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We introduce a method to infer lead-lag networks of agents’ actions in complex systems.
These networks open the way to both microscopic and macroscopic states prediction
in such systems. We apply this method to trader-resolved data in the foreign exchange
market. We show that these networks are remarkably persistent, which explains why and
how order flow prediction is possible from trader-resolved data. In addition, if traders’
actions depend on past prices, the evolution of the average price paid by traders may
also be predictable. Using random forests, we verify that the predictability of both the
sign of order flow and the direction of average transaction price is strong for retail in-
vestors at an hourly time scale, which is of great relevance to brokers and order matching
engines. Finally, we argue that the existence of trader lead-lag networks explains in a
self-referential way why a given trader becomes active, which is in line with the fact that
most trading activity has an endogenous origin.

Keywords: lead-lag networks; trader-resolved data; foreign exchange; prediction; inven-
tory management.

1. Introduction

Predicting the evolution of complex systems is of great practical interest but dif-
ficult given their nonlinear collective dynamics and, in practice, a priori unknown
networks of interaction between their elements (see e.g. [29, 36]). Determining the
underlying causal action structure of agents is an important first step to understand
the dynamics of a given system, and also to assess what types of structure are really
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informative about future states of complex systems. Assuming that the actions of
some agents trigger the actions of some other (or same) agents, we propose here
a generic method to infer such causal lead-lag activity networks and to exploit
their presence with machine learning methods so as to predict the dynamics of
macroscopic quantities. Although the method is generic, we focus here on financial
markets, because the traders’ behavior leads to maximally unpredictable dynam-
ics because all of them try to learn as much as possible to exploit any potential
predictability [4]. The fact that dynamics becomes predictable in the most unpre-
dictable complex systems when on accounts for agent lead-lag activity networks
demonstrates the potential of our method.

Since a sizable proportion of financial activity is endogenous [12, 19], i.e. trig-
gered by past activity, we shall illustrate how financial markets become predictable
if the trader lead-lag activity network is persistent enough. While most of avail-
able financial data is fully anonymous, some financial actors such as brokers have
access to trader-resolved data: to each order is associated a client identification
number. Brokers are interested in managing the risk associated to their tempo-
rary inventory against future price moves or large volume imbalance (buy-sell).
How much predictability either of order imbalance or of average transaction price
change trader-resolved data brings is an open question. Here, we take the point of
view that predictability of complex systems such as financial markets is due in part
to an underlying structure of systematic lead-lag between the actions of traders.
Because of the large quantity and high quality of data generated by brokers, finan-
cial markets provide an ideal testing ground for the new method we introduce and
to illustrate this point of view.

This work is relevant to several types of market participants who try to match
buy and sell order flows (which are submitted asynchronously) by keeping some
of them in their inventory. Order crossing may thus occur if incoming orders can
be matched against current inventory or added to it and made available for future
matching, which may happen at many levels. For example, two strategies of an
investor may have opposite opinions about the same asset at about the same time,
in which case internal crossing saves transaction fees and reduces uncertainty. If an
order needs to be sent to an exchange, it may be matched on its way at crossing
networks, dark pools, or even at an internal matching system within the exchange
(e.g. IMS at NYSE Euronext) [20].

Managing one’s inventory in this situation is of great practical importance, as
keeping an inventory is risky. A standard approach would be to solve an stochastic
optimization problem and to minimize some cost function (e.g. risk or probability to
reach an inventory limit) over a given time horizon, usually with stochastic processes
without any predictability both for the order flow and the future prices. Here, we
consider this situation as an on-line prediction problem instead and show how being
able to identify the source of orders makes it possible to predict the direction of both
the order flow and the volume weighted average price (VWAP) for retail clients.

Accordingly, we focus here on matching engines that are able to identify the
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source of the order (strategy, investor, broker, etc.). We link order flow and VWAP
direction prediction with the existence and persistence of trader lead-lag networks
which encode how the activity of some traders (e.g. buy) systematically leads on that
of other traders (e.g. sell). Our first contribution is to introduce an unsupervised
method to infer such networks which is generic enough to be applied at all levels
of order crossing and in non-financial contexts in which the similarity of choices of
items by customers may be used to predict future actions. The method consists in
first clustering traders into groups according to their synchronicity with the method
of [38], determining the aggregate state (buy/sell/neutral) of each group and then
applying the same method to lagged group states to detect systematic lead-lag
between groups. While synchronicity is likely due to the use of the same strategies
or of the same source of information, or both, lead-lag networks are likely caused by
the different reaction speed of the respective strategies (e.g. two moving averages
with different parameters); an alternative explanation is that some traders react
with different delays to common information [6, 24].

