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Summary. It has been suggested that marked point processes might be good can-
didates for the modelling of financial high-frequency data. A special class of point
processes, Hawkes processes, has been the subject of various investigations in the
financial community. In this paper, we propose to enhance a basic zero-intelligence
order book simulator with arrival times of limit and market orders following mu-
tually (asymmetrically) exciting Hawkes processes. Modelling is based on empirical
observations on time intervals between orders that we verify on several markets (eq-
uity, bond futures, index futures). We show that this simple feature enables a much
more realistic treatment of the bid-ask spread of the simulated order book.

Introduction

Arrival times of orders: event time is not enough

As of today, the study of arrival times of orders in an order book has not been a
primary focus in order book modelling. Many toy models leave this dimension
aside when trying to understand the complex dynamics of an order book. In
most order driven market models such as [8, 18, 1], and in some order book
models as well (e.g.[21]), a time step in the model is an arbitrary unit of time
during which many events may happen. We may call that clock aggregated

time. In most order book models such as [7, 19, 9], one order is simulated
per time step with given probabilities, i.e. these models use the clock known
as event time. In the simple case where these probabilities are constant and
independent of the state of the model, such a time treatment is equivalent
to the assumption that order flows are homogeneous Poisson processes. A
probable reason for the use of non-physical time in order book modelling –
leaving aside the fact that models can be sufficiently complicated without
adding another dimension – is that many puzzling empirical observations (see
e.g. [6] for a review of some of the well-known “stylized facts”) can (also)
be done in event time (e.g. autocorrelation of the signs of limit and market
orders) or in aggregated time (e.g. volatility clustering).

http://arxiv.org/abs/1003.3796v2
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However, it is clear that physical (calendar) time has to be taken into
account for the modelling of a realistic order book model. For example, market
activity varies widely, and intraday seasonality is often observed as a well
known U-shaped pattern. Even for a short time scale model – a few minutes,
a few hours – durations of orders (i.e. time intervals between orders) are
very broadly distributed. Hence, the Poisson assumption and its exponential
distribution of arrival times has to be discarded, and models must take into
account the way these irregular flows of orders affect the empirical properties
studied on order books.

Let us give one illustration. On figure 1, we plot examples of the empirical
density function of the observed spread in event time (i.e. spread is measured
each time an event happens in the order book), and in physical (calendar)
time (i.e. measures are weighted by the time interval during which the order
book is idle). It appears that density of the most probable values of the time-
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Fig. 1. Empirical density function of the distribution of the bid-ask spread in event
time and in physical (calendar) time. In inset, same data using a semi-log scale. This
graph has been computed with 15 four-hour samples of tick data on the BNPP.PA
stock (see section 1.1 for details).

weighted distribution is higher than in the event time case. Symmetrically,
the density of the least probable event is even smaller when physical time
is taken into account. This tells us a few things about the dynamics of the
order book, which could be summarized as follows: the wider the spread, the
faster its tightening. We can get another insight of this empirical property
by measuring on our data the average waiting time before the next event,
conditionally on the spread size. When computed on the lower one-third-
quantile (small spread), the average waiting time is 320 milliseconds. When
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computed on the upper one-third-quantile (large spread), this average waiting
time is 200 milliseconds. These observations complement some of the ones that
can be found in the early paper [4].

Counting processes with dynamic intensity

There is a trend in the econometrics literature advocating for the use of
(marked) point processes for the modelling of financial time series. One may
find a possible source of this interest in [11, 10], which introduce autore-
gressive conditional duration (ACD) and autoregressive conditional intensity
(ACI) models. [12] fit that type of models on the arrival times of limit, market
and cancellation orders in an Australian stock market order book.

