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Piezoelectric Single Crystals (PSC) are increasingly used in the manufacture of ultra-

sonic transducers and in particular for linear arrays or single element transducers.

Among thesePSCs, according to theirmicrostructure andpoled direction, someexhibit

a mm2 symmetry. The analytical expression of the electromechanical coupling coef-

ficient for a vibration mode along the poling direction for piezoelectric rectangular

bar resonator is established. It is based on the mode coupling theory and fundamental

energy ratio definitionof electromechanical coupling coefficients. This unified formula

for mm2 symmetry class material is obtained as a function of an aspect ratio (G) where

the two extreme cases correspond to a thin plate (with a vibration mode characterized

by the thickness coupling factor, kt) and a thin bar (characterized by k ′
33
). To optimize

the k ′
33
value related to the thin bar design, a rotation of the crystallogaphic axis in the

plane orthogonal to the poling direction is done to choose the highest value for PIN-

PMN-PT single crystal. Finally, finite element calculations are performed to deduce

resonance frequencies and coupling coefficients in a large range ofG value to confirm

developed analytical relations. © 2017 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4976298]

I. INTRODUCTION

With the recent developments for single crystal growth methods,1 scientists investigate new

material compositions to improve piezoelectric properties. In particular, the relaxor-PT single crystals

are already used in various transducer applications2 for their high coupling capability. Lead-free

single crystals are also extensively studied in order to satisfy new international restrictions.3 Some

of these crystals can exhibit orthorhombic structures like the well-known PIN-PMN-PT4 or the

promising lead-free KNbO3,
5,6 that brings some difficulties in the optimization and the design of

these piezoelectric materials for their integration in ultrasonic transducers. Indeed, in linear or phased

arrays, piezoelectric elements shape is a rectangular slender bar with dimensions that depend on the

expected transducer’s characteristics (operating frequency, resolution, . . .). This configuration was

developed to reach an effective electromechanical coupling coefficient equal to k ′
33
,7 which is higher

than the coupling coefficient for a thin plate, kt . If the poling direction is assumed to be collinear to

the spatial z–direction, the crystal orientation in the xy–plane makes the effective electromechanical

coupling coefficient change contrary to a piezoceramic with a tetragonal or a transversaly isotropic

structure.Moreover, the aspect ratio of the resonator’s dimensions is the second factor that determines

the effective coupling coefficient.

In some situations, such as high frequency transducers (>20MHz), it is very difficult for technical

reasons to respect the aspect ratio recommended by the IEEE standard for piezoelectricity8 to reach
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the k ′
33
value. Then, the effective coupling coefficient takes a different value that cannot be determined

with accuracy because of an arbitrary aspect ratio.

In this paper, we propose a unified formula to calculate the electromechanical coupling coefficient

for a rectangular slender bar. It is a generalization of the work performed by Kim et al.9 to the case

of orthorhombic materials that implies an additional study about the crystal orientation. The finite

element calculation is also used to confirm the analytical results. In a first part, characteristic modes

for the studied sample are chosen and the corresponding resonance frequencies are calculated. In the

second part, analytical expression for the electromechanical coupling coefficient is established.

II. RESONANCE FREQUENCIES OF THE CHARACTERISTIC MODES

First, the resonance frequencies of the resonator are determined using an approach based on

the mode coupling theory. The method gives accurate results in the case of elastic bodies10 but can

easily take into account piezoelectric coupling.7,11 In this paper, a piezoelectric rectangular bar is

supposed to be infinite in the y–direction, poled along its thickness (direction z) (Figure 1). Its width,

along the x–direction, is denoted L and its thickness (or height) along the z–direction is H. Then, the

aspect ratio G is chosen equal to H/L. When G is much smaller than 1, the resonator is a thin plate

(Figure 1.a),whereaswhenG ismuch greater that 1, the resonator is an infinite slender bar (Figure 1.b).

In this case, modes that are considered in the mode coupling theory are the modes along the z- and

x-direction.7 In the following they are differentiated respectively by the adjectives longitudinal and

transversal.

