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ON THE MU AND LAMBDA INVARIANTS OF THE

LOGARITHMIC CLASS GROUP

JOSÉ-IBRAHIM VILLANUEVA-GUTIÉRREZ

Abstract. Let ℓ be a rational prime number. Assuming the Gross-Kuz’min conjec-
ture along a Zℓ-extension K∞ of a number field K, we show that there exist integers

µ̃, λ̃ and ν̃ such that the exponent ẽn of the order ℓẽn of the logarithmic class group

C̃ℓn for the n-th layer Kn of K∞ is given by ẽn = µ̃ℓn + λ̃n + ν̃, for n big enough.
We show some relations between the classical invariants µ and λ, and their logarith-

mic counterparts µ̃ and λ̃ for some class of Zℓ-extensions. Additionally, we provide
numerical examples for the cyclotomic and the non-cyclotomic case.

1. Introduction

Let K be a number field and ℓ a prime integer. The logarithmic class group C̃ℓK of
K is the Zℓ-module measuring the gap between the cyclotomic Zℓ-extension Kc of K
and the maximal abelian pro-ℓ-extension K lc of K which splits completely over Kc,

i.e. C̃ℓK is isomorphic to the relative Galois group Gal(K lc/Kc) (e.g. [9], [10, Thm. &
Conj. 2.3]). The logarithmic class group is conjectured to be finite for every number
field, this is equivalent to the Gross-Kuz’min conjecture [13, §2]; its finiteness is verified
in the abelian case and some other cases (e.g. [12, 11]). As an arithmetic invariant of
a number field the logarithmic class group has importance in its own. The logarithmic
class group is effective by computational methods [3, 2, 1] and it is related to the wild
kernels in K-theory [14]. In spite of its tight relation to the ℓ-class group CℓK of K, it
behaves differently in several situations (see §5).
We are interested in the study of the logarithmic class group along Zℓ-extensions, in the
spirit of Iwasawa’s work for class groups [7, 8]. This has been done in the cyclotomic
case by Jaulent in [9]; in this situation the logarithmic class group attached to the
n-th layer of the cyclotomic Zℓ-extension has a nice interpretation as a quotient of
Kuz’min-Tate modules [13]. This interpretation is no longer valid for non-cyclotomic
Zℓ-extensions whenever the base field admits such an extension.

Assuming the Gross-Kuz’min conjecture, the main result of this work provides a method
for the non-cyclotomic case, and therefore completes the study of the logarithmic class
group along Zℓ-extensions:

Theorem 1.1. Let K∞/K be a Zℓ-extension. Assume the Gross-Kuz’min conjecture

is valid along the Zℓ-extension K∞. Let C̃ℓn be the logarithmic class group of Kn and
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let ℓẽn be its order. There exist integers λ̃, µ̃ ≥ 0 and ν̃ such that

ẽn = µ̃ℓn + λ̃n+ ν̃, for n big enough.

This article is organized as follows. In Section 2 we recall briefly the basic definitions and
properties of the logarithmic arithmetic that are helpful for our purposes, nonetheless,
for more on logarithmic arithmetic we urge the reader to consult the seminal paper of
Jaulent [10]. Then we show some results on logarithmic ramification in Zℓ-extensions.

In Section 3 we construct a Λ-module, which is the logarithmic analogue to the Λ-
module X in [16, §1], to which we apply the codescent techniques. We show that this
logarithmic Λ-module is noetherian and assuming the Gross-Kuz’min conjecture also
torsion.

In Section 4 we prove Theorem 1.1 in the non-cyclotomic case as well as a set of results

involving the µ̃ and λ̃ logarithmic invariants for some class of Zℓ-extensions.

Finally, in section 5 we provide numerical examples, in both the cyclotomic and non-
cyclotomic case, of logarithmic class groups in the first layers of Zℓ-extensions. Addi-
tionally we compare this information with the results in [6] to explicitly compute the

µ̃, λ̃ and ν̃ logarithmic invariants.

Acknowledgements: I am very grateful to professor Jean-François Jaulent for having
introduced me to the field of logarithmic arithmetic and his exemplary guidance. The
author sincerely thanks the anonymous referee for the remarks and careful reading of
the text, aiming to make the paper more accessible.

2. Logarithmic arithmetic

From now on we fix a number field K and a prime number ℓ 6= 21. Let Pl0K be the set
of finite places of K.

For any prime p let Q̂c
p be the cyclotomic Ẑ-extension of Qp. For a place p above p we

define the logarithmic ramification index ẽp and the logarithmic inertia degree f̃p as

ẽp = [Kp : Kp ∩ Q̂c
p] and f̃p = [Kp ∩ Q̂c

p : Qp]

respectively. Similarly, for a local extension LP/Kp we define the relative logarithmic

ramification index ẽP|p and relative logarithmic inertia degree f̃P|p as

ẽP|p = [LP : LP ∩ Q̂c
pKp] and f̃P|p = [LP ∩ Q̂c

pKp : Kp].

Proposition 2.1. Let LP/Kp be a local extension. The logarithmic ramification index
and the logarithmic inertia degree satisfy the following properties:

(1) Multiplicative relation: np = [Kp : Qp] = epfp = ẽpf̃p, where ep and fp are the
usual ramification index and inertia degree.

(2) For all q 6= p: vq(ep) = vq(ẽp).

(3) Multiplicative in towers: ẽP = ẽP|pẽp and f̃P = f̃P|pf̃p.

1The following results and statements have analogous formulations when ℓ = 2. In order to ease
notations we will skip the treatment of such a prime.
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Proof: This is [10, Thm. 1.4] and subsequent remarks. �

We endow K with a family of ℓ-adic logarithmic valuations (ṽp)p∈Pl0K
taking values in

Zℓ and which are defined as follows

ṽp(x) =





vp(x) if p ∤ ℓ,

Logℓ(NKp/Qℓ
(x))

deg p if p | ℓ,
for x ∈ K×

p .

Here vp denotes the classical valuation, NKp/Qℓ
is the local norm, Logℓ is Iwasawa’s

logarithm and deg p is a normalizing term defined2 as follows

deg p = f̃p deg p where deg p =

{
Logℓ(p) if p 6= ℓ,

Logℓ(1 + ℓ) if p = ℓ.

Remark 2.2. It is clear that ṽp(x) takes values in Zℓ for p ∤ ℓ. This is in fact the case
also for places p over ℓ. Consider the function

hp(x) =
Logℓ(NKp/Qℓ

(x))

np deg p
.