If these trader lead-lag networks are sufficiently persistent, some quanti-
ties become predictable. First, order flow is predictable if the state of groups
(buy/sell/neutral) is partially causal. In addition, proper inventory management
requires to predict price directions as well. Our second main contribution is thus to
assess the predictability of both order flow and price direction. Only the simplest
prediction scenario is studied: we try to predict the sign of each quantity from the
global state (buy, sell, neutral) of each trader group and their lagged values. In other
words, we reduce prediction to a classification problem from discrete variables and
use standard methods of machine learning. This setup is both crude and robust to
outliers. The point is not to provide a finely tuned method to manage inventory for
brokers, but to provide evidence that the persistence of lead-lag trader networks
yields successful predictions.

1.1. Literature review

Our contribution is related to several areas of finance pertaining to order flow seg-
mentation, predictability, and inventory control by an informed market maker.

The first broad related area is market making in the presence of predictable order
flow. In the context of market microstructure, the role of meta-orders in the long
memory of the sign of market orders is well documented [31, 5]. The order flow of
individual traders is known to be anti-correlated with previous daily or weekly price
returns [17, 25]. A related topic, although less directly relevant to our contribution,
is the predictive power of order flow on other quantities than itself such as price
returns [26]. Whereas market makers were assumed to be fighting against informed
traders in the early literature, the long memory of market order signs leads to a
new paradigm of optimal market making [1]. Internal order matching differs from
market making at an exchange in that one may liquidate in part one’s inventory at
the exchange, although with non-negligible transaction costs [15].
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Trader grouping is often performed according to their role in financial markets
(e.g. individual investor, institutional investor, etc). Average properties are then
computed over whole sub-populations [17, 23, 18, 2].

Unsupervised clustering on the other hand rests on the similarity of actions of
traders determined ex post . The simplest approach is based on the computation of
the correlation matrix of trader inventory changes; then Principal Component Anal-
ysis is used together with Random Matrix Theory (to account for the finite length
of the available time series) to extract eigenvalues outside the random spectrum [41,
32, 40]. It turns out that at a timescale of a single day, only one or two eigenvalues
stand out of the noise spectrum, the largest being associated with previous price re-
turns. This allows one to classify traders as mean-reverting (the majority of them),
trend-following, and non-classifiable. The drawback of this approach is that linear
correlations do not capture the full correlation structure of traders. In addition it
fixes the number of categories of traders.

An alternative approach is Statistically Validated Networks (SVNs) [39] which
consists in computing a similarity score between two agents according to how syn-
chronous and similar their activity and inactivity periods are. This method is generic
and works well provided that the number of possible states (active, inactive, etc)
is small: one determines a p-value of synchronousness and establishes a link be-
tween two agents in a statistically sound way. Once all the links between all pairs of
agents are tested, one obtains the full synchronousness network of agents. [38] find
a surprising degree of synchronization within groups of Finnish traders at a daily
timescale.

Lead-lag relationships between traders are much less studied. For lack of avail-
able trader-resolved data, the literature has focused on lead-lag relationships be-
tween price returns [27, 37, 21, 10]. Lead-lag relationships between traders are dis-
cussed in the context of various time scales of contrarian behavior [6, 24]. We are
not aware of any work on unsupervised inference of lead-lag between traders.