A particular class of point processes, known as the Hawkes processes, is
of special interest for us, because of its simplicity of parametrization. A uni-
variate linear self-exciting Hawkes process (Nt)t>0, as introduced by [14, 15],
is a point process with intensity:

λ(t) = λ0 +

∫ t

0

ν(t− s)dNs, (1)

where the kernel ν is usually parametrized as ν(t) = αe−βt or in a more
general way ν(t) =

∑p

k=1 αkt
ke−βt. Statistics of this process are fairly well-

known and results for a maximum likelihood estimation can be found in [20].
In a multivariate setting, mutual excitation is introduced. A bivariate model
can thus be written:

{

λ1(t) = λ1
0 +

∫ t

0
ν11(t− s)dN1

s +
∫ t

0
ν12(t− s)dN2

s

λ2(t) = λ2
0 +

∫ t

0
ν21(t− s)dN1

s +
∫ t

0
ν22(t− s)dN2

s

(2)

The use of these processes in financial modelling is growing. We refer the
reader to [3] for a review and [13] for a textbook treatment. In [5], a bivari-
ate (generalized) Hawkes process is fitted to the time series of trades and
mid-quotes events, using trading data of the General Motors stock traded on
the New York stock Exchange. In [17] a ten-variate Hawkes process is fitted
to the Barclay’s order book on the London Stock Exchange, sorting orders
according to their type and aggressiveness. It is found that the largest mea-
sured effect is the exciting effect of market orders on markets orders. [16]
fits a bivariate Hawkes model to the time series of buy and sell trades on the
EUR/PLN (Euro/Polish Zlotych) FX market. Using the simplest parametriza-
tion of Hawkes processes and some (very) constraining assumptions, some an-
alytical results of trade impact may be derived. [2] fits a bivariate Hawkes
process to the trade time series of two different but highly correlated markets,
the “Bund” and the “Bobl” (Eurex futures on mid- and long-term interest
rates).
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Organization of this paper

In this paper, we propose to enhance a basic order book simulator with arrival
times of limit and market orders following mutually (asymmetrically) exciting
Hawkes processes. Modelling is based on empirical observations, verified on
several markets (equities, futures on index, futures on bonds), and detailed
in section 1. More specifically, we observe evidence of some sort of “market
making” in the studied order books: after a market order, a limit order is likely
to be submitted more quickly than it would have been without the market
order. In other words, there is a clear reaction that seems to happen: once
liquidity has been removed from the order book, a limit order is triggered
to replace it. We also show that the reciprocal effect is not observed on the
studied markets. These features lead to the use of unsymmetrical Hawkes
processes for the design of an agent-based order book simulator described in
section 2. We show in section 3 that this simple feature enables a much more
realistic treatment of the bid-ask spread of the simulated order book.

1 Empirical evidence of “market making”

1.1 Data and observation setup

We use order book data for several types of financial assets:

• BNP Paribas (RIC1: BNPP.PA): 7th component of the CAC40 during the
studied period

• Peugeot (RIC: PEUP.PA): 38th component of the CAC40 during the stud-
ied period

• Lagardère SCA (RIC: LAGA.PA): 33th component of the CAC40 during
the studied period

• Dec.2009 futures on the 3-month Euribor (RIC: FEIZ9)
• Dec.2009 futures on the Footsie index (RIC: FFIZ9)

We use Reuters RDTH tick-by-tick data from September 10th, 2009 to
September 30th, 2009 (i.e. 15 days of trading). For each trading day, we use
only 4 hours of data, precisely from 9:30 am to 1:30 pm. As we are studying
European markets, this time frame is convenient because it avoids the opening
of American markets and the consequent increase of activity.

Our data is composed of snapshots of the first five limits of the order
books (ten for the BNPP.PA stock). These snapshots are timestamped to
the millisecond and taken at each change of any of the limits or at each
transaction. The data analysis is performed as follows for a given snapshot:

1. if the transaction fields are not empty, then we record a market order,
with given price and volume;

1 Reuters Identification Code



“Market making” in an order book model and its impact on the spread 5

2. if the quantity offered at a given price has increased, then we record a limit
order at that price, with a volume equal to the difference of the quantities
observed;

3. if the quantity offered at a given price has decreased without any trans-
action being recorded, then we record a cancellation order at that price,
with a volume equal to the difference of the quantities observed;

4. finally, if two orders of the same type are recorded at the same time
stamp, we record only one order with a volume equal to the sum of the
two measured volumes.