In a first step, the resonance frequencies of the longitudinal mode are defined. The resonance

frequency fb for a thin plate is:
12

fb =
1

H

√

cD
33

ρ

Xt

π
(1)

with X t solution of Xt − k2t tan(Xt)= 0, cD
33
is the stiffness constant from the elastic tensor at con-

stant electric displacement, ρ is the density and kt = e33/

√

cD
33
ǫS
33
is the electromechanical coupling

coefficient for the longitudinal thickness-extensional (L-TE) mode. The L-TE resonance frequency

is independent of the width L and is inversely proportional to H. One can also define the reso-

nance frequency fd for a slender bar,
7 which is inversely proportional to H and where k ′

33
is the

electromechanical coupling coefficient for this longitudinal width-extensional (L-WE) mode:

fd =
1

H

√

c̃D
33

ρ

X̃s

π
(2)

with X̃s solution of X̃s − k ′2
33
tan(X̃s)= 0 and c̃D

33
= cD

33
−

(

cD
13

)2
/cD
11
. Then, two transversal resonance

frequencies are defined,7 either for an infinite slender bar or for a thin plate. The first one, that is the

transversal thickness-extensional (T-TE) mode, is:

fa =
1

2L

√

cE
11

ρ
. (3)

FIG. 1. Description of the geometry of the piezoelectric element (G = H/L): a) G is small (G << 1), the resonator is a thin

plate and b) G is large (G > 1), the resonator is an infinite slender bar (hatching parts are the electrodes).
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By introducing G = H/L in Eq. 3, then fa depends on G and is inversely proportional to H. In the

same way, the other transversal resonance frequency fc for the transversal width-extensional (T-WE)

mode is defined as:7

fc =
1

2L

√

c̃E
11

ρ
(4)

with c̃E
11
= cE

11

(

1 − cE
13

2
/
(

cE
11

cE
33

))

where cE is the elastic tensor at constant electric field. One can

notice that, for a fixed value of the thickness H, fa and fc linearly depend on the aspect ratio G,

whereas fb and fd are constant whatever the value of G.

For the problemunder study, the vibrating system is supposed to possess only two coupled degrees

of freedom related to a longitudinal and a transversal mode. Therefore, the resonance frequencies

can be analysed using the following equation:7,11

(

f 2 − f 2a

) (

f 2 − f 2b

)

= Γ2f 2a f 2b (5)

with the frequencies fa, fb defined above and the mode coupling factor Γ defined
7 by:

Γ =

√

1 −

(

fd

fb

)2

=

√

1 −

(

fc

fa

)2

. (6)

On the one hand, Γ is a link between the two longitudinal frequencies fb and fd (L-TE and L-WE

modes). On the other hand, Γ is the link between the two transversal frequencies fa and fc (T-TE

and T-WE modes). In Eq. 6, the coupling factor Γ is supposed to be the same for the longitudi-

nal and transversal modes. This hypothesis will be checked further for the material under interest.

Eq. 5 supposes that only twomodes interact. Solving Eq. 5 gives two solutions, named f1 (the smaller

root) and f2 (the higher root):

f1,2 =

√
√

f 2a + f 2
b
±

√

(

f 2a + f 2
b

)2
− 4f 2a f 2

b

(

1 − Γ2
)

2
(7)

The analytical values of the fa, fb, fc, fd , f1 and f2 resonance frequencies (eqs. (1) to (4) and (7)) are

first calculated for the PIN-PMN-PT single crystal,4 which has an orthorhombic symmetry class.

The corresponding properties are presented in Table I in standard coordinate system (material’s

crystallographic axes).

Because this material belongs to the mm2 point group, two orientations of the crystal in the

xy–plane are considered. The first one is called ‘standard’, where the crystallographic axis in the

direction 1 corresponds to the spatial vector ~x (Figure 2). The other one is called 90◦−rotation and
corresponds to a 90◦ rotation of the crystal around the z–axis. Fig. 3 presents the different analytical

resonance frequencies multiplied by H as a function of the aspect ratio G. On Fig. 3, the L-TE and

L-WE modes do not depend on G (horizontal lines for fb and fd) whereas the T-TE and T-WE modes

are proportional to G (inclined lines for fa and fc). As also mathematically verified, Fig. 3 shows that

for low values of G, f1 follows an inclined line close to fc, whereas f2 is close to the horizontal line

fb. For large values of G, f1 is close to the horizontal line fd and f2 follows an inclined line close to

fa. The link between the parallel lines of Fig. 3 is related to the mode coupling factor Γ (fa and fc on

the one hand, fb and fd on the other hand).