2. Data description and notations

We work with datasets on foreign exchange (FX) transactions from two independent
sources: a large dealing bank (LB hereaftera), and a broker-dealer (Swissquote Bank
SA, SQ hereafterb). We refer the reader to [20] for more details about the FX
market organization. Both datasets contain information about all the trades of their
clients over a given period: anonymous client identification number, trade time with
a millisecond precision, traded currency pair, signed volume, and price (currency

aLB’s electronic market-marking desk provides liquidity (i.e. quotes and volumes) on the currency
rates to large clients such as commercial companies, financial institutions, pension funds, hedge-
funds.
bSQ acts as an on-line broker on thousands of financial instruments, with a large market share in
the global Foreign eXchange activity in Switzerland. Its clients range from retail investors to asset
managers and institutions.
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Dataset Timespan Instruments Traders Trades
SQ 2012 31 Jan. 2012 → 10 Aug. 2012 68 > 103 > 106

SQ 2014-6 01 July 2014 → 15 March 2016 206 > 104 > 107

LB 01 Jan 2013 → 17 Sep. 2014 12 > 104 > 106

Table 1. Basic statistics of the datasets.

Dataset Pair Traders Trades
SQ 2012 EURUSD > 103 > 5× 105

SQ 2014-6 EURUSD > 104 > 106

EURGBP > 5× 103 > 5× 105

USDJPY > 104 > 105

LB EURUSD 7300 5× 105

Table 2. Basic statistics of the datasets for the three studied pairs.

rate). A summary of the datasets structure and contents is provided in Table 1.

This paper focuses on the most traded pairs only. Accordingly, Table 2 gives a
breakdown of descriptive statistics of the studied pairs. For confidentiality reasons,
we cannot give more precise figures for SQ.

2.1. Number of transactions per trader

The number of transactions n per trader per year for a given asset in equity markets
has been reported to have heavy tails which may be approximated by a power-law
P (n) ∼ n−α with tail exponent α ' 2 [38]. This means that some traders are orders
of magnitude more active than others, which implies that focusing on the most
active traders may simplify much the prediction of future order flows. We checked
that the power-law still holds on FX markets over about 2 decades of n; the exponent
α was estimated for each currency and each year with the method introduced by
[9] (see also [16]). For a given currency pair, we filtered out the years in which less
than 1000 traders were active, which left 53 estimates. We found αavg ' 1.99±0.07

(95% confidence interval) in the largest dataset (SQ 2014-6).

2.2. Trade size

The different nature of the respective clients of LB and SQ influences the typical
trade size. We present the results in multiple of 1000 of the base currency for SQ
clients and in multiple of 100′000 for LB clients. In Fig. 1, we plot the distribution
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Fig. 1. Distribution of EURUSD trade sizes. Left: SQ. Right: LB. Inset: cumulative tail distribution,
in log-log scale.

of the transaction sizes for the EURUSD. Similar results are obtained for other pairs.
We observe peaks at round size (10,20,50,...), with a stronger effect for SQ than for
LB, which is consistent with the fact that its clients are mostly individual traders,
therefore more prone to be affected by psychological biases than institutional traders
(see a discussion about this phenomenon in the FX EBS market in [28]).

3. Inference of lead-lag networks

Although lead-lag networks can be determined between the agents themselves, clus-
tering the traders simplifies the visualization of lead-lag networks and is very useful
(and a standard procedure) before calibrating machine learning methods which of-
ten are confused if two or more predictors are very correlated. This is the case here:
because many FX traders are algorithmic traders, their activity/inactivity is very
similar when they use the same algorithms. Thus, grouping traders encodes the
systematic use of the same set of strategies (which includes news sources) and does
not reduce the predictive ability of our method.

3.1. Clustering traders by their synchronicity

Since the lead-lag method we propose is an extension of the SVNs, it is worthwhile
explaining the method in some details.

3.1.1. Method

Statistically Validated Networks (SVN) were introduced in [39] and applied to the
clustering of Finnish investors in [38]. The technique aims at characterizing the
degree of synchronization between the actions of two traders, thus, by extension,
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at identifying groups of traders who act in a similar way. By definition, it is an
unsupervised clustering method.