If Kp = Qℓ we have im(hℓ) = Zℓ, since Q×
ℓ ≃ ℓZ · µℓ−1 · U (1)

ℓ and deg(ℓ) = ℓ · η where

η ∈ Z×
ℓ . In particular hℓ(1 + ℓ) = 1. For general Kp we have that im(hp) is the Zℓ-

module [Kp : Kp ∩ Q̂c
ℓ]
−1Zℓ [10, Prop. 1.2], moreover ṽp = ẽphp [10, Thm. 1.4]. In

particular this makes the logarithmic divisor map below well defined.

We define the logarithmic divisors DℓK as the free Zℓ-module DℓK =
⊕

p∈Pl0K
Zℓp and

we extend additively the mapping deg to all of DℓK , that is, for a logarithmic divisor
d:

deg(d) = deg


 ∑

p∈Pl0K

app


 =

∑

p∈Pl0K

ap deg p, with ap ∈ Zℓ.

Let us denote RK = Zℓ ⊗Z K×. The logarithmic divisor map

d̃iv : RK −→ DℓK , x 7→
∑

p∈Pl0K

ṽp(x)p,

associates to each element in the tensor product a logarithmic divisor by means of the
logarithmic valuation. It turns out that the image of an element in RK has degree 0
[10, Prop.& Def. 2.2]. The image PℓK of all these elements is the subgroup of principal
logarithmic divisors. Therefore it is natural to consider the following exact sequence:

0 −→ ẼK −→ RK
d̃iv−→ DℓK

deg−→ C̃ℓ
∗

K −→ 0,

we call ẼK the group of logarithmic units (defined in the obvious way) and C̃ℓ
∗

K ≃
DℓK/PℓK the group of logarithmic classes of arbitrary degree.

Definition 2.3. The logarithmic class group C̃ℓK ⊂ C̃ℓ
∗

K consists of the classes of
degree 0.

2The definition of deg(ℓ) given here differs to the one given in [10, Def. 1.1]. Both definitions differ
by a unit in Zℓ and this does not affect subsequent results. With this definition it is clearer that there
is an element with logarithmic valuation 1 as shown in Remark 2.2.
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The group C̃ℓ
∗

K of logarithmic classes of arbitrary degree is isomorphic to the Galois
group Gal(K lc/K) of the maximal abelian ℓ-extension ofK which splits completely over
the cyclotomic Zℓ-extension Kc of K. The logarithmic class group is isomorphic to the
relative Galois group Gal(K lc/Kc) [10, Thm. & Conj. 2.3]. The Gross-Kuz’min conjec-
ture asserts that the Galois group Gal(K lc/K) is a Zℓ-module of rank 1, equivalently,
asserts the finiteness of the logarithmic class group.

Logarithmic ramification. Let p be a finite place of K. Let L/K be a finite extension,
we say that p is logarithmically unramified if ẽP|p = 1 for every place P above p.
Hence if L/K is infinite, we say that p is logarithmically unramified if and only if it is
logarithmically unramified for every finite extensionK ′/K contained in L. In the Galois
case it might be more convenient to work with inertia groups to study ramification, so
we give the corresponding description in the logarithmic setting in the very special case
when L is an abelian ℓ-extension of K.

The so called ℓ-adic class field theory [9, I.1.2] establishes a correspondence between
the decomposition group Dp of the maximal abelian ℓ-extension Kab of K with the

pro-ℓ-completion Rp of the groups K×
p , i.e. Dp ≃ Rp = lim←−K×

p /K
×ℓk
p . We can ex-

tend the logarithmic valuations ṽp to the Rp; in the sense that we have an analogous

decomposition3 Rp = π̃Zℓ
p Ũp to the classical decomposition Rp = πZℓ

p Up, where π̃p is a

logarithmic uniformizer and Ũp is the subgroup of logarithmic units, i.e. the kernel un-

der the corresponding logarithmic valuation. The image Ĩp ⊂ Gal(Kab/K) of Ũp is said
to be the subgroup of logarithmic inertia. Hence, we define the group of logarithmic

inertia Ĩp(L/K) of the abelian ℓ-extension L/K as the image of Ũp in the Galois group

Gal(L/K). We say p is logarithmically unramified in L/K if Ĩp ⊆ Gal(Kab/L). Notice
that all the extensions we are considering are abelian, so we do not specify the place P
above p since the logarithmic inertia subgroups are isomorphic.

In general, ℓ-adic class field theory (e.g. [9, Thm. 1.1.13.], [10, §2]) establishes a
correspondence between the Galois group of the maximal abelian ℓ-extension of K and
the following quotient:

Gal(Kab/K) ≃ JK/RK ,

where JK is the restricted product
∏
Rp of the ℓ-adic completions Rp defined above.

Remark 2.4. Notice that in the finite case this characterisation of logarithmic ramification
for abelian ℓ-extensions in terms of inertia subgroups, coincides with the definition given
at the beginning of the section.

In fact, as we have seen, if L/K is a finite abelian ℓ-extension and P is a place of L

above p ∈ Pl0K , the logarithmic inertia subgroup Ĩp(L/K) of the extension L/K is the

image of Ũp inside the Galois group Gal(L/K) ≃ JK/NL/K(JL)RK , hence:

Ĩp(L/K) ≃ Ũp/Ũp ∩NL/K(JL)RK ;

3Consider the short exact sequence of Zℓ-modules 1 → Ũp → Rp

ṽp
→ Zℓ → 0, where the logarithmic

valuation ṽp is a Zℓ-epimorphism by [10, Thm 1.4]. Then Rp is the direct sum of Ũp and a free
Zℓ-module of rank 1.
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on the other hand, the logarithmic ramification index is defined as the degree ẽP|p =
[LP : LP ∩Kc

p ], which is equal to the order of the Galois group

Gal(LP/LP ∩Kc
p) = Ũp NLP/Kp

(RP)/NLP/Kp
(RP).

Since L/K is abelian ([9, Ch. 1 §2.a]) we have

NLP/Kp
(RP) = Rp ∩ NL/K(JL)RK

and so Ĩp(L/K) ≃ Gal(LP/LP ∩Kc
p).

Let K∞ be a Zℓ-extension of K. We denote Kn the n-th layer of K∞, i.e. Kn is the
unique subfield of K∞ with Gal(Kn/K) ≃ Z/ℓnZ.

As a consequence of the classic case, logarithmic ramification behaves well at the tame
places in Zℓ-extensions.

Proposition 2.5. Zℓ-extensions are logarithmically unramified at the places p ∤ ℓ of
K.

Proof: Let K∞/K be a Zℓ-extension. Let p be a place of K over p with p 6= ℓ. Let P
be a place in Kn lying over p.

