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This paper relates a new model of quasi-static magnetic hysteresis based on the Play model hysterons, which builds the magnetic field density B from the magnetic field H. In the original model, H is discretized into temporal values H(t m ), which is itself modeled by a hysteron chain of m sub-values. B is then reconstructed from these sub-values through a function experimentally determined by measuring B(H) centered cycles, using a constraint optimization method. The new proposed method is to measure asymmetrical B(H) loops, which give additional equations leading to a fully determined linear square invertible system. The asymmetrical B(H) loop is included in a bigger symmetrical loop with a magnetic flux density turnaround in order to be regulatable.

INTRODUCTION

HE iron losses have been studied for decades, especially in electrical machines [START_REF] Steinmetz | On the law of hysteresis (part.III) and theory of ferric inductances[END_REF]. Following the development of power electronics and new controlling systems such as Pulse Width Modulation (PWM), high frequency harmonics due to switching frequency must be treated inside electrical machines [START_REF] Van Der Geest | Influence of PWM switching frequency on the losses in PM machines[END_REF]. Moreover, high speed applications require high fundamental frequency of functioning. The increase of frequencies induces a high iron losses growth [START_REF] Krings | PWM Influence on the Iron Losses and Characteristics of a Slotless Permanent-Magnet Motor With SiFe and NiFe Stator Cores[END_REF]. Therefore, models must be adapted.

Several models exist and generally two kinds are considered: post-processing models based on physical considerations [START_REF] Bertotti | General properties of power loss in soft ferromagnetic materials[END_REF] which need experimental characterization, and pre-processing models based on the B(H) loop building, which need also experimental measurements. Both types have their own issues and advantages, but the pre-processing method appears to be more accurate. Its major disadvantage is the high calculation power needed. Indeed, the most famous pre-processing model is Preisach model [START_REF] Lin | Construction of Magnetic Hysteresis Loops and Its Applications in Parameter Identification for Hysteresis Models[END_REF], which needs the highest calculation power but provides the best accuracy in quasi-static hysteresis building. Play and Stop models [START_REF] Lin | Improved Vector Play Model and Parameter Identification for Magnetic Hysteresis Materials[END_REF] derive from Preisach model and have been proved as mathematically equivalent [START_REF] Bobbio | Models of Magnetic Hysteresis Based on Play and Stop Hysterons[END_REF]. The Play model proposes A. Giraud is with IRT Saint-exupéry, 31432 Toulouse cedex 4, France (e-mail: alexandre.giraud@irt-saintexupéry.fr) and Grem3, Laplace Laboratory, 31071 Toulouse Cedex 7, France.
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This paper proposes a new modeling of Play model based on asymmetrical hysteresis loops. First, the principle of original Play model is described. Then, the issues induced by this way of modeling are presented and a method is finally developed in order to improve the efficiency of the model.

II. DEVELOPMENT OF THE METHOD

A. Original model description The principle of the original model [START_REF] Bobbio | A Possible Alternative to Preisach's Model of Static Hysteresis[END_REF] is simple: in order to obtain the magnetic flux density B from the applied magnetic field H, which both are temporal signals, H is first temporally discretized. Hence, H is decomposed in M temporal values H(t) separated by a specific step . Then, each value H(t) is also decomposed in intern variables . Those intern variables are called hysterons and follow a specific algorithm presented in [START_REF] Bobbio | A New Model of Scalar Magnetic Hysteresis[END_REF]. Hysterons could be compared to a spring network: each hysteron in the chain has an influence on another one. The algorithm is given as:

For

preferentially changes to with a step For The starting point must be known, the saturation point is preferred Then, for each corresponds a specific defined as:

(1)

With

Where are piece-wise linear functions which need to be identified. Finally B(t) is obtained with:
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T (2)

The general functioning is presented in Fig. 1.

Fig. 1: Global functioning of Play model described in [START_REF] Bobbio | A Possible Alternative to Preisach's Model of Static Hysteresis[END_REF] and [START_REF] Bobbio | A New Model of Scalar Magnetic Hysteresis[END_REF] However, the coefficients have to be identified to use the model. The method proposed in [START_REF] Bobbio | A Possible Alternative to Preisach's Model of Static Hysteresis[END_REF] is based on major hysteresis loop measurement. The number l of major loops is equal to M; the more M is high, the more the system is accurate. Then, are identified with the as presented Fig. 2 with .

Fig. 2: Parameter identification

The parameters obtained are:

Therefore, a matrix system describes the problem as below:

(

Where is the matrix representing the coefficients of (1). The matrix corresponds to the experimental measurements and is a matrix fulfilled by 0,1 or -1.