The first step is to cut time into slices of equal length δt; we chose arbitrarily
δt = 1 hour. In practice, the duration of each slice must be adapted to each situation.
In the case of the FX traders in our dataset, 1 hour is a reasonable choice with
respect to typical trading patterns of active traders. We define time slice t as the
interval [t, t+δt[. For each time slice t, we classify the state of all traders into buying
(state +1), selling (state -1), neutral (state 2), and inactive (0). Denoting the total
signed volume of trader i during time slice t by Vi(t) and the sum of the absolute
trading volume of the transactions of trader i during time slice t by Gi(t), one
defines the imbalance ratio ρi(t) = Vi(t)/Gi(t). The imbalance ratio characterizes
the trader as a net buyer (σi(t) = 1) if ρi(t) > ρ0 (ρ0 being a small threshold), as
a net seller (σi(t) = −1) if ρi(t) < −ρ0, as neutral (σi(t) = 2) if |ρi(t)| < ρ0, or
as inactive (σi(t) = 0) if Vi(t) = Gi(t) = 0. The choice of ρ0 ∈ [0.01, 0.1] is not
crucial; in the following we set ρ0 = 0.01. Because the following analysis focuses on
the most active traders, the inactive state will be dropped.

The synchronicity of a pair of traders is measured by counting the co-occurrences
in the time series of their states, and attributing a p-value that reflects the statis-
tical significance of this synchronicity assuming pure randomness. To deal with
the testing of all pairs of traders for each of the 9 types of co-occurrences of states
{−1, 2, 1} × {−1, 2, 1}, a multiple hypothesis testing correction is needed. We choose
to use the False Discovery Rate [3] with a rate set to p0 = 0.05. A network is built
by validating links between pairs of traders if the p-value of their synchronization
is smaller than the FDR-corrected threshold;traders without any links are dropped
(see [38] for more details). Note that contrarily to one-shot statistical testing, for
which such value of p0 would be foolishly large and which does not control the false
discovery rate (i.e. false positives), we are dealing here with a population of p-values
in which the FDR is controlled. In other words, there is on average a p0 fraction of
false links in the SVNs that we determine. Since we are mostly interested in groups,
this value is not crucial.

The resulting network consists most of the time in a large connected component
(i.e. a large group of connected traders) and other very small disconnected com-
ponents. The large connected component is further decomposed into communities
(or modules). Many methods have been designed to detect communities in com-
plex networks (see e.g. [30] for a review). As in [38], we use the InfoMap method
[35], which segments a connected network according to a maximum entropy argu-
ment. While this method is not suited for multi-links networks, it can deal with
weighted networks. Therefore an easy workaround consists in converting multi-links
into weighted links by assigning a weight equal to the number of validated links be-
tween two traders. When applying community detection, we exclude links between
opposite action (buy-sell), as we are primarily interested in finding groups of traders
that act in the same direction at the same time so as to be able to aggregate the
volume of a given group and compute a meaningful measure of its state.
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Fig. 2. Projection of typical networks of traders, determined at the hourly time scale (EURUSD).
Every link between two traders is statistically validated and labelled by the equal-time behavior
of the pair: (1,1) if both are net buyers, (-1,-1) if both are net sellers, (2,2) if both are neutral. The
InfoMap community detection method additionally provides clusters, shown in colors. Left: SQ
2012. Right: LB.. These are bi-dimensional projections of complex networks in which horizontal
and vertical directions have no special meaning.

3.1.2. Trader synchronicity network descriptive statistics

In the following, for each in-sample time window, we keep the 500 most active
traders and filter out those with less than 100 trades. We exclude weekends as
trading activity then is markedly different (and much smaller) than that of business
days. In addition, some traders do not use algorithmic trading, which restricts their
activity periods, or prefer to trade during the most active hours. This is why we
only keep trades from 9am to 4pm (London time).

Hourly time slices also allow the building of SVNs over a few months, which
opens the way to a large-scale investigation both of the time evolution of SVNs and
of prediction (see Sec. 4). Figure 2 shows representative examples of SVNs computed
with hourly time slices over a given time period. The number of clusters is of
particular interest: while the number of groups of SQ traders stays roughly constant
(and large), a peculiar phenomenon occurs in the four months preceding Jan. 2014
in the LB dataset: Fig. 3 reports that the number of detected groups reaches 1
then, with a similar decrease of the number of links between traders. This implies
that our method detected much less statistically validated synchronization during
this period. We were not able to find a simple explanation for this phenomenon,
but it is clear that the presence of a single group prevents significant lead-lag. We
thus expect predictability to be minimal around January 2014 for LB data (which
is confirmed in section 4.1.1).
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Fig. 3. Network of traders: basic statistics over time (EURUSD). Left: SQ 2012. Right: LB.