For every n we have that Kn is unramified at p [18, Prop. 13.2], i.e. eP|p = 1. We have
that vq(eP|p) = vq(ẽP|p) = 0 for every q 6= p, for the completions Kn,P and Kp are both
extensions of Qp, hence the q-parts of the relative indices coincide due to (2 ) and (3 )
in Proposition 2.1. Moreover ẽP|p has no p-part since p ∤ |Gal(Kn/K)|. We conclude
that ẽP|p = 1 as desired. �

In terms of ramification, the locally cyclotomic extension K lc of K corresponds to
the maximal abelian ℓ-extension of K which is logarithmically unramified. Unlike the
classical case, this extension K lc is infinite since it contains the cyclotomic Zℓ-extension
Kc of K. Since K lc is a subextension of the maximal abelian ℓ-ramified ℓ-extension
of K, the group C̃ℓ

∗

K ≃ Gal(K lc/K) is a noetherian Zℓ-module, and assuming the
Gross-Kuz’min Conjecture it has rank 1. This yields the following result.

Lemma 2.6. Let K be a number field verifying the Gross-Kuz’min conjecture for the
prime ℓ, let K∞/K be a non-cyclotomic Zℓ-extension. Then at least one place p above
ℓ is logarithmically ramified in K∞/K.

Proof: Let us suppose that K∞ is logarithmically unramified, hence it is contained
in K lc, but then Gal(K lc/K) would have Zℓ-rank two which contradicts the Gross-
Kuz’min conjecture. �

Remark 2.7. The cyclotomic Zℓ-extension Kc of K is logarithmically unramified.

Under the same assumptions and as a consequence of the preceding lemma we have the
following corollary.

Corollary 2.8. There is an integer d such that K∞/Kd is logarithmically totally ram-
ified for a non-empty subset of places above ℓ and logarithmically unramified (possibly
inert) for the rest of the places.
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Proof: Let p1, . . . , ps be the places in K above ℓ which are logarithmically ramified.
The logarithmic inertia subgroups Ĩi are closed and non zero in Γ = Gal(K∞/K)
(i = 1, . . . , s), therefore we have

Ĩi ≃ Γℓdi ,

for some di ∈ N (i = 1, . . . , s), taking d = max di, it is clear that the extension K∞/Kd

is logarithmically totally ramified at every logarithmically ramified place. �

Lemma 2.9. For a Zℓ-extension K∞ of K the following conditions are equivalent:

(i) There exists a place p of K such that ẽP|p > 1 for some place P|p of the
subextension K1 of K.

(ii) K1/K is logarithmically ramified.
(iii) K∞ is globally disjoint from the locally cyclotomic extension K lc of K.

Proof: (i)⇔ (ii) is clear. (ii) ⇔ (iii): If K∞ ∩K lc = Kn for some n > 0, then Kn/K
is logarithmically unramified. In particular K1/K is logarithmically unramified. �

Definition 2.10. A Zℓ-extension K∞ of K is called locally disjoint from the cyclotomic
Zℓ-extension Kc/K if it satisfies the above conditions.

Let K∞ be a non-cyclotomic Zℓ-extension of K and p1, . . . , ps be the places in K above

ℓ which ramify logarithmically. Define n0 = min{di | Ĩi ≃ Γℓdi}. Then the Zℓ-extension
K∞/Kn0

of Kn0
is locally disjoint from the cyclotomic Zℓ-extension Kc

n0
/Kn0

.

3. The logarithmic class group along non-cyclotomic Zℓ-extensions

Let K be a number field admitting a non-cyclotomic Zℓ-extension K∞ with Galois
group Γ = Gal(K∞/K), and assume the Gross-Kuz’min conjecture is verified for K.
We denote Kn the unique subextension of K∞ such that Gal(Kn/K) ≃ Z/ℓnZ.

Let p1, . . . , ps be the places of K above ℓ which ramify logarithmically. There exist two
integers n0 and d such that

(1) 0 ≤ n0 ≤ d,
(2) for every n ≥ n0 the Zℓ-extension K∞/Kn is locally disjoint from the cyclotomic

Zℓ-extension Kc
n = KnK

c of Kn,
(3) K∞/Kd is completely logarithmically ramified at all the places that are loga-

rithmically ramified in K∞/Kd.

The inverse limit lim←− C̃ℓ
∗

Kn
of the logarithmic classes of arbitrary degree of all the

Kn is isomorphic to the Galois group C̃∗ = Gal(K lc
∞/K∞) of the maximal abelian

logarithmically unramified ℓ-extension of K∞. Hence K lc
n is the maximal sub-extension

of K lc
∞ which is abelian over Kn and splits completely over Kc

n, equivalently K lc
n is the

maximal sub-extension of K lc
∞ which is abelian and logarithmically unramified over Kn.

Hence for n ≥ d we have the following isomorphism of groups

C̃ℓ
∗

Kn
≃ Gal(K lc

n /Kn) ≃ Gal(K∞K lc
n /K∞).

The profinite group Γ acts on C̃∗ by inner automorphisms. Since Γ is procyclic the action
is uniquely defined by a topological generator γ ∈ Γ. The group G = Gal(K lc

∞/K) is
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then isomorphic to the semidirect product Γ ⋉ C̃∗. We can extend the action of Γ to

the Iwasawa algebra Λ = Zℓ[[Γ]] of Γ, making of C̃∗ a Λ-module.

For every n ≥ 0, we set

(1) ωn = γℓ
n − 1.

We call cyclotomic factors the term ω0 and the quotients ωn/ωn−1 for n ≥ 1.

Proposition 3.1. C̃∗ is a noetherian Λ-module. Moreover, if the Gross-Kuz’min con-
jecture holds for ℓ and every Kn in K∞, it is torsion.

Proof: The locally cyclotomic extension K lc
∞ of K∞ is contained in the maximal abelian

ℓ-extension K lr
∞ of K∞ which is ℓ-ramified. The Λ-module C̃∗ can be written as a

quotient of the noetherian Λ-module X = Gal(K lr
∞/K∞) [8, Thm. 4]. This yields the

noetherian property.

For n ≥ 0 let us denote L∞/n the maximal abelian ℓ-extension of Kn which is loga-
rithmically unramified over K∞, i.e. the maximal abelian extension of Kn contained
in K lc

∞. Then

K∞ ⊆ L∞/0 ⊆ L∞/1 ⊆ · · · ⊆ L∞/n ⊆ · · · ⊆ K lc
∞,

and we have K lc
∞ =

⋃
n≥0 L∞/n. Then we have the following group isomorphisms

ωnC̃∗ ≃ Gal(K lc
∞/L∞/n) C̃∗/ωnC̃∗ ≃ Gal(L∞/n/K∞), n ≥ 0.

