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Abstract: Cognitive radars are systems capable of optimizing emission and processing by exploit-
ing knowledge about environment and operational scenario. Those improvements are achieved
by controlling new degrees of freedom offered by modern radar technology. In particular, active
phased-array radars can perform bidimensional beam-steering and beam-forming. Those new ca-
pabilities allow adaptation of radar search patterns to localized constraints. We present an improve-
ment from our previous set cover approximation for radar search pattern time-budget minimization,
accounting for localized constraints of terrain masking and direction-specific scan update rates.
The addition of those constraints however does not modify the underlying mathematical structure
of the problem, which can be solved using integer programming methods.

Introduction

Multi-function radars usually perform multiple tasks simultaneously, such as scanning, target
tracking and identification, clutter mapping, etc. [1–7]. During those tasks, radars gather informa-
tion about the environment which cognitive radar techniques can use to improve performances by
exploiting modern radar capabilities. For example, electronic scanning and numerical processing
allow dynamical use of beam-steering, beam-forming, dwell scheduling and waveform processing
to adapt to operational requirements. As complex situations can result in system overload, multi-
function radars must optimize resources allocation to ensure robust detection. Optimization of the
radar search pattern minimizes the required time-budget for radar scanning, thus freeing resources
for other tasks.

In the past, several works have explored various approaches for optimization of the radar search
pattern: [8, 9] optimized scanning by tiling identical pencil beams over the surveillance space, [10]
developed adaptive activation strategies on a pre-designed radar search pattern. Those approaches
however do not fully use active radars capabilities to dynamically perform beam-forming. In [11]
we presented an approximation of radar search pattern optimization as a set cover problem, defin-
ing a flexible and powerful framework for solving this problem. In [12], we presented how lo-
calized clutter and multiple missions can be integrated into the optimization problem formulation
without changing its mathematical structure.

Set covering is a well-known problem in combinatorial optimization: considering a collection
of covers on a set of elements, called the universe, find the smallest subset of this collection whose
union covers the universe. The general theoretical problem is known to be NP-difficult [13]. Most
optimization algorithms found in the literature are either exact methods based on branch-and-
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Fig. 1. Surveillance space in 3D (left), in azimuth/elevation (center), in direction cosines (right)

bound, approximation heuristics like the greedy algorithm, or evolutionary methods such as simu-
lated annealing or genetic algorithms, see [14] for a recent review of those different approaches. In
practice, problems of reasonable size can be efficiently solved using branch-and-bound with linear
relaxation for lower bound estimation.

We extend our optimization procedure for radar search pattern time-budget minimization to
account for direction specific scan update rate and terrain masking constraints. The first section
states the problem, the detection constraints and the radar model. The second section describes the
approximation procedure of the problem into combinatorial form. The third section presents the
branch-and-bound method used for optimization of the combinatorial problem. The fourth section
presents simulation results on a study case.

1. Problem Statement

A radar search pattern is a collection of dwells ensuring detection over the surveillance space. An
optimal radar search pattern achieves detection using a minimum time-budget. The surveillance
space AS defines our scanning range in azimuth-elevation coordinates, see Fig. 1:

AS = [azmin, azmax]× [elmin, elmax] ⊂ [−π
2
,
π

2
]× [0,

π

2
] (1)

where az and el are respectively the azimuth and elevation angles in radians. For simplicity, the
azimuth origin is set to the radar frontal direction.

1.1. Detection constraint

The radar search pattern must ensure detection for a set of I missions. The parameters for each
mission i ∈ I = {1, . . . , I} are:

• σi the radar cross-section of the target.

• Rc,i : AS → R+ the desired detection range. In our simulations, a mission desired detection
range is defined by a minimum height Hmin and a minimum distance Dmin, see Fig. 2:

Rc,i(az, el) =

{
Dmin if el ≤ asin

(
Hmin

Dmin

)
Hmin

sin(el)
otherwise

(2)
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Fig. 2. Desired detection range (left), azimuth cut (center), elevation cut (right)
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Fig. 3. range-Doppler map with eclipses for given Doppler and range ambiguities (left) and its
visible and occulted areas (right)

• Sc,i : AS → N be the desired scan update rate, which is the minimum number of scans to
perform in a given direction during one radar search pattern.

• SWi ∈ {0, . . . , 4} be the Swerling model [15].