TABLE I. Properties of the PIN-PMN-PT4 single crystal. Elastic constants are expressed in 10☞12 m2/N, piezoelectric

constants in 10☞12 C/N, relative dielectric constants and density in kg/m3.

sE
11

sE
12

sE
13

sE
22

sE
23

sE
33

sE
44

sE
55

sE
66

9.2 -8.38 5.64 21.2 -14.4 16.8 78.1 31.6 15.5

ρ d31 d32 d33 d24 d15 ǫT
11
/ǫ0 ǫT

22
/ǫ0 ǫT

33
/ǫ0

8100 153 -346 350 4100 4550 8070 30000 1500
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FIG. 2. Orientation of the crystallographic axes (123) according to the spatial frame (xyz) in the standard (in black) and the

90◦−rotation (in gray) cases.

Table II presents the corresponding frequencies fa, fb, fc, fd mutilplied by H and calculated for

G = 0.1. In the practical case of a thin plate resonator (G = 0.1) where the thickness is 215 µm, the

thickness resonance frequency fb is nearly equal to 10MHz. Moreover, the last two columns present

themode coupling factor Γ, calculated either with the longitudinal frequencies, or with the transversal

frequencies. It shows that the mode coupling factor Γ is approximately the same, using one mode or

the other. Therefore, the hypothesis considering the samemode coupling factor Γ for the longitudinal

modes and the transversal modes is valid for the material under interest.

In order to check the values of the resonance frequencies, finite element calculations have been

performed using the ATILA code.13 The harmonic analysis gives the variations of the impedance

FIG. 3. Variations of the resonance frequencies multiplied by H as a function of the aspect ratio G, using the mode coupling

theory for the PIN-PMN-PT single crystal in the (a) standard and (b) 90◦−rotation cases. (Full lines : analytical results, dashed
lines: extreme geometries, dots: FEM results). fa, fb, fc, fd , f1 and f2 are referred to Eqs. 1 to 4 and 7.
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TABLE II. Frequencies multiplied by H of the longitudinal and transversal modes, defined by equations 1, 2, 3, and 4 for the

PIN-PMN-PT single crystal. The transversal frequencies are calculated for the aspect ratio G = 0.1. The mode coupling factor

Γ is calculated using Eq. 6: Γ(1) =

√

1 − (fc/fa)
2 and Γ(2) =

√

1 − (fd/fb)
2.

Hfa (m.Hz) Hfb (m.Hz) Hfc (m.Hz) Hfd (m.Hz) Γ(1) Γ(2)

Stand. 229 2147.5 229 2147 0.008 0.021

90◦ 208 2147.5 150.8 1589.5 0.688 0.672

versus frequency and allows the identification of the resonance and antiresonance frequencies. On the

numerical impedance curves, some modes are easily identified, whereas some others are not purely

related to a longitudinal mode or to a transversal mode. Numerical resonance frequencies are repro-

duced on Fig. 3 with dots, but only some of them are reproduced for a better clarity of the figure. For

low values of the aspect ratioG, the lowest resonance frequency corresponds to the transversal mode,

followed by many peaks with low electromechanical coupling factors. At higher frequency, one peak

corresponds to the longitudinal mode but it is also mixed with other transversal modes. For large val-

ues of the aspect ratioG, the lowest resonance frequency corresponds to the longitudinal mode and is

easily isolated. At higher frequency, many peaks appear in the impedance spectrum. In the interme-

diate region, when the aspect ratio G is around 1, several modes are observed. On Fig. 3, numerical

resonance frequencies follow the f1 and f2 curves, validating the expression of the coupled modes

(Eq. 7).

One can see that the mode coupling factor Γ is very low for the standard material: on the one

hand, fa and fc are very close, on the other hand fb and fd are also very close. The longitudinal

frequency does not depend on the aspect ratio G. In fact, an optimization of the material orientation

can be performed in order to maximize the electromechanical coupling factor. Fig. 4.a presents the

polar variations of the electromechanical coupling factors kt and k ′
33
as a function of the material

orientation in the (xy)–plane. kt is constant (50%) for any orientation in the (xy)–plane whereas k ′
33

depends on the orientation in the (xy)–plane: it is around 50% for an angle equal to 0◦ and 68% at 90◦.

Fig. 4.b presents the polar variations of the fb and fd frequencies multiplied by H as a function of the

orientation of the material in the (xy)–plane. One can notice that fb is constant for any orientation in

the (xy)–plane. The link between these two curves is clear: when the two electromechanical coupling

factors kt and k ′
33
are close, then the two frequencies fb and fd are close (see Eq. 1 and 2) and the mode

coupling factor Γ is small. Reversely, as the difference between the two electromechanical coupling

factors kt and k ′
33
is higher, then the frequencies fb and fd are different and the mode coupling factor

Γ is large. Therefore, Fig. 4 can be useful in order to determine which material orientation gives the

highest difference between kt and k ′
33
.