Let d be as in Corollary 2.8, for n ≥ d let p1, . . . , ps be the primes of Kn which are
logarithmically ramified in K∞; the number of these primes is the same for all n ≥ d.
For each i = 1, . . . , s let Ĩi be the logarithmic inertia subgroup of pi in the exten-
sion L∞/n/Kn. Since pi is totally logarithmically ramified in K∞ and the extension

L∞/n/K∞ is logarithmically unramified, the groups Ĩi are pro-cyclic isomorphic to the

free Zℓ-module Γℓn ≃ Zℓ. So we restrict Ĩi to Γℓn . On the other hand, since none of
the places apart of p1, . . . , ps are logarithmically ramified in L∞/n, it follows that the

product Ĩ1Ĩ2 · · · Ĩs fixes the maximal logarithmically unramified subextension of L∞/n

over Kn, which is nothing else than K lc
n , i.e. Gal(L∞/n/K

lc
n ) = Ĩ1Ĩ2 · · · Ĩs. Assuming

the Gross-Kuz’min conjecture, C̃ℓ
∗

Kn
≃ Gal(K lc

n /Kn) is a noetherian Zℓ-module of rank
1. Then

rankZℓ
Gal(L∞/n/Kn) = rankZℓ

Gal(K lc
n /Kn) + rankZℓ

Gal(L∞/n/K
lc
n )

≤ 1 + s

from which follows that

rankZℓ
Gal(L∞/n/K∞) = rankZℓ

Gal(L∞/n/Kn)− 1 ≤ s,

so rankZℓ
C̃∗/ωnC̃∗ ≤ s, for all n ≥ d, therefore for all n ≥ 0. Hence C̃∗ is Λ-torsion by

[8, Lemma 3 (ii)]. �

Remark 3.2. We have just mimicked the classical proof of Iwasawa as in [8, Thm. 5].

In our case due to the structure of C̃ℓ
∗

Kn
we have that

rankZℓ
C̃∗/ωnC̃∗ ≤ s, for all n ≥ 0.
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Proposition 3.3. Assume the Gross-Kuz’min conjecture for all Kn in K∞. Let C̃ =

Gal(K lc
∞/Kc

∞) be the subgroup of C̃∗ that corresponds to the inverse limit lim←− C̃ℓKn of

the logarithmic class groups C̃ℓKn. There is an isomorphism of Zℓ-modules

(2) C̃∗ ≃ C̃ ⊕ Zℓ.

Proof: Consider the following exact sequence

0→ C̃ℓKn → C̃ℓ
∗

Kn
→ Zℓ → 0.

We take the inverse limit lim←− for the arithmetic norm maps in each of the terms. It

is a well known fact that profinite groups satisfy the Mittag-Leffler property (e.g. [15,
II.7]). So we obtain the following short exact sequence after taking inverse limits

0→ C̃ → C̃∗ → Zℓ → 0.

The claim follows since Zℓ is free and hence projective. �

Assumption on the logarithmic ramification. Before approaching our problem in great
generality, let us assume first that the places of K which ramify logarithmically in K∞

are totally logarithmically ramified. We can always do so by rewriting the Zℓ-extension
in order to have K = Kd, with d as in Corollary 2.8.

For each place pi ramifying logarithmically, let G = Gal(K lc
∞/K) ≃ C̃∗ ⋊ Γ and let

Ĩi ⊂ G its logarithmic inertia subgroup. Since K lc
∞/K∞ is logarithmically unramified,

we have that each logarithmic inertia subgroup has trivial intersection with the group
Gal(K lc

∞/K∞): Ĩi∩Gal(K lc
∞/K∞) = 1. Since K∞/K is totally logarithmically ramified

over pi, the groups of logarithmic inertia Ĩi restrict to Γ.

Since we are mainly interested in the study of the logarithmic class groups (of zero

degree) C̃ℓKn , we consider the group H = Gal(K lc
∞/Kc). We take advantage of the

fact that the cyclotomic extension is logarithmically unramified, so the logarithmic
ramification groups Ĩi ⊂ G remain unchanged in H, i.e. they are procyclic and restrict

to Γ. The group H is the semi-direct product of Γ and the normal subgroup C̃, and
can be written as

H = ĨiC̃ = C̃ Ĩi for i = 1, . . . , s.

Fixing topological generators σ̃i of Ĩi, there exists ã1, . . . , ãs ∈ C̃ such that

σ̃i = ãiσ̃1.

In particular we can take σ̃1 = γ for a topological generator γ of Γ.

Let H ′ be the closure of the commutator subgroup of H. We know thatH ′ ≃ ω0C̃ ≃ T C̃,
the last is the isomorphism Zℓ[[Γ] ≃ Zℓ[[T ]] given by γ 7→ T + 1 [18, Lemma 13.14].

Remark 3.4. After what we have been discussing we have the next result whose proof
goes the same way as in the classical case of [18, Lemma 13.15]. Nonetheless we repro-
duce the proof in our special setting.

Proposition 3.5. Let Y0 be the Zℓ-submodule of C̃ generated by {ãi | 2 ≤ i ≤ s} and

ω0C̃ = T C̃. Let Yn = ωn
ω0

Y0, where

ωn

ω0
= 1 + γ + γ2 + · · · + γℓ

n−1 =
(1 + T )ℓ

n − 1

T
.
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Then
C̃ℓKn ≃ C̃/Yn for n ≥ 0.

Proof: First, we show the case C̃ℓK ≃ C̃/Y0. The locally cyclotomic extension K lc is
the maximal abelian extension logarithmically unramified of Kc contained in K lc

∞. Its
Galois group Gal(K lc/Kc) is hence equal to Gal(K lc

∞/Kc)/Z0, where Z0 is the smallest
subgroup of H = Gal(K lc

∞/Kc) containing the commutator subgroup H ′ as well as the

logarithmic inertia subgroups Ĩi, 1 ≤ i ≤ s. The decomposition of H in a semi-direct

product of Ĩ1 and C̃ yields

C̃ℓK ≃ Gal(K lc/Kc)

≃ H/Gal(K lc
∞/K lc)

≃ C̃Ĩ1/〈Ĩ1, ã2 . . . , ãs, ω0C̃〉
≃ C̃/〈ã2, . . . , ãs, ω0C̃〉
= C̃/Y0.