• Pd ∈]0, 1[ is the desired detection probability and Pfa ∈]0, 1[ is the desired false alarm prob-
ability.

Information about the radar environment is also available:

• α : AS → [0, 1[ is the clutter eclipse coefficient. It represents the ratio of eclipsed area on the
range-Doppler map in a given direction:

α =
Ae

Av + Ae
(3)

where Av is the visible area and Ae is the eclipsed area, see Fig. 3.

• µ : AS → R+ is the terrain masking distance, i.e. the maximum detection range in a given
direction before terrain masks block detection.

The radar search pattern ensures detection if for each mission i ∈ I and each direction (az, el) ∈
AS , the radar search pattern contains at least Sc,i(az, el) dwells, each capable of detecting a target
with radar cross-section σi at range Rc,i(az, el) in direction (az, el), with at least detection proba-
bility Pd and at most false alarm probability Pfa in clutter eclipse coefficient α(az, el). In presence
of terrain masking, desired detection range is replaced by min{µ,Rc,i}

The optimization problem is to minimize the time budget used by a radar search pattern vali-
dating the detection constraint previously described.
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1.2. Dwell model

A dwell is the combination of a radiation pattern produced by the radar antenna, and a waveform
signal generated by the radar and emitted by its antenna.

1.2.1. Radiation pattern: The radar antenna is modelled as a bidimensional linear phased-array,
containing K × L isotropic radiating elements with horizontal spacing dx and vertical spacing dx.
Phase and amplitude of each radiating element can be freely controlled:

ak,l = Ak,l e
jφk,l (4)

with amplitude Ak,l ∈ [0, 1], phase φk,l ∈ [0, 2π[, and indexes (k, l) ∈ {1, ..., K}× {1, ..., L}. The
theoretical emission gain of the array antenna is [16]:

gt(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π

kdyv+ldxu

λ (5)

with λ the signal wavelength (which can be approximated by the waveform carrier), and with (u, v)
the direction cosines coordinates derived from azimuth/elevation coordinates as

u = − cos(el) sin(az)
v = sin(el) cos(t)− sin(t) cos(az) cos(el)

(6)

with t the array antenna tilt angle.
Azimuth and elevation are the usual coordinates for defining detection constraints, while direction
cosines are the usual coordinates used for performing pattern analysis and synthesis. The reciprocal
transformation of (6) is:

az = atan2
(
−u, cos(t)

√
1− u2 − v2 − sin(t)v

)
el = asin

(
sin(t)

√
1− u2 − v2 + cos(t)v

) (7)

From this point on, we consider that functions defined on AS can accept indiscriminately (u, v)
and (az, el) as parameters, since variables can easily be substituted using (6) and (7).

The transformation between direction cosines and azimuth-elevation does not preserve areas.
Informally, the transformation spreads surfaces in a non-uniform fashion, dispersing more power
as the observation direction deviates from the array normal direction. This results in anisotropic
scan losses:

Ls = cos(δ)−1 (8)

where δ is the angle between the array antenna normal vector and the observation direction. Scan
losses are squared in the radar equation since they occur at emission and reception.

1.2.2. Waveform: The radar can access a catalogue of available waveformsW = {w1, . . . , wP}.
Each waveform w ∈ W in the catalogue has known characteristics and performances:

• signal wavelength: λw

• duration, which corresponds to the radar-time a dwell using waveform w would require for
emission, reception and processing: Tw
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• Signal-to-Noise Ratio detectability factor sw(i, α) for given detection probability Pd and false
alarm probability Pfa accounting for :

– target type of mission i and its associated Swerling model [15].
– clutter eclipse coefficient: α

Qualitatively, each waveform achieves a known compromise between its required processing time
and its detection performances for a given target type in a given clutter configuration.

1.3. Detection range

The maximum detection range for mission i in direction (az, el) using dwell d with radiation
pattern gt and waveform w can be computed through the radar equation [17]:

Rd,i(az, el)
4 =

Pm Tw gt(az, el) gr λ
2
w σi

(4π)3 sw(i, α(az, el)) Lu Ls(az, el)
2 (9)

where Pm is the mean power of the radar, gr is the reception gain of the narrow beam used in digital
beam-forming, Ls are anisotropic scanned losses and Lu are uniform losses.