To conclude, this rotation in the xy–plane allows to examine the behavior of the two longitudinal

modes (L-TE and L-WE) as a function of the crystal orientation, in order to maximise the coupling

factor, that is essential for further applications using an orthorhombic material.

FIG. 4. Polar variations of (a) the electromechanical coupling factors kt (dashed lines, red) and k′
33
(solid lines, blue) and, (b)

the H × fb (dashed lines, red) and H × fd (solid lines, blue) frequencies as a function of the orientation of the crystallographic

axes in the (xy)-plane.



025302-6 Rouffaud, Levassort, and Hladky-Hennion AIP Advances 7, 025302 (2017)

III. ELECTROMECHANICAL COUPLING COEFFICIENT

In order to calculate the electromechanical coupling coefficient of the resonator, the piezoelectric

constitutive relations are written. They are very similar to the set of equations from the work of Kim

et al.,9,14 except that they are written for a mm2 symmetry class material. They can be simplified

considering a 6mm or a 4mm symmetry class material reducing the number of independent constants.

Due to the geometry of the resonator, the electric field and the electric displacement only exist in the

z-direction (E3 , 0 and D3 , 0). Thus, the relations are:

S1 = sE
11T1 + sE

12T2 + sE
13T3 + d31E3 (8.a)

S2 = sE
12T1 + sE

22T2 + sE
23T3 + d32E3 (= 0) (8.b)

S3 = sE
13T1 + sE

23T2 + sE
33T3 + d33E3 (8.c)

D3 = d31T1 + d32T2 + d33T3 + ǫ
T
33E3 (8.d)

The internal energy is:

U =
1

2
(S1T1 + S2T2 + S3T3) +

1

2
(D3E3) (9)

In Eq. 9, the internal energy will be split further into three parts Ue, Ud and Uc that are respectively

the elastic, dielectric and coupling energies. Then, the electromechanical coupling factor k is defined

as:7

k =
Uc

√
UeUd

(10)

In order to determine each term of the internal energy, the procedure is the following: using Eq. 8.b,

T2 is expressed as a function of T1, T3 and E3. It is then inserted into equations 8.a, 8.c and 8.d thus

S1, S3 and D3 do not depend on T2:

S1 =
*.
,
sE
11 −

sE
12

2

sE
22

+/
-

T1 + *
,
sE
13 −

sE
23

sE
12

sE
22

+
-

T3 + *
,
d13 −

d32s
E
12

sE
22

+
-

E3 (11.a)

S3 = *
,
sE
13 −

sE
23

sE
12

sE
22

+
-

T1 +
*.
,
sE
33 −

sE
23

2

sE
22

+/
-

T3 + *
,
d33 −

d32s
E
23

sE
22

+
-

E3 (11.b)

D3 = *
,
d31 −

d32s
E
12

sE
22

+
-

T1 + *
,
d33 −

d32s
E
23

sE
22

+
-

T3 + *
,
ǫT
33 −

d32
2

sE
22

+
-

E3 (11.c)

Using Eq. 11.a, T1 is expressed as a function of S1, T3 and E3, which is then inserted into

Eq. 11.b and 11.c. Therefore, now, the internal energy of Eq. 9 depends on S2
1
, T2
3
, T3E3 and E2

3
. For

large aspect ratio resonators, considering T1 close to 0, Eq. 11.a becomes:

S1 = *
,
sE
13 −

sE
23

sE
12

sE
22

+
-

T3 + *
,
d31 −

d32s
E
12

sE
22

+
-

E3 (12)

For small aspect ratio resonators, S1 is close to 0. Then, we introduce a shape function g(G) and the

strain is written as:

S1 =


*
,
sE
13 −

sE
23

sE
12

sE
22

+
-

T3 + *
,
d31 −

d32s
E
12

sE
22

+
-

E3


g (G) (13)

The shape function g(G) depends on the aspect ratio G and is related to the mode coupling. Its

expression, mainly inspired from Kim’s work,14 is expressed as:

g (G)=
fa

fb

f1

f2

1
√
1 − Γ2

(14)
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Thanks to previous observations concerning the variations of f1 and f2 as a function of the aspect

ratio G, the shape function g (G) is equal to 0 for low values of G, which is in accordance with S1
close to 0 for low aspect ratios (plate mode). Moreover, the shape function g (G) is equal to 1 for large

values of G, which is in accordance with Eq. 12. Eq. 14, together with Eq. 13, is then inserted into

the expression of the internal energy (Eq. 9) depending on S2
1
, T2
3
, T3E3 and E2