However, (3) induces a major issue: the problem described here is not solvable. Matrix has to be reduced as a square one with a specific optimization algorithm [START_REF] Bobbio | A New Model of Scalar Magnetic Hysteresis[END_REF]. Unlike the model proposed in [START_REF] Kitao | Loss Calculation Method Considering Hysteretic Property With Play Model in Finite Element Magnetic Field Analysis[END_REF] which used a 3-D vector for H and B, the method presented here is in one dimension. In this way, a finite element calculation is not required to get the hysterons from B and H, but the method does not take into account the space dependency of hysterons. Indeed, the model described here is applied on electrical steel sheet which limit space effect, whereas ring core are used in [START_REF] Kitao | Loss Calculation Method Considering Hysteretic Property With Play Model in Finite Element Magnetic Field Analysis[END_REF].

B. Principle of the new method

The new method proposed here is typically following the same process. The magnetic field is temporally discretized and then decomposed in intern variables. The only difference in the global functioning is the mean to get . Indeed, to avoid the utilization of piece-wise linear functions, it is proposed to directly use the measurements to identify . The interpolation used in the original model is suppressed. Hence, (3) becomes:

(

Where is the matrix of . For two loops ( ), matrices of (4) can be detailed from the Table 1:

TABLE 1: DETAILS OF PARAMETERS FOR TWO MAJOR LOOPS Loop n° H step 2 1
Therefore, for this example, the system changes as:

(5)

Although, the simple matrix system obtained is not exploitable. Indeed, , so is not invertible: more equations are needed. Using only major loops with the presented method involves a non-invertible system. So the method has to be adapted. That is why we have decided to change the common method of identification using asymmetrical loops.

C. Asymmetrical loops introduction

As presented before, more equations are needed. With an eye to add equations, the concept of using only major loops must be necessarily changed. Regarding to the global functioning of hysterons building, adding more major loops would be useless. Indeed, it would involve new hysterons and the ones without enough information would be still undetermined.

The solution proposed here is to add asymmetrical inner loops, as presented in Fig. 3. Starting from the saturation point, when a hysteron is undetermined, a minor loop allows to go back and get it. These asymmetrical loops allow to reach new magnetization states unreachable with only symmetrical loops, thus leading to new equations containing the unknown intern variables . However, an asymmetrical regulation is not possible. The minor loop is then inserted inside a bigger symmetric loop, as in Fig. 4. The symmetric opposite of the minor loop is also added, in order to have a controlled set of H points. The bigger loop and the inferior minor loops have no other use than allowing the superior minor loop to be regulated.

Actually, the asymmetrical loop is calculated to start at each H step of the major loop. Then, following the asymmetrical loop, H increases up to the saturation point and goes back to its starting point. However, the "history" of hysterons sequence keeps evolving step by step like for the original model. But after the point of U-turn, the H changes its direction of variation, so as the sequence of hysterons. In this way, we add new sequences of hysterons for each H step.

A combination of two sine waves, 1 st and 3 rd harmonics as in [START_REF] Lin | Improved Vector Play Model and Parameter Identification for Magnetic Hysteresis Materials[END_REF], is chosen to regulate the measurement sequence of Fig 4. This is chosen because it is the lowest possible harmonic content curve to generate the measurement sequence. ( 6) With [START_REF] Bobbio | Models of Magnetic Hysteresis Based on Play and Stop Hysterons[END_REF] Where and are respectively the magnitudes of the third harmonic and the fundamental.

In order to control the minor loops, the ratio r between harmonic and fundamental has to be calculated. The general form of the magnetic field waveform is given in Fig. 5.

Considering the relation between maximum and minimum, the ratio can be expressed as: [START_REF] Bobbio | A Possible Alternative to Preisach's Model of Static Hysteresis[END_REF] With [START_REF] Bobbio | A New Model of Scalar Magnetic Hysteresis[END_REF] is in the end adjusted to fit the required sequence of points.

Actually, the ratio r allows a complete control of the lowest H point of the asymmetrical loop. Basically, when the ratio , the waveform is a pure sine wave, related to the major loop.

Finally, the method proposed here uses ( 8) and ( 9) in a specific algorithm to equilibrate the system with enough variables and equations. such as presented on Fig. 7 and Fig. 8. The global functioning of this new algorithm is described on the chart of Fig. 6.

Here, a NO20 single sheet (Fe-Si) was used to obtain 2 loops (related to the example of Fig. 2). We can see that with the asymmetrical loop, more experimental data at the same H step is obtained, twice more for this case.