1.4. Reception processing

From (9), dwell d detection area for a given mission i is computed as:

Ad,i = {(az, el) ∈ AS, s.t. Rd,i(az, el) ≥ Rc,i(az, el)} (10)

and its detection area for all missions is Ad =
⋃
i∈I Ad,i.

The radar performs digital beam-forming to sample the scanned area using simultaneous digital
narrow beams. All digital narrow beams are supposed to have the same gain (except for a linear
phase term used for beam-steering). The reception gain gr is approximated as the broadside gain
at half-power of the digital reception narrow beam.

The dwell scanned area size in direction cosines is limited by reception processing bandwidth.
Thus the scanned area must be smaller than the maximum area the digital narrow beams can cover:

Ad = number of reception beams · digital beamwidth ≈
∫∫
Ad
dudv ≤ Amax (11)

1.5. General optimization problem formulation

Finding a radar search pattern Sopt ensuring the detection constraint over the surveillance space
with minimal time-budget is a minimization problem under constraints:

min
∑

0≤j≤J

Twj (12a)

s.t. S = {dj = (gj, wj), 0 ≤ j ≤ J}, J ∈ N (12b)

∀i ∈ {0, . . . , I},AS ⊂
⋃
d∈S

Ad,i (12c)

∀d ∈ S, Ad =
∫∫
Ad
dudv ≤ Amax (12d)
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Fig. 4. Detection grid G and a rectangle H in 3D (left), in azimuth/elevation (center), in direction
cosines (right)

The problem amounts to finding a radar search pattern S containing a finite number of dwells (12b),
validating detection constraint over the entire surveillance space for all missions (12c), processable
at reception (12d), and using minimal radar time-budget (12a).

2. Set Cover Problem Approximation

The general optimization problem is difficult to solve for several reasons: continuous variables in
the phase-amplitude law of each dwell radiation pattern, mixed with discrete variables for each
dwell waveform choice. Furthermore the number of variables is not set, as it depends on the
number of dwells. Finally, the desired detection ranges Rc,i are generally non-convex functions. It
is thus a non-convex mixed optimization problem, with potentially a large number of variables. A
more sensible way to tackle this problem is to approximate it as a combinatorial set cover problem,
since it intuitively possesses a similar structure as a covering problem.

2.1. Discrete Detection Grid

The surveillance space in direction cosines coordinates is approximated by a finite bidimensional
M -by-N regular grid, see Fig. 4. On this grid, the detection constraint is considered on each cell,
with a finite number of cells, instead of working on the continuous set of possible azimuth-elevation
directions.

Let [umin, umax] ⊂ [0, 1] and [vmin, vmax] ⊂ [0, 1] be the radar scanning range in direction
cosines coordinates on the surveillance space. Let M ∈ N∗ and N ∈ N∗ define the desired grid
resolution. Then the grid nodes are computed by :

u0 = umin, uN = umax un = u0 + n
(
uN−u0
N

)
v0 = vmin, vM = vmax vm = v0 +m

(
vM−v0
M

) (13)

Any rectangle on grid G can be characterized by its upper left corner (un, vm) and its lower right
corner (uq, vr), see Fig. 4, with 0 ≤ n < q ≤ N and 0 ≤ m < r ≤M .

The number of possible rectangles on G is bounded by MN(M+1)(N+1)
4

.
The problem is then divided into two parts:

• the generation, through pattern synthesis, of a collection of rectangular candidate dwells.

• the selection of an optimal subset among the rectangular candidate dwells.
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2.2. Pattern Synthesis

Let H be a rectangle on grid G, characterized by nodes (un, vm) and (uq, vr). The ideal radiation
pattern covering H is

gH(u, v) ∝

{
Ls(u, v)

2maxi

{
Rc,i(u,v)

4sw(i,α)

σi

}
if un ≤ u ≤ uq and vm ≤ v ≤ vr

0 otherwise
(14)

up to a constant factor, as the array antenna feeds are normalized. This radiation pattern fits the
maximum of among all missions’ ideal energetic distributions. It is usually infeasible on a real
antenna, because it features discontinuities on the rectangle edges, see Fig. 5. The radiation
pattern is the Fourier transform of the antenna illumination law, see (5). A discontinuous radiation
pattern would require an infinitely large antenna array. It corresponds to an infinite illumination
law, similarly to a discontinuous time signal having an infinite spectrum: the instantaneous change
of value in the signal indicates the presence of arbitrarily high frequencies.