3.1.3. Stability of clustering as a function of time

Sliding windows allow us to detect time-varying clustering, which reflects changes of
strategy use by the traders as time goes on (as detect by a fixed 1-hour time slices).
They also raise the question of the stability of clustering, a necessary condition
for the persistence of lead-lag networks, thus for the possibility of predicting order
flows.

Assessing clustering stability is made easier by having consistent group labeling.
The first step is to make sure that the clustering tools guarantees the constant
labeling of groups when the grouping of traders is exactly the same one between
two time slices. In practice, a non-negligible proportion of traders does not belong
to the same group in the clustering performed at two consecutive times. Thus, the
first problem to solve is how to attribute coherent names to clusters as time goes
on. The simplest solution is to use a similarity measure between of the grouping at
time slices t and t−1 and to propagate the name of cluster gt−1 to the most similar
cluster at time t. The similarity measure is based on the overlap of the elements of
two clusters and defined as

OA(gt−1, g
′
t) = |gt−1 ∩ g′t| , (1)

where g and g′ are trader groups/clusters and where |x| stands for the number of
elements of x. We shall use the normalized overlap measure
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mean(std dev) LB EURUSD SQ EURUSD SQ EURGBP SQ USDJPY

mean 0.87 0.83 0.91 0.84
standard deviation 0.14 0.09 0.09 0.10

fraction of perfect stability 0.34 0 0.01 0

Table 3. Summary statistics of the Adjusted Rand Index for some currency pairs of both data
sources. SQ means SQ2014-6.

OP (gt−1, g
′
t) =

OA(gt−1, g
′
t)

|gt−1 ∪ g′t|
(2)

to account for the size of both clusters.
Consistent naming allows us to produce meaningful visualizations. Figure 4

shows how the traders switch between clusters as a function of time, using a so-
called “river chart”: at a given time, the traders belonging to the same group are
stacked together and form a continuous vertical dash, each group being clearly sep-
arated from each other. One then adds the trajectory of each trader from its group
at time t and its group at time t + 1. Having a consistent group labeling method
ensures that if there is strictly no change of group between two time steps, only
horizontal stripes appear. Thus, river charts allow us to visualize at the same time
group sizes and the evolution of group compositions, i.e. distributional and dynam-
ical properties. There clearly is a large cluster whose size is relatively stable as a
function of time. The smallest clusters are much less stable: they merge and split
again as time goes on. It is noteworthy that clustering was performed every week in
this figure: the cluster structure is relatively stable even at this sampling frequency.

3.1.4. Cluster membership stability

We use the Adjusted Rand Index (ARI thereafter), a standard global measure of
clustering stability between two consecutive clustering times [34, 13]. An ARI of
1 denotes perfect clustering stability, while the expected value of ARI for random
clustering is 0. The stability of LB traders is perfect (ARI=1) in about a third
of the days, which underscores a remarkable level of regularity of LB clients, also
hinted at by the large average ARI. Retail clients of SQ are more fickle (possibly
because a larger fraction of them do not use algorithmic trading), but their average
ARI is also remarkably high (see Table 3). In short, the ARI suggests a strong and
encouraging level of clustering stability in all data sets.

3.2. Statistically validated lead-lag networks

Determining validated lead-lag relationships between two time-series essentially con-
sists in detecting synchronicity between the first time series and the suitably lagged
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second time series. In other words, one may apply the SVN machinery to the state
of agent i and the lagged state of agent j (including the case i = j). In the con-
text of investors, since some agents use the same systematic strategies either to
open or close a position, or both, and thus act in a remarkably synchronous way,
it makes sense to focus on the lead-lag relationships between the groups of traders
determined with SVNs and a community detection method.