Considering M symmetrical loops (and so H steps) and the applied field H as in ( 6), Table 2 describes the functioning of our algorithm in order to choose the parameters.

Then, both magnitude and ratio change following a specific evolution based on the H step. Therefore, for the same quantity of we obtain more experimental values , still following (4) but with different sizes for matrices: [START_REF] Kitao | Loss Calculation Method Considering Hysteretic Property With Play Model in Finite Element Magnetic Field Analysis[END_REF] The matrix of is still a vector of components, such as the number of column in C. The number of lines in C and Q depends on the total number of loops M: [START_REF] Ito | Equivalent Circuit Modeling of DC and AC Ferrite Magnetic Properties Using H-Input and B-Input Play Models[END_REF] Hence, the system is still non-invertible and has to be turned in a square matrix one. First we can assume that:

(12)
The components from (12) have to be considered useless and the corresponding columns are suppressed. Then, the useless lines of C and Q are easily suppressible with a basic algorithm which removes the concerned lines and keeps the ranks of the matrices unchanged. Finally, the system presented in ( 10) is square and invertible and all the are determined, then allowing the building of hysteresis loop and iron losses calculation. 

III. VALIDATION OF THE MODEL

A. Experimental validation As for Fig. 3, Fig. 4 and Fig. 5, a NO20 steel sheet is used in order to identify . First we tried the algorithm for . We obtained the following values for :

(13) Then, it is easily possible to construct B step by step from H as described in Table 3. In this way, only the superior part of the hysteresis loop is built, but the whole loop is obtained with a central symmetry. Then, a comparison between the simulated loop using the algorithm and the measured one is foreseeable, as presented in Fig. 9.

With an eye to develop the validation, we also used the algorithm for M = 4 and the comparison between the simulated loop and the measured one is presented in Fig. 10. The new method is working and allows to obtain the magnetic flux density B from the applied magnetic field H. Obviously, a low value of M involves a low accuracy of the hysteresis loop construction. However, both comparisons enable the verification of the good functioning of this method.

B. Magnetic flux density prediction using the method

To go further, we can build a hysteresis loop with an applied magnetic field, given in Fig. 11, which is different than the one used for parameter identification. In order to stay as close as possible in a quasi-static state, the 10 Hz frequency is conserved. The number of major loops remains equal to M = 4.

Then, the magnetic flux density is simulated using the model and compared to the measured one, as presented in Fig. 12. The comparison of hysteresis loops from measured and simulated magnetic flux density B and the applied magnetic field H is shown on Fig. 13.

The target B zones are reached by the model but with a medium accuracy. The B points of the minor loops are also built whereas they differ from the hysteresis loops used for parameter identification. It is possible to observe those target zones on Fig. 14.

Obviously, only B points corresponding to H steps can be simulated. So with M = 4 the model cannot be accurate enough and this simulation is not sufficient. Hence, the experimental validation proposed here has to be developed. Nevertheless, it is an additional step in a global validation of the model.

IV. CONCLUSION

The new implementation of the Play model proposed here permits to have magnetic flux density B from the applied magnetic field H with a correct accuracy considering the low value of the number of major loops M tested here. The simulation is based on matrix calculation and is very fast and does not need a high power of calculation. The characterization allowing the identification of the intern variables is not complex but needs a proper experimental approach.

However, to be complete, the experimental validation has to be tested with a higher value of M. In this way, several values of M must be experimented, increasing the accuracy and allowing different types of H waveforms in the steel sheet. Other magnetic materials should also be tested.

Moreover, to go beyond, it will be very interesting to have a dynamic model. Indeed, the proposed method is a quasistatic one. As a first step, the proposition of [START_REF] Ito | Equivalent Circuit Modeling of DC and AC Ferrite Magnetic Properties Using H-Input and B-Input Play Models[END_REF] to take dynamic effect into account should be tested. A dynamic model associated with an accurate eddy current model would enable a complete modelling of magnetic material behavior. The iron losses prediction would be more precise and their calculation could be integrated to a global optimization chain for electrical machines design.
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TABLE 2 :

 2 CHOICE OF MAGNETIC FIELD WAVEFORM PARAMETERS

	Highest H of the loop	Smallest H of the loop	Ratio

TABLE 3 :

 3 CONSTRUCTION OF HYSTERESIS LOOP FOR M=2

	H step	sequence	sequences	Values of B (T)
				1,536
				1,376
				0,6317
				-1,29
				-1,536
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