A feasible radiation pattern ĝH can be synthesized by applying a bidimensional Woodward-
Lawson sampling method to the ideal pattern gH , adapted from the one-dimensional method de-
scribed in [16, 18]. Using sampled values of the desired pattern at given sampling points, the
method synthesizes a feasible pattern that is guaranteed to hold the same values at the sampling
points, see Fig. 5. The sampling points form a K ′-by-L′ grid with nodes (ul, vk), 0 ≤ l < L′, 0 ≤
k < K ′ (note that this grid has no relation to detection grid G) with:

L′ = 2bL
2
c+ 1, ul = 2l+1−L′

L

K ′ = 2bK
2
c+ 1, vk = 2k+1−K′

K

(15)

The number of sampling points along one dimension is the closest rounded-up odd number to the
number of radiating elements on the same axis. The feeds of the feasible pattern are computed
using the ideal pattern values at the sampling points:

âk,l =
1

KL

K′∑
k′=0

L′∑
l′=0

gH(ul′ , vk′)e
−jπ(kdyvk′+ldxul′ )/λ (16)

The feeds are normalized: âk,l ← âk,l/maxk,l{âk,l} and Taylor filtering is used for decreasing
sidelobes and Gibbs oscillations. From the feeds, the feasible pattern can be computed using (5).

Applying this synthesis procedure to all possible rectangles on grid G, with area inferior to
the maximum processable area described in subsection 1.4, generates a collection of processable
radiation patterns : T = {ĝH , H ⊂ G}

Other synthesis methods based on least square optimization [19], genetic algorithms [20] and
alternating projections [21] are also compatible with this approach.

2.3. Set Cover Problem

The set of candidate dwellsD can be computed as the Cartesian product of T , the set of synthesized
radiation patterns, andW , the set of available waveforms :

D = T ×W = {(gt, w), gt ∈ T , w ∈ W} = {d1, · · · , dp} (17)
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Fig. 5. Ideal radiation pattern (left), synthesized radiation pattern (middle) and synthesized radi-
ation pattern after Taylor filtering (right), with sampling points in red.
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Fig. 6. Computation of discrete covers for one dwell on two scanning missions

For each dwell dj in D and each mission i, see Fig. 6, dwell dj discrete cover for mission i is
computed by the formula:

Cj,i(m,n) =

{
1 if ∀(u, v) ∈ [un, un+1]× [vm, vm+1], Rj,i(u, v) ≥ Rc,i(u, v)

0 otherwise
(18)

where Rj,i is dwell dj detection range for mission i. Discrete cover Cj,i represents the cells on
which dwell dj validates mission i detection constraint.

Dwells can have different covers for each mission, as energetic requirements differ between
missions. Furthermore, some waveforms might be more efficient and suited for some missions.
The minimum number of scans on each cell for mission i is defined as:

si(m,n) = max
un ≤ u ≤ un+1
vm ≤ v ≤ vm+1

Sc,i(u, v) (19)

Finding a radar search pattern validating detection constraints for all missions over the surveil-
lance space amounts to finding a subset among candidate dwells whose sum of discrete covers
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cover the entire grid G, with each cell G(m,n) being covered by at least si(m,n) dwells, see Fig.
7, for all missions.

With time-budget of the radar search pattern being the cost function of the optimization prob-
lem, the cost for each dwell dj is its waveform duration Tw. It will be referred as Tj from now
on.

Each dwell dj ∈ D is associated to an integer selection variable xj , indicating how many times
dwell dj is in the radar search pattern. Thus, the optimization problem (12) is approximated on
grid G by the following set cover problem:

min
∑p

j=1 Tjxj
s.t. ∀i ∈ {1, . . . , I}, ∀(m,n),

∑p
j=1 xjCj,i(m,n) ≥ si(m,n)

∀j ∈ {1, . . . , p}, xj ∈ N
(20)

with p being the number of candidate dwells, i.e. the cardinal of set D.

2.4. Integer Program

The approximation problem can be written as an integer program using matrix formulations:
Let x = (x1 · · ·xp)T , let T = (T1 · · ·Tp)T and let

Ai =


C1,i(0, 0) · · · Cp,i(0, 0)
C1,i(0, 1) · · · Cp,i(0, 1)

... . . . ...
C1,i(m,n) · · · Cp,i(m,n)

...
...