Once the groups of traders are determined via the SVN method, the procedure
works as follows:

(1) volume imbalances are aggregated at the group level: Vg(t) =
∑
i∈g Vi(t) and

the state of group g, denoted by σg(t), is determined in the same way as in the
SVN method;

(2) for each pair of group (g, g′) (g = g′ is allowed), the p-value of the coincidence
between σg(t) and σg′(t+ 1) is computed as in the SVN method;

(3) the number of pairs of groups is N2
groups because we allow self-linking. Since

the number pairs of states is 3x3, the significance level needs to account for
Ntests = 9 × N2

groups tests, thus FDR is used once more. Notice in particular
that g → g links are not trivial and correspond to auto-correlated time series
of aggregated volume imbalance: these links appear as loops in the directed
network representation.

Grouping agents has the advantage of simplifying the description of the system
state, thus to reduce the dimensionality of the prediction problem. In some cases,
it may be useful to skip the grouping step and determine lead-lag between agents.

3.2.1. Results

The same parameters as in Fig. 2 are used for link detection between groups. We
display two representative networks in Fig. 5. The most common type of link is to
oneself. More complex lead-lag relationships also exist: take group 22 in SQ data
set; it typically buys EURUSD within one hour after having sold EURUSD; group 31
does the opposite. One notes that, interestingly, group 31 sells during the hour after
group 22 has sold. This means that both groups act in an opposite way provided
that group 22 has sold EURUSD in the previous time slice. What is remarkable is this
happens in a systematic way.

There are more lead-lag links between SQ groups than between LB groups,
especially self-links. Interestingly, more links that validate opposite directions are
present in the lead-lag case compared to the contemporaneous one. The evolution
of the number of links over time is shown in Fig. 6: sudden drops of the number of
lead-lag links are noticeable for all data sets of SQ. Quite logically, there is no lead-
lag relationships around January 2014 for the LB dataset, which is to be related to
the detection of only one group (see Fig. 3).

The presence of links, valid under severe statistical inspection, clearly demon-
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strate the existence of predictability in the investors trading directions. However,
predicting trading flows not only requires equal-time clustering stability, but also
lead-lag stability. Measuring the latter at the level of traders is more informative
than only using lead-lag between groups. Indeed, imagine that at time t, group 1
includes Alice and Bob, and leads on group 2 which contains Carol and Dave. It
may happen that at time t+ 1 group 1 splits into groups 1a and 1b, that the com-
position of group 2 is conserved, and that groups 1a and 1b still lead on group 2.
The point here is that the lead-lag between group 1 and 2 defines a fortiori lead-
lag relationships between all the traders of group 1 and those of group 2 at time
t. The subsequent splitting of group 1 into 1a and 1b does not change the lead-
lag relationships between traders. Thus, a suitable lead-lag stability measure is the
fraction of lead-lag links between traders that is conserved between two successive
clustering times, restricted to the traders that exist at both times. Mathematically,
let Λij(t → t + 1) denote the adjacency matrix element of the lead-lag network at
the trader level between time t and time t + 1, i.e., Λij(t → t + 1) = 1 if trader i
leads on trader j and 0 otherwise, then the stability measure is defined as

β(t→ t+ 1) =

∑
ij Λij(t→ t+ 1)Λij(t+ 1→ t+ 2)∑

i′j′ Λi′j′(t→ t+ 1)

Figure 7 reports the time evolution of β. It does fluctuate much, but never quite
reaches 0 for long periods, except for LB in January 2014, which, on the whole,
leaves hope of successful predictions. However, one readily notices that the number
of both validated lead-lag network nodes and links is much smaller for LB data.
Whether a high value of β is related to a larger predictive power is investigated in
Sec. 4.1.2.

4. The predictability of inventory

We have so far shown the existence of a lead-lag structure whose persistence implies
that some quantities are predictable. This does not however mean that e.g. order
flows are simple autoregressive models. When one fits ARIMA models and hours of
the day as fixed factors, the AIC criterion always suggests to use a ARIMA(0,0,0)
model: at this time scale, the only relevant factors are the hours of the day.

These networks also give crucial insights about how to make predictions from
trader-resolved data. While future actions do depend on the current state of all
groups, any prediction method must also be fed with the lagged group states, so
that the lead-lag networks can be learned and exploited as well.