Therefore, market orders are well observed since transactions are explicitly
recorded, but it is important to note that our measure of the limit orders and
cancellation orders is not direct. In table 1, we give for each studied order book
the number of market and limit orders detected on our 15 4-hour samples. On

Code Number of limit orders Number of market orders

BNPP.PA 321,412 48,171

PEUP.PA 228,422 23,888

LAGA.PA 196,539 9,834

FEIZ9 110,300 10,401

FFIZ9 799,858 51,020

Table 1. Number of limit and markets orders recorded on 15 samples of four hours
(Sep 10th to Sep 30th, 2009 ; 9:30am to 1:30pm) for 5 different assets (stocks, index
futures, bond futures)

the studied period, market activity ranges from 2.7 trades per minute on the
least liquid stock (LAGA.PA) to 14.2 trades per minute on the most traded
asset (Footsie futures).

1.2 Empirical evidence of “market making”

Our idea for an enhanced model of order streams is based on the following
observation: once a market order has been placed, the next limit order is
likely to take place faster than usual. To illustrate this, we compute for all
our studied assets:

• the empirical probability density function (pdf) of the time intervals of
the counting process of all orders (limit orders and market orders mixed),
i.e. the time step between any order book event (other than cancellation)

• and the empirical density function of the time intervals between a market
order and the immediately following limit order.

If an independent Poisson assumption held, then these empirical distribu-
tions should be identical. However, we observe a very high peak for short
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time intervals in the second case. The first moment of these empirical distri-
butions is significant: one the studied assets, we find that the average time
between a market order and the following limit order is 1.3 (BNPP.PA) to
2.6 (LAGA.PA) times shorter than the average time between two random
consecutive events.

On the graphs shown in figure 2, we plot the full empirical distributions for
four of the five studied assets2. We observe their broad distribution and the
sharp peak for the shorter times: on the Footsie future market for example,
40% of the measured time steps between consecutive events are less that 50
milliseconds ; this figure jumps to nearly 70% when considering only market
orders and their following limit orders. This observation is an evidence for
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Fig. 2. Empirical density function of the distribution of the time intervals between
two consecutive orders (any type, market or limit) and empirical density function of
the distribution of the time intervals between a market order and the immediately
following limit order. X-axis is scaled in seconds. In insets, same data using a log-log
scale. Studied assets: BNPP.PA (top left), LAGA.PA (top right), FEIZ9 (bottom
left), FFIZ9 (bottom right).

some sort of market-making behaviour of some participants on those markets.

2 Observations are identical on all the studied assets.
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It appears that the submission of market orders is monitored and triggers
automatic limit orders that add volumes in the order book (and not far from
the best quotes, since we only monitor the five best limits).

In order to confirm this finding, we perform non-parametric statistical test
on the measured data. For all four studied markets, omnibus Kolmogorov-
Smirnov and Cramer-von Mises tests performed on random samples establish
that the considered distributions are statistically different. If assuming a com-
mon shape, a Wilcoxon-Mann-Withney U test clearly states that the distri-
bution of time intervals between a market orders and the following limit order
is clearly shifted to the left compared to the distributions of time intervals
between any orders, i.e. the average “limit following market” reaction time is
shorter than the average time interval between random consecutive orders.

Note that there is no link with the sign of the market order and the sign
of the following limit order. For example for the BNP Paribas (resp. Peugeot
and Lagardere) stock, they have the same sign in 48.8% (resp. 51.9% and
50.7%) of the observations. And more interestingly, the “limit following mar-
ket” property holds regardless of the side on which the following limit order
is submitted. On figure 3, we plot the empirical distributions of time intervals
between a market order and the following limit order, conditionally on the
side of the limit order: the same side as the market order or the opposite one.
It appears for all studied assets that both distributions are roughly identical.
In other words, we cannot distinguish on the data if liquidity is added where
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Fig. 3. Empirical density function of the distribution of the time intervals between
a market order and the immediately following limit order, whether orders have been
submitted on the same side and on opposite sides. X-axis is scaled in seconds. In
insets, same data using a log-log scale. Studied assets: BNPP.PA (left), LAGA.PA
(right).

the market order has been submitted or on the opposite side. Therefore, we
do not infer any empirical property of placement: when a market order is
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submitted, the intensity of the limit order process increases on both sides of
the order book.