...

 , A =


A1
...
Ai
...

AI

 , si =


si(0, 0)
si(0, 1)

...
si(m,n)
· · ·

 and s =


s1
...
si
...
sI

 (21)

Let smax be the maximum value of vector s. Then the approximation problem can be written as:

min TT .x
s.t. A · x ≥ s

x ∈ {0, · · · , smax}p ⊂ Np
(22)
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3. Optimization Algorithm

Generally, integer programs are difficult to solve in a straightforward manner. Currently, no algo-
rithm for computing quickly an optimal solution is known, and most methods rely on some form of
exploration of the set of possible solutions. While the size of the solution space is finite, it grows
exponentially with the number of variables and is usually huge: for the problem described in the
previous sections, there are (1 + smax)

p possible solutions.
Combining branch-and-bound exploration with relaxation methods can be used to avoid ex-

haustive enumeration of all possible solutions, by breaking down the integer program into easier
sub-problems. However, the computational cost of this approach can still be important depending
on the problem instance.

3.1. Linear Relaxation

By removing the integer constraint, and allowing the integer vector x to take any real positive
value, the integer program is turned into a linear program:

min TT .x
s.t. A · x ≥ s

x ∈ [0, smax]
p ⊂ Rp

(23)

Unlike integer programs, linear programs can be solved in pseudo-polynomial time, and have very
efficient practical algorithms, such as Dantzig’s simplex method [22].

In linear programs, each inequality constraint defines a hyperplane being the limit between
the half-space of valid solutions and the half-space of invalid solutions for said constraint. The
intersection of all valid half-spaces generates the set of feasible solutions for the linear program,
and forms a convex polyhedron. The polyhedron convexity permits use of descent methods. This is
not possible for integer programs, since integer solutions are isolated points in the feasible convex
polyhedron.

Dantzig’s simplex method moves between vertices on the convex polyhedron, decreasing the
cost function at each step, until reaching a vertex with no decreasing neighbor; yielding by con-
vexity an optimal solution [22]. The relaxed optimal solution x∗LP may contain non-integer values.
Thus x∗LP might not necessarily correspond to a radar search pattern, but it produces a lower bound
of the minimum time budget of an optimal radar search pattern.

3.2. Branch-and-Bound Method

A finite tree is used to represent all possible solutions of the integer program [23]. Each node
represents the choice of a value for an integer variable, see Fig. 8, and has 1+ smax children. Each
end leaf represents a solution for the integer program, when all variables have been set.

At each node, it is possible to estimate a lower bound of the node sub-tree best solution, by solv-
ing the linear relaxation of the non-set variables. Exploration of certain sub-trees can be avoided if
their lower bound is higher or equal to the best current solution. The method takes its name from
the two steps describing it:

• Branching: Each branch at the current node (with depth i−1) correspond to a different chosen
value for the next variable xi. In each branch, xi is no longer a variable but a parameter. The
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Fig. 8. Finite tree of solutions with smax = 1 (left) and branch-and-bound method (right)

current problem is thus divided into (1 + smax) smaller sub-problems, each considering a
different value for xi and each having one less variable.

• Bounding: The current problem is relaxed into a linear program, whose solution is a lower
bound of the current problem best solution. Depending on the lower bound value, the node
sub-tree will be explored next (if it is the most promising branch), later (if there is a more
promising branch), or never (if a better solution has already be found in another branch).

There are many variants of branch-and-bound, relying on different criteria for defining the
exploration order of the nodes [23], or using other relaxation methods with different trade-offs
between speed and tightness of the lower bound [14].

Mixed-integer linear programs solvers are heavily optimized and rely on various heuristics to
define the exploration strategy and improve bound estimations.

Branch-and-bound offers several advantages in regards to engineering design and real-time ap-
plications:

• “Gap-to-optimality” estimation: the method produces and refines a lower bound on the opti-
mal objective value. This bound can be used to measure how far from optimality a feasible
solution is.

• “Just-in-time” solution: the method explores the tree of possible solutions while keeping track
of the best solution(s) found so far. “Just-in-time” solution(s) can be produced for real-time
applications without waiting for optimal convergence.

• Multiple solutions generation: a population of solutions can generated during the exploration.
Various criteria can be defined to filter the population: population size, maximum gap-to-
optimality, maximum objective value...