4.1. Order flow

For the sake of simplicity, we have restricted the group states to their discrete values
{-1,2,+1}. This strongly suggests to predict the sign of the total order flow, instead
of its exact value. More precisely, we aim to predict v(t + 1) = sign(

∑
i Vi(t + 1)),
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where i sweeps over all the traders from a set P of predictors consisting in the states
of the groups, denoted by σg,t (determined in-sample by SVNs), their lagged values
σg,t−1 and the time of the day. Including lagged group states is consistent with the
existence of group lead-lag of order one and is therefore necessary. . This amounts
to classify v(t+ 1) into {−1, 0,+1}, from the knowledge of group states up to time
t.

The training phase is summarized by Pt0,t1 ∼ Wt0+1,t1+1, where Pt0,t1 is a
matrix of predictors and Wt0+1,t1+1 the vector of the quantity to be predicted;
more precisely,

Pt0,t1 =

σ1,t0 σ2,t0 σ1,t0−1 σ2,t0−1 h(t0)
...

...
...

...
...

σ1,t1 σ2,t1 σ1,t1−1 σ2,t1−1 h(t1)

 ∼
 vt0+1

...
vt1+1

 = Wt0+1,t1+1, (3)

where the symbol ∼ implies that there is some kind of (possibly highly non-linear)
relationship between a line of Pt0,t1 and the corresponding next global trading flow
imbalance, as suggested by the validated lead-lag networks plotted in Fig. 5. Because
Pt0,t1 also contains the time of the day, subtle hourly differences of these validated
lead-lag networks may be detected as well. Note that we do not feed the lead-lag
networks to the machine learning method, but the latter exploits them in an implicit
way. In addition, Pt0,t1 may also include group states lagged more than once. Many
variations of Eq. (3) are relevant. First, instead of the group states, one can input
the actual volume (or log-volume), v may also be the VWAP or future price returns
(see section 4.2), etc. At all rates, we focus on the simplest possible setting here.

The discrete nature of vt suggests to infer the ∼ relationship with logistic re-
gression, which does not lead to satisfactory results (see appendix A where they
are reported). Off-the shelf machine learning methods outperform logistic regres-
sion thanks to their more non-linear nature; we thus will focus on such methods.
Instead of trying and comparing many machine learning methods and tuning their
parameters until seemingly finding predictability, we chose a single method known
for its robustness and performance: plain random forests (RF) [7, 22], which have
many useful features in this context: first, they avoid in-sample over-fitting, they
are robust, non-linear and possess an overall very good predictive power without
tweaking any parameter (at least on many “standard” data-sets [11]). A bonus is the
availability of the relative importance of each predictor. As a consequence, we will
be able to check that group states, i.e., lead-lag, is on average more important than
the time of the day. For the sake of computation speed, calibration was performed
every day, not every hour. Thus, predictions for a given day rest on a calibration
that uses data up to the previous day.

We chose 10 calibrations window lengths, denoted by Tin, ranging from 45 to 90
week days (9 to 18 weeks) with common difference of 5 days (1 week). Although RFs
output classification probabilities, i.e., the probability that the sign of the next order
flow will be +1, say, we take the most probable predicted state as the prediction of a
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given RF. In addition to computing the respective performance of each calibration
length, we also performed a majority vote of the predictions originating from each
timescale. If +1 and −1 obtain the same number of votes, the prediction is set to
zero . Finally, we used the package RandomForestSRC [22] and did not tune any
parameter of the RF calibration function.

4.1.1. Results

We run the procedure on the three most traded pairs of the SQ 2014-6 dataset
and on EURUSD LB dataset. Figures 8 to 9 report the out-of-sample performance
of our method. Although we train RFs on the signs of order flow, we also plot the
cumulated performance in currency units. In essence, if the prediction of the order
flow signs is successful during the most active periods, it also predicts the actual
order flow itself, on average. This the case of SQ clients, but not for LB: the most
precise sign predictions are during lunch time, i.e. when the activity reaches a local
minimum.

A possible explanation for this is the clear difference between SQ and LB clients:
whereas the cumulated net imbalance of SQ clients is mostly mean-reverting, that of
LB clients keeps on increasing. This means that SQ clients are mostly speculators,
while LB clients use the FX market for other purposes than mere speculation, on
average.