Now let us assume n ≥ 1. If we replace Kc by Kc
n, the extension Kc

∞/Kc
n is also a

Zℓ-extension. The above result can be applied by replacing the topological generator γ

by γℓ
n

and the σ̃i become σ̃ℓ
n

i . Notice that for every integer k, we have:

σ̃k
i = (ãiσ̃1)

k

= ãi(σ̃1ãiσ̃
−1
1 )(σ̃2

1 ãiσ̃
−2
1 ) · · · (σ̃k−1

1 ãiσ̃
−(k−1)
1 )σ̃k

1

= ã
1+σ̃1+...+σ̃k−1

1

i σ̃k
1

and particularly, for k = ℓn, the isomorphism Ĩ1 ≃ Γ gives σ̃ℓn
i = ã

ωn/ω0

i (σ̃1)
ℓn . This

implies that the groups of logarithmic inertia of Hn = Gal(K lc
∞/Kc

n) are generated by

the ωn
ω0

ãi. Finally, the commutator subgroup H ′
n of Hn is given by ωnC̃. From which

the result follows. �

General case. In what follows we come back to the general situation exposed in the
beginning of the section. Let K∞ be a non-cyclotomic Zℓ-extension of K. Let p1, . . . , ps
be the places of K which ramify logarithmically and let d the smallest integer such that
the Zℓ-extension K∞/Kd is totally logarithmically ramified at all the pi, 1 ≤ i ≤ s.

Proposition 3.6. Let K∞ be a non-cyclotomic Zℓ-extension of K. There exists d ≥ 0
such that

C̃ℓKn ≃ C̃/Yn for n ≥ d.

Proof: We apply the Proposition 3.5 to the extension K∞/Kd, the group C̃ being the

same as the original extension. The element γℓ
d
generates Gal(K∞/Kc

d), and naturally

ωdC̃ generates the commutator subgroup of Gal(K∞/Kd). For n ≥ d we have
ωn

ωd
= 1 + γℓ

d
+ γ2ℓ

d
+ · · · + γℓ

n−ℓd ,

it comes that the commutator subgroup of Gal(K∞/Kn) is given by ωn
ωd

(ωdC̃) = ωnC̃;
in general for the Yn we have Yn = ωn

ωd
Yd.
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�

The exact sequence

0→ Yd → C̃ → C̃ℓKd
→ 0

sets a pseudo-isomorphism Yd ∼ C̃, that is a morphism Yd → C̃ of Λ-modules with finite
kernel and cokernel.

4. Structural parameters

Let us recall a fundamental result (e.g. [18, Thm 13.12]).

Theorem 4.1 (Structure theorem of noetherian Λ-modules). Let M be a noetherian
Λ-module. There is a Λ-module morphism M → E to a unique elementary Λ-module
E with finite kernel and finite cokernel:

M ∼ E = Λρ ⊕
(

s⊕

i=1

Λ/ℓmiΛ

)
⊕




t⊕

j=1

Λ/PjΛ




with Pj distinguished polynomials, ordered by divisibility: P1|P2| . . . |Pt. The integer ρ
is the rank of the Λ-module M , and the polynomial

χ =

s∏

i=1

ℓmi

t∏

j=1

Pj

is the characteristic polynomial of the torsion sub-module of M .

Definition 4.2. With the same notation of the above theorem let’s set

ρ = rankΛM, µ =

s∑

i=1

mi and λ =

t∑

j=1

deg(Pj);

we say that ρ, µ and λ are the structural invariants of the Λ-module M .

We have that C̃ is isomorphic to a noetherian Λ-module (Prop. 3.1). Let us write ρ̃,

µ̃ and λ̃ for the invariants defined above for C̃. Therefore assuming the Gross-Kuzmin
conjecture we have ρ̃ = 0 and we obtain the following theorem.

Theorem 4.3. Let K∞ be a non-cyclotomic Zℓ-extension of K. Let C̃ℓKn be the
logarithmic class group of Kn. Assuming the Gross-Kuz’min conjecture for ℓ and every
finite subextension Kn of K∞/K there exist integers λ̃, µ̃ ≥ 0 and ν̃, such that

|C̃ℓKn | = ℓµ̃ℓ
n+λ̃n+ν̃ ,

for n big enough.

Remark 4.4. The above theorem together with Jaulent’s results in the cyclotomic case
yield Theorem 1.

Let K∞/K be a non-cyclotomic Zℓ-extension of K. The inverse limit lim←−Cℓ of the

ℓ-class groups of the Kn, corresponds to the Galois group C = Gal(Knr
∞/K∞) of the

maximal abelian unramified ℓ-extension Knr
∞ of K∞. It is well known that C is a torsion

Λ-module. Similarly the inverse limit lim←− C̃ℓ
∗

Kn
of the logarithmic classes of arbitrary
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degree of the Kn, corresponds to the Galois group C̃∗ = Gal(K lc
∞/K∞) of the maximal

abelian logarithmically unramified ℓ-extension K lc
∞ of K∞; after the propositions 3.1

and 3.3, assuming the Gross-Kuz’min conjecture C̃∗ is a noetherian torsion Λ-module,

isomorphic as Zℓ-module to a direct sum C̃∗ ≃ C̃ ⊕ Zℓ. As a consequence of theorem
4.1 we obtain the following proposition.

Proposition 4.5. Let C̃∗ and C̃ be as before. The characteristic polynomials associated
to these Λ-modules satisfy

χ
C̃∗

= χ
C̃
· (γ − 1),

and we have the following relations for their parameters

(3) µ̃∗ = µ̃ and λ̃∗ = λ̃+ 1,

where µ̃∗ and λ̃∗ (respectively µ̃ and λ̃) are the parameters associated to the Λ-module

C̃∗ (respectively C̃).

Let p1, . . . , ps be the places of K above ℓ. We have the short exact sequence of pro-ℓ-
groups (e.g. [1, §3])

(4) 0 −→ C̃ℓ
∗[ℓ]

K −→ C̃ℓ
∗

K
Θ−→ Cℓ′K −→ 0,

where C̃ℓ
∗[ℓ]

K is the subgroup of C̃ℓ
∗

K generated by the logarithmic classes of the pi; the
group Cℓ′K is the quotient of the ℓ-part of the ideal class group of K by the ℓ-part of
the subgroup generated by the ideal classes of the pi

(5) 0 −→ Cℓ
[ℓ]
K −→ CℓK −→ Cℓ′K −→ 0;

and Θ is defined as

Θ :
∑

p

mpp 7→
∏

p∤ℓ

pmp .

Since the Mittag-Leffler property holds on profinite groups, taking the inverse limit in

(4) and (5) gives short exact sequences. Let C̃∗[ℓ] (respectively C[ℓ]) be the subgroup of C̃∗

(respectively C) that corresponds to lim←− C̃ℓ
∗[ℓ]

n (respectively lim←−Cℓ
[ℓ]
n ). The inverse limit

lim←−Cℓ′Kn
, corresponds to the Galois group C′ of the maximal ℓ-extension of K∞ which

is unramified and splits completely over ℓ. Then we have the following isomorphisms

(6) C′ ≃ C̃∗/C̃∗[ℓ] ≃ C/C[ℓ].

