribution is a method enabling
large and dynamic groups of users to create group keys for
secure multicast communication over unreliable networks [8].

In self-healing group key distribution schemes, there is
a Group Manager (GM) for each group. In the IoTChain
architecture, the key server plays the role of the GM. Every
authorized group member Ui receives personal key Si from
the GM upon joining the group. To keep the personal key
secret, it is transmitted using DTLS.

Time is divided into sessions. As the j-th session begins, the
GM sends the common key Bj to all authorized members of
group Gj on a public authenticated channel. Common key Bj

is created by GM from group key Kj and has the following
properties:

• there is an efficient algorithm η such that Kj = η(Bj , Si)
for all i : Ui ∈ Gj ;

• there is no computationally viable ζ allowing to recover
Kj for any set of nodes R ∈ U \Gj .

Personal keys Si are valid in a limited number of consecutive
sessions.

If some broadcast message Bj gets lost, users are still able
to recover the group key for the j-th session, by combining
information from any message Bl preceding the lost one with
the information from any message Br following it.

III. SECURITY CONSIDERATIONS

A. Token security

Similarly to ACE, IoTChain also proposes a Proof-of-
Possession (PoP) concept to bind the client’s identity to an
access token. When a client requests a token in ACE, the
ACE authorization server binds a cryptographic key, dubbed
the PoP-key, to the token. The PoP-key is known to the client
that originally requested the token and can be accessed by
the resource server that receives the token. Based on the PoP-
key, the resource server creates a challenge-response to verify
if the client presenting the token is the legitimate owner. In
IoTChain, the client triggering the smart contract provides its
address (i.e., a public key). This public key is included in the
access token, stored in the blockchain. The key server that
verifies the token will create a challenge-response with the
address bound to the token, which verifies the identity of the
client requesting access to the decryption keys.

In ACE, it suffices for an attacker to compromise one
authorization server to obtain illegitimate tokens. In IoTChain,
an attacker needs to compromise at least 51% of the miners.

B. Client Privacy

The blockchain is a public ledger, therefore all the trans-
actions stored in the blocks can be read by anyone. A client
can protect its privacy by generating new addresses for each
transaction. Doing so allows the client to isolate each of its
transactions in such a way that it is harder for an attacker to
associate them all together. Smart contracts and by extension
the resource owners cannot see what other contract the client
has triggered.

C. Denial-of-Service

There are several techniques we can use to prevent Denial-
of-Service (DoS) attacks on the blockchain infrastructure. The
main issue is that because of the halting problem, we cannot
predict if a smart contract deployed on the blockchain will
terminate. The Ethereum blockchain [9] uses the concept of
gas that a user has to pay for the execution of a smart contract.
If the user does not pay for sufficient gas, the contract will
not be fully executed and all the changes will be rolled back.
Because we do not require a cryptocurrency and the smart
contracts only generate access tokens, we can simply set a
limit on the execution time of a smart contract.

A malicious client might attempt to launch a DoS attack on
the network by constantly triggering smart contracts. Because
all the transactions need to be broadcast to the rest of the
network and every authorization server needs to verify these
transactions, the network may become saturated. A simple
defense might be to require each client to solve a cryptographic

puzzle before each transaction. A similar approach is proposed
in the HIP protocol [10].

D. Secure Communications

The personal keys are exchanged over DTLS channels
between the key server, the resource servers, and the clients.
Authentication between the resource servers and the key server
is achieved on the basis of certificates, and between the clients
and the key server, through a challenge-response. Transactions
sent in the blockchain have signatures to protect their integrity.

E. Bootstrapping Key Server

As stated in Section II-D2, the new nodes need to contact
bootnodes to synchronize to the blockchain. If a bootnode
is not authenticated, an attacker can mount a man-in-the-
middle attack (MITM) and point a key server to her personal
blockchain where she can alter freely the history. To prevent
this attack, the bootnodes should use certificates that allow the
new nodes to verify their authenticity.

IV. IMPLEMENTATION

A. Ethereum Private Testnet

To evaluate the feasibility of our architecture, we have
implemented the authorization blockchain on top of a
private Ethereum blockchain network, based on the go-
ethereum (geth) implementation of the protocol released by
the Ethereum foundation (see https://github.com/ethereum/go-
ethereum). Geth provides the possibility to connect to the
Ethereum testnet. The testnet lets developers test and debug
smart contracts for free. Because syncing with the entire
Ethereum testnet would take too much time and resources, we
decided to mount a local private Ethereum blockchain. The
blockchain network consisted of three full nodes, storing the
entire local blockchain, see Fig. 3.

Resource
Owner

Key Server

Authorization
Server (miners)

Client

Fig. 3. Private P2P blockchain network. The miners and key server are full
nodes, storing the entire blockchain.