This effect we have thus identified is a phenomenon of liquidity replen-
ishment of an order book after the execution of a trade. The fact that it is
a bilateral effect makes its consequences similar to “market making”, event
though there is obviously no market maker involved on the studied markets.

1.3 A reciprocal “market following limit” effect ?

We now check if a similar or opposite distortion is to be found on market
orders when they follow limit orders. To investigate this, we compute for all
our studied assets the “reciprocal” measures:

• the empirical probability density function (pdf) of the time intervals of
the counting process of all orders (limit orders and market orders mixed),
i.e. the time step between any order book event (other than cancellation)

• and the empirical density function of the time step between a market order
and the previous limit order.

As previously, if an independent Poisson assumption held, then these empirical
distribution should be identical. Results for four assets are shown on figure 4.
Contrary to previous case, no effect is very easily interpreted. For the three
stocks (BNPP.PA, LAGA.PA and PEUP.PA (not shown)), it seems that the
empirical distribution is less peaked for small time intervals, but difference
is much less important than in the previous case. As for the FEI and FFI
markets, the two distributions are even much closer. Non-parametric tests
confirms these observations.

Performed on data from the three equity markets, Kolmogorov tests in-
dicate different distributions and Wilcoxon tests enforce the observation that
time intervals between a limit order and a following market order are stochas-
tically larger than time intervals between unidentified orders. As for the future
markets on Footsie (FFI) and 3-month Euribor (FEI), Kolmogorov tests does
not indicate differences in the two observed distributions, and the result is
confirmed by a Wilcoxon test that concludes at the equality of the means.

2 Order book models with mutually exciting order flows

Following these previous observations, we enhance a basic agent-based order
book simulator with dependence between the flows of limit and market orders.

2.1 The basic Poisson model

We use as base model a standard zero-intelligence agent-based market simu-
lator built as follows. One agent is a liquidity provider. This agent submits
limit orders in the order books, orders which he can cancel at any time. This
agent is simply characterized by a few random distributions:
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Fig. 4. Empirical density function of the distribution of the time intervals between
two consecutive orders (any type, market or limit) and empirical density function
of the distribution of the time intervals between a limit order and an immediately
following market order. In insets, same data using a log-log scale. Studied assets:
BNPP.PA (top left), LAGA.PA (top right), FEIZ9 (bottom left), FFIZ9 (bottom
right).

1. submission times of new limit orders are distributed according to a homo-
geneous Poisson process NL with intensity λL;

2. submission times of cancellation of orders are distributed according to
homogeneous Poisson process NC with intensity λC ;

3. placement of new limit orders is centred around the same side best quote
and follows a Student’s distribution with degrees of freedom νP1 , shift
parameter mP

1 and scale parameter sP1 ;
4. new limit orders’ volume is randomly distributed according to an expo-

nential law with mean mV
1 ;

5. in case of a cancellation, the agent deletes his own orders with probability
δ.

The second agent in the basic model is a noise trader. This agent only
submits market order (it is sometimes referred to as the liquidity taker). Char-
acterization of this agent is even simpler:
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6. submission times of new market orders are distributed according to a
homogeneous Poisson process NM with intensity µ;

7. market orders’ volume is randomly distributed according to an exponential
law with mean mV

2 .

For all the experiments, agents submit orders on the bid or the ask side
with probability 0.5. This basic model will be henceforth referred to as “HP”
(Homogeneous Poisson).

Assumptions 1, 2 and 6 (Poisson) will be replaced in our enhanced model.
Assumption 3 (Student) is in line with empirical observations in [19]. Assump-
tions 4 and 7 are in line with empirical observations in [6] as far as the main
body of the distribution is concerned, but fail to represent the broad distri-
bution observed in empirical studies. All the parameters except δ, which we
kept exogenous, can be more or less roughly estimated on our data. In fact δ
is the parameter of the less realistic feature of this simple model, and is thus
difficult to calibrate. It can be used as a free parameter to fit the realized
volatility.