3
. All the terms are

split into elastic, dielectric and coupling terms, depending respectively on T2
3
, E2
3
and T3E3. Finally,

the electromechanical coupling factor is written as:

k =

d33 −
sE
23

d32

sE
22

+

(

g2 (G) − 1
)

(

sE
13
−

sE
12

sE
23

sE
22

) (

d31 −
sE
12

d32

sE
22

)

sE
11
−

sE
12

2

sE
22√

√

√

√

√

√

√*..
,
sE
33
−

sE
23

2

sE
22

+

(

g2 (G) − 1
)

(

sE
13
−

sE
12

sE
23

sE
22

)2

sE
11
−

sE
12

2

sE
22

+//
-

*..
,
ǫT
33
− d32

2

sE
22

+

(

g2 (G) − 1
)

(

d31 −
sE
12

d32

sE
22

)2

sE
11
−

sE
12

2

sE
22

+//
-

(15)

One can notice that, in Eq. 15, the electromechanical coupling factor k is close to the electrome-

chanical coupling factor for a plate kt for low values of the aspect ratio G. For large values of the

aspect ratio G, Eq. 15 is close to the electromechanical coupling factor for a slender bar k ′
33
. One

can notice that Eq. 15 is also valid for a 6mm or a 4mm symmetry class material and gives the same

results as in Kim’s work.14

Fig. 5 presents the variations of the electromechanical coupling factor for the PIN-PMN-PT sin-

gle crystal4 using Eq. 15. They all vary from kt to k ′
33
as the aspect ratio G is varying from 0.1 to 10.

In the case of standard PIN-PMN-PT, the electromechanical coupling coefficient is approximately

constant because, in such a configuration, the mode coupling factor Γ is very low. In the case of 90◦

rotation PIN-PMN-PT, the electromechanical coupling coefficient is increasing from kt to k ′
33
and

the difference between these two values is related to the mode coupling factor Γ. It shows that an

FIG. 5. Variations of the electromechanical coupling coefficient of longitudinal mode as a function of the aspect ratio G.

PIN-PMN-PT single crystal (a) standard and (b) 90◦ rotation. (Full line: analytical model (Eq. 15), dots: FEM results.)
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optimization of the material orientation has to be performed in order to maximize the electromechan-

ical coupling factor of the device. In order to check the variations of the electromechanical coupling

factor k, previous harmonic finite element calculations are used and the corresponding results for the

mode under interest are reproduced with dots on Fig. 5. The numerical electromechanical coupling

factor is calculated using the resonance and antiresonance frequencies.8 The selection of the modes

has been performed using the numerical displacement fields. As previously mentioned, additional

numerical modes appear but only modes related to a longitudinal vibration are reproduced. They are

well determined for large values of the aspect ratio G because the longitudinal mode corresponds

to the first mode and is well isolated in the impedance curve. The numerical coupling factor k is

determined with more difficulty for low values of the aspect ratio G because the longitudinal mode

is mixed with a higher order of transversal modes. One can notice a difference between the coupling

coefficients from the FEM calculation and the analytical formula when G is decreasing from large

value to 1. This can be explained by the choice of the g (G) function because, in spite of a reasonable

justification in its determination,14 FEM calculation shows that the variation around the value G = 1

is more pronounced.

IV. SUMMARY AND CONCLUSION

For piezoelectric resonator having arbitrary aspect ratio, the analytical formula relating the two

longitudinal modes L-TE for a thin plate and L-WE for a slender bar is established in the general case

of a mm2 piezoelectric material. Even if aspect ratios G do not correspond to an extreme geometry,

electromechanical coupling factor k can be determined. Because of the anisotropic structure, an

optimization on the crystal orientation is also performed in order to obtain the highest k ′
33
value,

which is for example an essential criterion in ultrasonic array element design. The coupling factor

Γ between the two modes studied is directly linked to the k ′
33
value. So, Γ is an important physical

quantity for the electromechanical coupling optimization that could be used for future works. To

develop an efficient transducer, its design has to be led in order to obtain the highest coupling factor

Γ and to favor the L-WE mode. The final result of this paper also shows that, depending on the

material, an aspect ratio G of 10 that can be technically difficult to reach, is not necessary to have a

reasonable k ′
33
. Indeed, with an aspect ratio value of 2, the electromechanical couling factor k slightly

decreases to 65% instead of 67.5% for G=10. Finally, the FEM was used throughout this work to

ensure that analytical calculations were correct.
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