The resource owner connects to a full node and deploys
the smart contract shown in Fig. 4. Once the contract is
added to the blockchain, clients can interact with it by calling
its individual public functions. The function addToken will
create an access token for a client. The access token is stored
in the contract persistent memory. The token contains the
client address and the resource server address. The ttl field
of the access token holds a lifetime parameter, checked by
the key server when the client requests a decryption key. The
deleteToken function might be called to revoke the client
access rights earlier than foreseen. The smart contract in Fig. 4
can be triggered by everyone in the blockchain network. More
complex contracts may require modifiers that restrict access
to certain functions or check if a condition is met before the

function is executed by the Ethereum Virtual Machine (EVM),
e.g., has this client paid for the access token.

pragma solidity ˆ0.4.0;

contract AccessToken{
mapping (address => Token) issued;

struct Token{
address res;
uint ttl;
bytes4 claims;

}

function addToken(...) public returns(bool){
issued[clt].res = _res;
issued[clt].ttl = _ttl;
issued[clt].claims = _claims;
return true;

}

function getToken(...) public constant returns(...){
return (issued[clt].res,

issued[clt].ttl,
issued[clt].claims);

}

function deleteToken(...) public returns(bool){
delete(issued[clt]);

}
}

Fig. 4. A simple smart contract deployed in our local blockchain.

B. Performance Evaluation

We have executed several experiments to assess the perfor-
mance of different IoTChain components.

1) Key Server: The key server has been executed in a
virtual machine provided with Ubuntu 16.04 LTS. In Fig. 5, we
show the average time required to complete the DTLS hand-
shake, considering an increasing number of clients deployed
on a Windows 10 machine equipped with an Intel Core i7-
4600M CPU @ 2.90 GHz (4 virtual cores), 8 GB RAM.

0

50

100

150

200

250

300

0 20 40 60 80 100 120

ms

clients processes started on the same machine

Fig. 5. Average time required to complete the DTLS handshake between the
key server for an increasing number of clients.

2) Resource Server: In Fig. 6, we illustrate (1) the response
time for a GET request from a client to a resource server, (2)
the response time for a PUT request from a client to a resource
server, (3) the time required to complete the DTLS handshake
between a resource server and the key server. The resource
server has been implemented in C language and deployed on
a Raspberry Pi 2. In Fig. 7, we show the time required by

the resource server for signing, verification, encryption and
decryption.

0

45

90

135

180

225

CoAP Client - RS (PUT) CoAP Client - RS (GET) DTLS handshake RS - auth. server

Min (ms) 25 47 66

m
s

Fig. 6. Performance of the resource server, considering different requests
from the clients and the DTLS handshake with the key server.

Verification Decryption Signature Encryption

Min (ms) 8 0,6 8 2

Average (ms) 16 0,7 27 2,4

Max (ms) 32 1,1 70 5

0

10

20

30

40

50

60

70

80

m
s

Fig. 7. Performance of the resource server, considering signing, verification,
encryption, and decryption.

3) Cloud-Based Proxy Server: We have deployed a proxy
server on the OpenStack-based cloud installed at the Depart-
ment of Engineering and Architecture of the University of
Parma. This facility includes one master server and several
slave servers running a dynamic set of virtual machines (VMs).
All the servers host a Ubuntu 14.04 LTS operating system and
are equipped with two QuadCore Intel Xeon @ 2.00 GHz
processors and 16 GB of RAM @ 800 MHz. All VMs host
a Ubuntu 14.10 Utopic operating system and have one Intel
Core i7 @ 2.0 GHz processor, 1 GB of RAM, and 3GB of
disk space.

In Fig. 8, we present the performance of the operations
(including encryption/decryption) involving the cloud-based
proxy server in case of PUT (from a resource server) and
GET (from a client) requests. Each request to the Cloud
crosses three tiers: REST frontend (executing on the master
server), dispatcher (a Java-based software component we have
developed and integrated with the OpenStack-based system,
running on the master server) and proxy server (running on
the replicated VMs).

V. RELATED WORK

Motivated by the recent explosion of interest around
blockchains, Christidis and Devetsikiotis [11] examined

0

200

400

600

800

client - cloud-based proxy server (GET) resource server - cloud-based proxy server (PUT)

Min (ms) 190 511

m
s

Fig. 8. Performance of the cloud-based proxy server.

whether they make a good fit for the IoT sector. Their conclu-
sion was that the blockchain-IoT combination is powerful and
can cause significant transformations across several industries,
paving the way for new business models and novel, distributed
applications. In particular, the blockchain-IoT combination
facilitates the sharing of services and resources and allows
one to automate in a cryptographically verifiable manner
several existing, time-consuming workflows. For this reason,
several partial architectures and prototypes have been recently
proposed. Due to the lack of space, we cannot list them
all. Instead, we focus on those that are more intriguing and
challenging, in our opinion.