2.2 Adding dependence between order flows

We have found in section 1.2 that market data shows that the flow of limit
orders strongly depends on the flow of market order. We thus propose that in
our experiment, the flow of limit and market orders are modelled by Hawkes
processesNL andNM , with stochastic intensities respectively λ and µ defined
as:















µM (t) = µM
0 +

∫ t

0

αMMe−βMM(t−s)dNM
s

λL(t) = λL
0 +

∫ t

0

αLMe−βLM(t−s)dNM
s +

∫ t

0

αLLe
−βLL(t−s)dNL

s

(3)

Three mechanisms can be used here. The first two are self-exciting ones,
“MM” and “LL”. They are a way to translate into the model the observed
clustering of arrival of market and limit orders and the broad distributions
of their durations. In the empirical study [17], it is found that the measured
excitation MM is important. In our simulated model, we will show (see 3.2)
that this allows a simulator to provide realistic distributions of the durations
of trades.

The third mechanism, “LM”, is the direct translation of the empirical
property we have presented in section 1.2. When a market order is submitted,
the intensity of the limit order process NL increases, enforcing the probability
that a “market making” behaviour will be the next event. We do no implement
the reciprocal mutual excitation “ML”, since we do not observe that kind of
influence on our data, as explained in section 1.3.

Rest of the model is unchanged. Turning these features successively on and
off gives us several models to test – namely HP (Homogeneous Poisson pro-
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cesses), LM, MM, MM+LM, MM+LL, MM+LL+LM – to try to understand
the influence of each effect.

3 Numerical results on the order book

3.1 Fitting and simulation

We fit these processes by computing the maximum likelihood estimators of
the parameters of the different models on our data. As expected, estimated
values varies with the market activity on the day of the sample. However,
it appears that estimation of the parameters of stochastic intensity for the
MM and LM effect are quite robust. We find an average relaxation parameter
β̂MM = 6, i.e. roughly 170 milliseconds as a characteristic time for the MM
effect, and β̂LM = 1.8, i.e. roughly 550 milliseconds characteristic time for
the LM effect. Estimation of models including the LL effect are much more
troublesome on our data. In the simulations that follows, we assume that
the self-exciting parameters are similar (αMM = αLL, βMM = βLL) and
ensure that the number of market orders and limit orders in the different
simulations is roughly equivalent (i.e. approximately 145000 limit orders and
19000 market orders for 24 hours of continuous trading). Table 2 summarizes
the numerical values used for simulation. Fitted parameters are in agreement
with an assumption of asymptotic stationarity.

Model µ0 αMM βMM λ0 αLM βLM αLL βLL

HP 0.22 - - 1.69 - - - -

LM 0.22 - - 0.79 5.8 1.8 - -

MM 0.09 1.7 6.0 1.69 - - - -

MM LL 0.09 1.7 6.0 0.60 - - 1.7 6.0

MM LM 0.12 1.7 6.0 0.82 5.8 1.8 - -

MM LL LM 0.12 1.7 5.8 0.02 5.8 1.8 1.7 6.0

Common parameters: mP
1 = 2.7, νP

1 = 2.0, sP1 = 0.9
V
1 = 275, mV

2 = 380
λC = 1.35, δ = 0.015

Table 2. Estimated values of parameters used for simulations.

We compute long runs of simulations with our enhanced model, simulating
each time 24 hours of continuous trading. Note that using the chosen param-
eters, we never face the case of an empty order book. We observe several
statistics on the results, which we discuss in the following sections.
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3.2 Impact on arrival times

We can easily check that introducing self- and mutually exciting processes
into the order book simulator helps producing more realistic arrival times.
Figure 5 shows the distributions of the durations of market orders (left) and
limit orders (right). As expected, we check that the Poisson assumption has
to be discarded, while the Hawkes processes help getting more weight for very
short time intervals.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

Empirical BNPP
Homogeneous Poisson

Hawkes MM

10-4

10-3

10-2

10-1

100

 2  4  6  8  10 12 14 16 18 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

Empirical BNPP
Homogeneous Poisson

Hawkes LL

10-5
10-4
10-3
10-2
10-1
100

 2  4  6  8  10 12 14 16 18 20

Fig. 5. Empirical density function of the distribution of the durations of market
orders (left) and limit orders (right) for three simulations, namely HP, MM, LL,
compared to empirical measures. In inset, same data using a semi-log scale.