Le us denote by µ and λ (respectively µ′, λ′) the parameters attached to the Λ-module
C (respectively C′). We have the following obvious relations

(7)
µ̃∗ = µ̃ µ̃∗ = µ′ + µ̃∗[ℓ] λ̃∗ = λ′ + λ̃∗[ℓ]

λ̃∗ = λ̃+ 1 µ = µ′ + µ[ℓ] λ = λ′ + λ[ℓ]

with µ[ℓ] and λ[ℓ] (respectively µ̃∗[ℓ] and λ̃∗[ℓ]) as the associated parameters to C[ℓ]
(respectively C̃∗[ℓ]).
The following definition, if verified, allows us to have some control on the characteristic
polynomials of the preceding modules. Specifically, we will show that µ[ℓ] = µ̃∗[ℓ] = 0.
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Definition 4.6. Let K∞ be a Zℓ-extension of K. We say that a place p of K splits
finitely in the tower K∞/K, if its decomposition group in Gal(K∞/K) is open, equiva-
lently, if there is an integer np such that the layer Knp corresponds to the decomposition
field of p in K∞/K.

Remark 4.7. The preceding definition holds for every place p | ℓ in the cyclotomic
Zℓ-extension of every number field.

With the notation of (7) and (1) we state the following theorem:

Theorem 4.8. Let K∞/K be a non-cyclotomic Zℓ-extension. Assume that the places
of K above ℓ split finitely in the extension K∞/K. Then assuming the Gross-Kuz’min

conjecture for ℓ and all layers of K∞/K the structural invariants attached to C and C̃
satisfy the following relations:

ρ = ρ̃ = 0, µ = µ̃ but λ might be different of λ̃.

And the characteristic polynomials of the torsion Λ-modules C and C̃ just differ by
cyclotomic factors.

Proof: The first relation is trivial since C and C̃∗ are Λ-torsion modules.

Let Di be the decomposition subgroup for the place pi in K∞/K; since the Di are
open they are isomorphic to Γℓmi for some mi. Take m = max1≤i≤s{mi}, then Γℓm

acts trivially on C[ℓ] and C̃∗[ℓ], therefore ωm = γℓ
m − 1 annihilates them, i.e. their

characteristic polynomial has no ℓ-power factors which implies µ[ℓ] = µ̃∗[ℓ] = 0.

We have the decomposition into cyclotomic factors

ωm = ω0
ω1

ω0

ω2

ω1
· · · ωm

ωm−1
.

Since the minimal polynomial and the characteristic polynomials must have the same

factors, the characteristic polynomials of C[ℓ] and C̃∗[ℓ] differ just by cyclotomic factors.

Hence the Λ-modules C and C̃∗ have the same µ invariants by (7) and their λ invariants

might be different. From (3) we recover the relations for the invariants of C̃. �

Corollary 4.9. With the same notation as above we have

µ = µ̃ = µ̃∗ = µ′.

Remark 4.10. Assuming the Gross-Kuz’min conjecture in Proposition 3.3 we deduced

that λ̃∗ = λ̃+ 1. Observing that the Zℓ-submodule C̃∗[ℓ] of C̃∗ is infinite, for it contains
the classes α · p for p a place over ℓ and α ∈ Zℓ (see §2), we can apply an analogous

argument to the Λ-modules C̃[ℓ] and C̃∗[ℓ], from which we deduce that λ̃∗[ℓ] = λ̃[ℓ] + 1.

The following table summarizes our results.
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Invariants attached to finite Zℓ-modules.

Modules Definition
Parameters

ρ λ µ

Cℓ′n Cℓ′n is the ℓ-group of ℓ-classes of Kn 0 λ′ µ′

C̃ℓn C̃ℓn is the logarithmic class group of Kn 0 λ̃ = λ′ + λ̃[ℓ] µ′

Cℓn Cℓn is the ℓ-class group of Kn 0 λ = λ′ + λ[ℓ] µ′

We give an example for which we can apply our results.

Example 4.11. Let K be a quadratic imaginary number field and ℓ a prime number
splitting in K, say (ℓ) = l̄l. The maximal abelian l-ramified ℓ-extension Ml of K
contains a non-cyclotomic Zℓ-extension of K, say K∞. For consider the ℓ-Hilbert class
field H of K, then

Gal(Ml/H) =
∏

p

UpRK/
∏

p6=l

UpRK

= Ul/Ul ∩ (
∏

p6=l

UpRK)

= Ul/sl(µK)

= Zℓ,

where sl(µK) is the image of the generalized units µK of K under the localisation map
sl [9, Thm. & Def. 1.1.22]. Therefore Gal(Ml/K) ≃ Zℓ × finite abelian ℓ-group.

In particular, since K/Q is abelian, Lemma 2.6 states that at least one place l over ℓ
ramifies logarithmically in K∞. Finally, the image of the decomposition subgroup Dl̄

inside Gal(Ml/K) is isomorphic to Zℓ × finite abelian ℓ-group, hence it has finite index
in Gal(Ml/K). For the image of Dl̄ is

Rl̄/Rl̄ ∩ (
∏

p6=l

UpRK).

Therefore both places l and l̄ split finitely.

5. Numerical examples

5.1. Quadratic fields. We use the functions and algorithms implemented by Belabas
and Jaulent in [1] to compute the logarithmic class group of a number field. These
algorithms are now available in PARI/GP [17]. We use PARI/GP to compute the
extensions corresponding to the first layers of some Zℓ-extensions, afterwards we apply
the logarithmic class group algorithms to each of these number fields.

Let K be a quadratic field of the form Q(
√
d). For now we will restrict to the compu-

tation of the 3-group of logarithmic classes in the layers K = K0, K1 and K2 of the
cyclotomic Z3-extension of K.

In the next table we take −100 < d < 100. For sake of space, we just show all the cases
for which the logarithmic class group is not trivial and for which 3 splits in Q(

√
d).
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Q(
√
d) Q(

√
d, cos(2π/9)) Q(

√
d, cos(2π/27))

d C̃ℓK C̃ℓ
[ℓ]

K
Cℓ′K C̃ℓK1 C̃ℓ

[ℓ]

K1

Cℓ′K1
C̃ℓK2 C̃ℓ

[ℓ]

K2

Cℓ′K2

-86 [3] [3] [] [9, 9] [3] [9, 3] [27, 27] [3] [27, 9]
-74 [9] [9] [] [27] [9] [3] [81] [9] [9]
-65 [3] [3] [] [9] [3] [3] [27] [3] [9]
-47 [9] [9] [] [27] [9] [3] [81] [9] [9]
-41 [27] [27] [] [81, 3] [27] [3, 3] [243, 9] [27] [9, 9]
-35 [3] [3] [] [9] [3] [3] [27] [3] [9]
-14 [3] [3] [] [9] [3] [3] [27] [3] [9]
67 [3] [3] [] [3] [] [3] [3] [] [3]

In the next table we present all the cases meeting with the following criteria:

−100 < d < 3 000, 3 splits in Q(
√
d) and the groups C̃ℓK and Cℓ′K are not trivial.