Samaniego and Deters [12] proposed a novel architecture
where software-defined IoT devices are combined with a
permissioned blockchain for provisioning IoT services on
edge hosts. It would be interesting to study the possibility
to implement software-defined IoT devices as smart contracts.

Kravitz and Cooper [13] proposed a methodology for creat-
ing permissioned blockchain ecosystems, where identity and
attribute management is built in for both users and devices.
Identities, and their associated attributes, transcend any sin-
gle device or group of devices. The proposed framework is
interesting, but no implementation is currently available.

Dorri et al. [14] studied the possibility to build a lightweight,
optimized blockchain for resource-constrained devices. Over-
taking the energy-consuming Proof-of-Work (PoW) mecha-
nism adopted by major blockchains to sculpt and add data
blocks is a major research issue not only for the IoT commu-
nity. A Proof-of-Stake (PoS) version of Ethereum (denoted as
Casper) is going to be released, promising to be more efficient
and secure. We argue that Casper will further improve the
possibility to build robust blockchain-IoT systems.

VI. CONCLUSION

In this paper, we have proposed IoTChain, an architecture
that combines the elements of OSCAR and the ACE autho-
rization framework. The idea is to make the ACE authoriza-
tion phase trustless and flexible. To this purpose, we use a
blockchain to replace the single ACE authorization server.
The blockchain handles the authorization requests through
smart contracts. Execution of a smart contract adds a token
to the contract storage to authorize a client. We also use a
self-healing group key distribution scheme to allow efficient

multicasting of IoT resources. Clients request keys from the
key server to join the key distribution groups associated with
the desired resources.

In the future work, we plan to implement different applica-
tions on top of IoTChain, to further evaluate its robustness and
performance. Moreover, we will update our private Ethereum
blockchain network to use the PoS-based version of the ledger,
as soon as it will be released by Ethereum developers.

ACKNOWLEDGMENTS

This work has been partially supported by the French
Ministry of Research projects DataTweet under contract ANR-
13-INFR-0008-01, the PERSYVAL-Lab under contract ANR-
11-LABX-0025-01, the FUI IoTize project funded by Région
Auvergne-Rhône-Alpes, and the project PHC Galilée 2017,
PROJET N◦ 37409RJ, “Security protocols for the Cloud-
oriented Internet of Things (SeCIoT)”, the University of Parma
Research Fund - FIL 2016 - Project “NEXTALGO: Efficient
Algorithms for Next-Generation Distributed Systems”.

REFERENCES

[1] M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “OSCAR: Object Security Architecture for the Internet of
Things,” Ad Hoc Networks, vol. 32, pp. 3 – 16, 2015.

[2] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments
(ACE),” Internet Engineering Task Force, Internet-Draft draft-ietf-ace-
oauth-authz-07, Aug. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-07

[3] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet
of Things Security: A Survey,” Journal of Network and Computer
Applications, vol. 88, pp. 10 – 28, 2017.

[4] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet
Requests for Comments, RFC Editor, RFC 6749, October
2012, http://www.rfc-editor.org/rfc/rfc6749.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6749.txt

[5] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” Internet Requests for Comments, RFC Editor, RFC
6347, January 2012, http://www.rfc-editor.org/rfc/rfc6347.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6347.txt

[6] (2017) The Noun Project - Icons for Everything. [Online]. Available:
https://thenounproject.com/

[7] M. Jones, H. Tschofenig, E. Wahlstroem, and S. Erdtman,
“CBOR Web Token (CWT),” IETF, Internet-Draft draft-ietf-ace-
cbor-web-token-05, Jun. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cbor-web-token-05

[8] T. Rams and P. Pacyna, “A Survey of Group Key Distribution Schemes
With Self-Healing Property,” IEEE Communications Surveys & Tutori-
als, vol. 15, no. 2, pp. 820–842, 2013.

[9] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[10] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, “Host Identity
Protocol Version 2 (HIPv2),” Internet Requests for Comments, RFC
Editor, RFC 7401, April 2015, http://www.rfc-editor.org/rfc/rfc7401.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7401.txt

[11] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[12] M. Samaniego and R. Deters, “Using Blockchain to Push Software-
Defined IoT Components Onto Edge Hosts,” in Proceedings of the Inter-
national Conference on Big Data and Advanced Wireless Technologies,
ser. BDAW ’16, 2016.

[13] D. W. Kravitz and J. Cooper, “Securing User Identity and Transactions
Symbiotically: IoT meets Blockchain,” in 2017 Global Internet of Things
Summit (GIoTS), June 2017, pp. 1–6.

[14] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an Optimized
BlockChain for IoT,” in Proceedings of the Second International Con-
ference on Internet-of-Things Design and Implementation, ser. IoTDI
’17, 2017, pp. 173–178.