We also verify that models with only self-exciting processes MM and LL
are not able to reproduce the “liquidity replenishment” feature described in
section 1.2. Distribution of time intervals between a market order and the
next limit order are plotted on figure 6. As expected, no peak for short times
is observed if the LM effect is not in the model. But when the LM effect is
included, the simulated distribution of time intervals between a market order
and the following limit order is very close to the empirical one.

3.3 Impact on the bid-ask spread

Besides a better simulation of the arrival times of orders, we argue that the LM
effect also helps simulating a more realistic behaviour of the bid-ask spread
of the order book. On figure 7, we compare the distributions of the spread for
three models – HP, MM, MM+LM – in regard to the empirical measures. We
first observe that the model with homogeneous Poisson processes produces a
fairly good shape for the spread distribution, but slightly shifted to the right.
Small spread values are largely underestimated. When adding the MM effect
in order to get a better grasp at market orders’ arrival times, it appears that
we flatten the spread distribution. One interpretation could be that when the
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Fig. 6. Empirical density function of the distribution of the time intervals between
a market order and the following limit order for three simulations, namely HP,
MM+LL, MM+LL+LM, compared to empirical measures. In inset, same data using
a semi-log scale.
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simulations, namely HP, MM, MM+LM, compared to empirical measures. In inset,
same data using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro).

process NM is excited, markets orders tend to arrive in cluster and to hit the
first limits of the order book, widening the spread and thus giving more weight
to large spread values. But since the number of orders is roughly constant in
our simulations, there has to be periods of lesser market activity where limit
orders reduce the spread. Hence a flatter distribution.
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Here, the MM+LM model produces a spread distribution much closer to
the empirical shape. It appears from figure 7 that the LM effect reduces the
spread: the “market making” behaviour, i.e. limit orders triggered by market
orders, helps giving less weight to larger spread values (see the tail of the
distribution) and to sharpen the peak of the distribution for small spread
values. Thus, it seems that simulations confirm the empirical properties of a
“market making” behaviour on electronic order books.

We show on figure 8 that the same effect is observed in an even clearer
way with the MM+LL and MM+LL+LM models. Actually, the spread distri-
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same data using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro).

bution produced by the MM+LL model is the flattest one. This is in line with
our previous argument. When using two independent self exciting Hawkes
processes for arrival of orders, periods of high market orders’ intensity gives
more weight to large spread values, while periods of high limit orders’ intensity
gives more weight to small spread values. Adding the cross-term LM to the
processes implements a coupling effect that helps reproducing the empirical
shape of the spread distribution. The MM+LL+LM simulated spread is the
closest to the empirical one.

3.4 A remark on price returns in the model

It is somewhat remarkable to observe that these variations of the spread dis-
tributions are obtained with little or no change in the distributions of the
variations of the mid-price. As shown on figure 9, the distributions of the
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variations of the mid-price sampled every 30 seconds are nearly identical for
all the simulated models (and much tighter than the empirical one). This
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Fig. 9. Empirical density function of the distribution of the 30-second varia-
tions of the mid-price for five simulations, namely HP, MM, MM+LM, MM+LL,
MM+LL+LM, using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro).

is due to the fact that the simulated order books are much more furnished
than the empirical one, hence the smaller standard deviation of the mid price
variations. One solution to get thinner order books and hence more realistic
values of the variations of the mid-price would be to increase our exogenous
parameter δ. But in that case, mechanisms for the replenishment of an empty
order book should be carefully studied, which is still to be done.

4 Conclusion

We have shown the the use of Hawkes processes may help producing a realis-
tic shape of the spread distribution in an agent-based order book simulator.
We emphasize on the role of the excitation of the limit order process by the
market order process. This coupling of the processes, similar to a “market
making” behaviour, is empirically observed on several markets, and simula-
tions confirms it is a key component for realistic order book models.

Future work should investigate if other processes or other kernels (νLM

in our notation) might better fit the observed orders flows. In particular, we
observe very short characteristic times, which should lead us to question the
use of the exponential decay. Furthermore, as pointed out in the paper, many
other mechanisms are to be investigated: excitation of markets orders, link
with volumes, replenishment of an empty order book, etc.
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