Q(
√
d) Q(

√
d, cos(2π/9)) Q(

√
d, cos(2π/27))

d C̃ℓK C̃ℓ
[ℓ]

K
Cℓ′K C̃ℓK1 C̃ℓ

[ℓ]

K1

Cℓ′K1
C̃ℓK2 C̃ℓ

[ℓ]

K2

Cℓ′K2

1129 [3] [] [3] [3] [] [3] [3] [] [3]
1654 [3] [] [3] [3] [] [3] [3] [] [3]
1954 [3] [] [3] [3] [] [3] [3] [] [3]
2419 [3] [] [3] [3] [] [3] [3] [] [3]
2713 [3] [] [3] [9] [] [9] [9] [] [9]
2971 [3] [] [3] [3] [] [3] [3] [] [3]

In the next table we present all the cases issued with the following criteria:

−100 < d < 20 000, 3 splits in Q(
√
d) and the groups C̃ℓ

[ℓ]

K and Cℓ′K are non trivial.

Q(
√
d) Q(

√
d, cos(2π/9)) Q(

√
d, cos(2π/27))

d C̃ℓK C̃ℓ
[ℓ]

K
Cℓ′K C̃ℓK1 C̃ℓ

[ℓ]

K1

Cℓ′K1
C̃ℓK2 C̃ℓ

[ℓ]

K2

Cℓ′K2

3739 [9] [3] [3] [27] [3] [9] [81] [3] [27]
7726 [3,3] [3] [3] [9,3,3] [] [9,3,3] [27,3,3] [] [27,3,3]
11545 [9] [3] [3] [9] [] [9] [9] [] [9]
17134 [9] [3] [3] [9] [] [9] [9] [] [9]
19330 [9] [3] [3] [9] [] [9] [9] [] [9]

5.2. Logarithmic invariants: Cyclotomic case. We are now interested in explicitly

knowing the values of the logarithmic invariants µ̃ et λ̃. In [9] Jaulent showed (in the
case K∞/K a cyclotomic Zℓ-extension) that the invariant µ̃ attached to the logarithmic
class group equals its classical counterpart µ. Hence we can state the following result.



IWASAWA LOGARITHMIC INVARIANTS 15

Theorem 5.1 (Logarithmic Ferrero-Washington). Let K be an abelian number field
over Q, and let Kc/K be its cyclotomic Zℓ-extension. Then

µ̃ = 0.

Remark 5.2. We have µ̃ = 0 for the examples given in the preceding section 5.1.

In the cyclotomic case we have that λ′ = λ̃, where λ′ is the invariant attached to the
ℓ-subgroup of ℓ-classes Cℓ′n. This follows from [9, IV.2.1] and the fact that in the

cyclotomic Zℓ-extension we have C̃ℓn ≃ C′/ωnC′ (e.g. [13, §2]).

Lemma 5.3. Let K = Q(
√
−d) be an imaginary quadratic number field and consider

an odd prime ℓ such that ℓ ∤ d. For the cyclotomic Zℓ-extension of K the following
relations hold

λ =

{
λ′ + 1 if

(
−d
ℓ

)
= 1,

λ′ if
(
−d
ℓ

)
= −1;

where λ and λ′ are the invariants attached to the Λ-modules C and C′.

Proof. Suppose that ℓ splits in K. Let pn and p̄n be the ideals of Kn above ℓ. The
product pnp̄n is an ideal in the n-th layer of the cyclotomic Zℓ-extension Qc of Q. By
a classical argument in Iwasawa theory (e.g. [16, §4]), the ℓ-part of the class groups of
the finite layers of Qc is trivial. This implies that pn and p̄n generate the same cyclic
subgroup of Cℓn. Also pℓ

n

n = p0.

Let ℓa be the order of the subgroup generated by p0 in Cℓ0, then the order of pn in

Cℓn is pℓ
a+n

n . Hence the short exact sequence (5) becomes

0 −→ Z/ℓn+aZ −→ Cℓn −→ Cℓ′n −→ 0,

for every n ≥ 0. Taking inverse limits we find that λ = λ′ + 1.

If ℓ is inert in K, then we have Cℓ[ℓ] = 0. The submodule C[ℓ] of C is a noetherian
torsion Λ-module. Moreover, since there is only one place pn in Kn above ℓ, by a
classical argument in Iwasawa theory (e.g. [16, §4]) we have

Cℓ[ℓ]n ≃ C[ℓ]/ωnC[ℓ] for n ≥ 0.

From which we deduce C[ℓ] = mC[ℓ], where m is the maximal ideal of Λ. From the
Nakayama’s lemma for compact Λ-modules [18, Lem. 13.16] we have C[ℓ] = 0. Then
from a relation in (7) we have λ = λ′ as claimed. �

Remark 5.4. Notice that if
(
−d
ℓ

)
= −1 and CℓK = 0 then λ = λ′ = λ̃ = 0.

The above lemma together with the following theorem allow us to compute explicitly

the value of λ̃ for the cyclotomic Zℓ-extension of some imaginary quadratic fields.

Theorem 5.5 (Gold [4, 5]). Let K = Q(
√
−d) be an imaginary quadratic number field

such that ℓ ∤ d. Let Kn be the n-th layer of the cyclotomic Zℓ-extension of K, and en
be the exponent of the ℓ-part of the class group of Kn. If there is n ≥ 1, such that
en − en−1 < ϕ(ℓn), then

λ = en − en−1.

Moreover, if ℓ splits in K, it suffices that en − en−1 ≤ ϕ(ℓn).
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Let K = Q(
√
−d) and ℓ be as in Lemma 5.3. We compute the class groups and

logarithmic class groups of the first layers K, K1, K2 of the Zℓ-cyclotomic extension of
K. Then we compute en−en−1 for n = 1, 2; and check whether it satisfies the conditions
of Theorem 5.5. If so, we let n0 be the smallest such integer. We put λ = en0

− en0−1

and ν = en0
− n0λ. Finally we compute the logarithmic invariants.