4. Implementation and results

4.1. Simulation

The approximation procedure described in this article was applied to a study case with two scan-
ning missions in presence of localized clutter and terrain masking with a 3× scan update rate
constraint above the terrain mask, see Fig. 9.

The radar array antenna has 30×30 half-spaced radiating elements. The grid G is laid on a
20×20 lattice. The radar has two available waveformsW = {w1, w2}, with a long waveform w1
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and a short waveform w2. The approximation procedure produced 11282 feasible dwells. The
detection grid contains 326 cells for both scanning missions. The corresponding integer program
has 11282 variables and 652 inequality constraints.

The integer program is computed using Python, and optimization is done with CPLEX [24].
Total computation time for finding one optimal solution is 36 seconds on an i7-3770@3.4GHz
processor with a memory usage of 452MB.

The optimal radar search pattern found contains 20 dwells, see Fig. 11, and combines overlap-
ping dwells to achieve the desired global scan update rate, while ensuring the detection range on
both missions.

However, this optimal solution is not unique. Alternative optimal solutions exists, see Fig. 10,
Fig. 11, Fig. 12). In 130 seconds, the solver found 440 different optimal solutions. The list is not
exhaustive, and it seems likely that many other combinations exist:

• Every solution has the same cost, and use exactly 20 dwells: 14 with a short waveform and 6
with a long waveform.

• Among those, 7 dwells (2 with short waveform and 5 with long waveform) are the same for
all optimal solutions found. Those dwells form an invariant of optimality.

• The remaining 13 dwells (always 12 with short waveform and 1 with long waveform) are
always drawn from a subset of 261 possible dwells (254 with short waveform and 7 with long
waveform).

Informally, the invariant of optimality represents the constraining part of an optimal solution,
while different combinations can be chosen for the remaining dwells among the pool of 261 dwells
used in optimal solutions. There are probably more possible solutions as many different combina-
tions among the 261 dwells can produce new solutions.

The invariant of optimality mostly consists of low-elevation dwells with long waveform. The
low-elevation area of surveillance space contains the most restrictive detection constraints for the
cover. While the high-elevation area, with inferior energetic requirements, offers several possibili-
ties for optimal covering.

4.2. Comparison to a pencil-beam lattice

The optimized search pattern was compared to a pencil-beam rectangular lattice, which uses nar-
row beams with short dwells. Each beam has a different dwell frame time, minimized for the

12



1 2mission
ideal
achieved

normalized detection range

Fig. 10. Invariant part of the optimal solutions and detection range on the horizon (elevation = 0)
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Fig. 11. One possible complete optimal solution and the detection range in elevation (azimut = 0)
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Fig. 12. A second possible optimal solution and the detection range in elevation (azimut = 0)
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Fig. 13. Pencil-beam (left), lattice of pencil-beams (center) and dwell duration for each pencil-
beam (right)

mission requirements, see Fig. 13. However, those dwells frame time is generally too short to effi-
ciently account for eclipses. The pencil-beam lattice typically requires multiple scans for achieving
the detection requirements defined in subsection 1.1.

The time-budget of the optimized search pattern is 27% lower than the average time-budget
of the pencil-beam rectangular lattice, and is 47% lower than the worst-case time-budget of the
pencil-beam rectangular lattice. The optimized search pattern advantage comes from the use of
longer waveform, which are more efficient at dealing with clutter.

5. Conclusions

While providing a natural framework for radar search pattern optimization, the approximation
procedure originally presented in [11] is shown to be flexible and can account for additional con-
straints, such as multiple missions, localized clutter, terrain masking and direction specific scan
update rate constraints. This flexibility is due to the approximation procedure, which separate a
complicate problem into consecutive simpler steps: grid discretization, pattern synthesis and dwell
selection. The generic nature of integer programs for optimizing decision problems can integrate
those constraints while preserving the mathematical structure of the optimization problem.

This framework will become a useful tool to help engineers in designing and optimizing radar
search patterns. A significant advantage of this approach is its suitability for real-time applications.
As the branch-and-bound method explores the solution space, it can return any improving solution
as soon as found and then resume the optimization. The optimality gap provides information
regarding the best improvement to be expected from any future solution. This method is thus
particularly fit for providing “just-in-time” solutions.
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