Case ℓ = 3, 2 ≤ d < 100

Q(
√
−d) K(cos(2π/9)) K(cos(2π/27)) ϕ(3) = 2 ϕ(9) = 6 µ = µ̃ = 0

d CℓK C̃ℓK CℓK1 C̃ℓK1
CℓK2 C̃ℓK2

e1 − e0 e2 − e1 λ λ̃ ν ν̃

2 [] [] [3] [] [9] [] 1 1 1 0 0 0
5 [] [] [3] [] [9] [] 1 1 1 0 0 0
11 [] [] [3] [] [9] [] 1 1 1 0 0 0
14 [] [3] [3, 3] [9] [9, 9] [27] 2 2 2 1 0 1
17 [] [] [3] [] [9] [] 1 1 1 0 0 0
23 [3] [] [9] [] [27] [] 1 1 1 0 1 0
26 [3] [] [9] [] [27] [] 1 1 1 0 1 0
29 [3] [] [9] [] [27] [] 1 1 1 0 1 0
31 [3] [3] [9] [9] [27] [27] 1 1 1 1 1 1
35 [] [3] [3, 3] [9] [9, 9] [27] 2 2 2 1 0 1
38 [3] [] [9] [] [27] [] 1 1 1 0 1 0
41 [] [27] [9, 3] [81, 3] [27, 9, 3] [243, 9] 3 3 3 2 0 3
47 [] [9] [3, 3] [27] [9, 9] [81] 2 2 2 1 0 2
53 [3] [] [9] [] [27 ] [] 1 1 1 0 1 0
59 [3] [] [9] [] [27] [] 1 1 1 0 1 0
61 [3] [3] [9] [9] [27] [27] 1 1 1 1 1 1
62 [] [] [3] [] [9] [] 1 1 1 0 0 0
65 [] [3] [3, 3] [9] [9, 9] [27] 2 2 2 1 0 1
71 [] [] [3] [] [9] [] 1 1 1 0 0 0
74 [] [9] [3, 3] [27] [9, 9] [81] 2 2 2 1 0 2
77 [] [] [3] [] [9] [] 1 1 1 0 0 0
83 [3] [] [9] [] [27] [] 1 1 1 0 1 0
86 [] [3] [9, 9] [9, 9] [27, 27, 3] [27, 27] 4 3 3 2 1 2
89 [3] [] [9] [] [27] [] 1 1 1 0 1 0
95 [] [] [3] [] [9] [] 1 1 1 0 0 0

The criteria of the following two cases gives us immediately n0 = 1.

Case ℓ = 5, 2 ≤ d < 100
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K = Q(
√
−d) K1 ϕ(5) = 4 µ = µ̃ = 0

d CℓK C̃ℓK CℓK1 C̃ℓK1
e1 − e0 λ λ̃ ν ν̃

6 [] [] [5] [] 1 1 0 0 0
11 [] [5] [5, 5] [25] 2 2 1 0 1

14,19,21 [] [] [5] [] 1 1 0 0 0
26 [] [5] [5, 5] [25] 2 2 1 0 1

29,31 [] [] [5] [] 1 1 0 0 0
34 [] [5] [5, 5] [25] 2 2 1 0 1
39 [] [] [5] [] 1 1 0 0 0
41 [] [5] [5, 5] [25] 2 2 1 0 1
46 [] [] [5] [] 1 1 0 0 0
47 [5] [5] [25] [25] 1 1 1 1 1
51 [] [125] [5, 5] [625] 2 2 1 0 3

59,61,66,69,71 [] [] [5] [] 1 1 0 0 0
74,79,86 [5] [] [25] [] 1 1 0 1 0
89,91,94 [] [] [5] [] 1 1 0 0 0

Case ℓ = 7, 2 ≤ d < 100

K = Q(
√
−d) K1 ϕ(7) = 6 µ = µ̃ = 0

d CℓK C̃ℓK CℓK1 C̃ℓK1
e1 − e0 λ λ̃ ν ν̃

3,5,6,10,13,17,19,26,31,33 [] [] [7] [] 1 1 0 0 0
34 [] [7] [7, 7] [49] 2 2 1 0 1

38,41,47,55,59,61,62,66,69 [] [] [7] [] 1 1 0 0 0
71 [7] [7] [49] [49] 1 1 1 1 1
73 [] [7] [7, 7] [49] 2 2 1 0 1

82,83,87 [] [] [7] [] 1 1 0 0 0
89 [] [7] [7, 7] [49] 2 2 1 0 1

94,97 [] [] [7] [] 1 1 0 0 0

5.3. Logarithmic invariants: Non-cyclotomic case. We now compute logarithmic
invariants of some non-cyclotomic extensions. For that we extrapolate some computa-
tions and results of Hubbard and Washington.

Let K = Q(
√
−3) and ℓ = 3. Let K∞ be the anti-cyclotomic Zℓ-extension of K,

that is Gal(K/Q) acts by -1 on Gal(K∞/K). Let K1 be the first layer of K∞, i.e.

K1 = K( 3
√
3). The extension L = Q(

√
−3, 3
√
d) is an extension of degree 3 of K. Let

Ln be such that Ln = LKn, therefore L∞/L is a non-cyclotomic Z3-extension.

All places of L above 3 are ramified in L∞/L, and hence they split finitely in the sense
of Definition 4.6. Hence Theorem 4.8 is valid for the Z3-extension L∞/L, this implies
that µ̃ = µ.
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For the examples below we know the values of µ, λ and ν [6, §9.1]. Then Propositions
12 and 17 in [6], and Nakayama’s lemma yield λ = 0 in the examples below.

To compute the logarithmic invariants λ̃ and ν̃ we proceed as follows. First we compute

ẽ0 and ẽ1. Then we apply Proposition 17 and Lemma 18 in [6] to give the value of λ̃
when possible. If so, we apply [6, Prop. 12] to find ν̃.

Difficulties arise when ẽ1 − ẽ0− 2µ̃ > 0, except when d = 1870 since Theorems 7 and 9
in [6] can be formulated in the logarithmic setting. We have left blank spaces in such
cases.

Remark 5.6. The whole Section 6, Proposition 17 and Lemma 18 in [6] are valid in our
setting by substituting the classical Iwasawa modules by the logarithmic counterparts.

L = Q(
√
−3, 3
√
d) L1 Invariants

d e0 ẽ0 e1 ẽ1 µ = µ̃ λ λ̃ ν ν̃

10 0 0 2 3 1 0 -1
22 2 1 4 3 1 0 0 1 0
34 2 1 4 3 1 0 0 1 0
44 0 0 2 4 1 0 -1
46 0 0 2 3 1 0 -1
58 2 1 4 3 1 0 0 1 0
68 2 1 4 3 1 0 0 1 0
85 2 1 4 3 1 0 0 1 0
92 2 1 4 3 1 0 0 1 0
110 4 3 8 7 2 0 0 2 1
164 2 1 4 3 1 0 0 1 0
170 2 1 6 5 2 0 0 0 -1
230 4 3 8 7 2 0 0 2 1
236 2 1 4 3 1 0 0 1 0
253 0 0 2 3 1 0 -1
1870 6 5 13 12 3 0 0 ≥ 4 ≥ 4
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