Let us now apply statistical tests to the out-of-sample performance in currency
units: for both brokers and all pairs, the out-of-sample performance is clearly sig-
nificant. However, the real question is the predictive power of our methodology re-
garding the sign of the next order flow. Chou and Chu approach consists in testing
whether A predicts B, where A and B are binomial variables, taking into account
auto-correlations, the null hypothesis being that A does not predict B [8]. When
applied to SQ data, this test unambiguously shows that our method yields predic-
tive answers, and that it is not useful in the case of LB data. This may mean that
an hourly time scale may not be a wise choice for LB traders.

A different way to look at these results is to analyse the performance condi-
tioned on the hour of the day. In Fig. 11, we report the p-values of out-of-sample
performance conditional on the hour of the day. We notice a tendency to perform
well in periods of high activity for SQ clients, not for LB clients.

Adding the returns to the feature set did not improve the forecast, probably



July 27, 2018 0:50 WSPC/INSTRUCTION FILE manuscript

Statistically validated lead-lag networks and inventory prediction in the foreign exchange market 15

because the returns effect are already embedded in groups actions, in line with
the factor analysis of [32]. Remarkably, multiple runs of the procedure revealed
that there is no need to update the model every day: an update every 5 days
approximately gave the same results, which is consistent with the large persistence,
on average, of lead-lag networks.

4.1.2. Importance of predictors

In order to check that the order flow imbalance depends on the group states we check
a contrario that the hour of the day is not the most important predictor most of
the time. That the non-linear relationship between the predictors and future order
imbalance signs sometimes depends on the hour of the day is not surprising, as
indeed some groups may be more active at certain times of the day. However, given
the existence of lead-lag networks, we do not expect the hour of the day to top the
list of variable importance very often.

There are several ways to measure variable importance in Random Forests; we
have used the standard Breiman-Cutler measure, which (roughly speaking) consists
in shuffling the elements of a given column of the predictors matrix and determining
how the in-sample prediction error changes (see [7] for more details). We shall focus
on the rank of the hour of the day relative to the one of all the other columns. Since
we use an unsupervised method to cluster the traders, the number of groups varies
as a function of time. As a consequence, we define the rank ratio of column h as
the ratio between the rank of the importance of h, denoted by rank(h), 1 being the
most important, and the number of columns of P , denoted by Kt1 . Because a rank
of 1 would correspond to 1/Kt1 , a time varying quantity, and might therefore make
it unnecessarily difficult to compare two rank ratios, we define the adjusted rank
ratio of h as

rh =
rank(h)− 1

Kt1 − 1
.

With this convention, the hour column is the most important predictor if rh = 0

and the least important one if rh = 1. The left plot of Fig 12 plots rh as a function
of time for EURGBP. It turns out that the distribution of the relative importance of
h is rather bimodal (see the histogram in the middle plot of the same figure) and
persistent. The bimodal nature of rh is less pronounced for other Tin and currency
pairs. At all rates, one may wonder if prediction is more successful in periods of
low rh or high rh, or equivalent, how predictive of success rh is. As we deal with
a classification problem, the tool of choice is Receiver Operating Characteristic
(ROC) curves and their associated Area Under Curve (AUC), which, in a nutshell,
quantifies how different the distribution of rh is when the prediction is correct and
when it fails. By definition, an AUC of 0.5 corresponds to the absence of predictive
power of rh, while an AUC of 1 implies that rh fully determines the success of
predictions. The right plot of the same figure makes it clear that there is some
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predictability associated to rh, and that it is once again larger during the most
active hours. Since there is only one value of rh for each day, and since one makes
one prediction per hour, we have computed average AUC conditional on the hour
of the day.

Finally, we compute the hourly average AUC of the trader-trader lead-lag persis-
tence β. Figure 13 reports the AUC for the three SQ currency pairs as a function of
the number of weeks of the calibration window, restricted to the same out-of-sample
period. Once again, the predictive power of such measure is weak.

4.2. VWAP prediction

Managing one’s imbalance requires more than predicting the sign of the order flow.
Indeed, succeeding in predicting the average direction of the trades during the next
period is also necessary. Instead of predicting separately the sign of the next price
return, we focus on the VWAP of the trades of the broker’s clients during each time
slice as it combines both volume and price. If a broker can predict the evolution
of his VWAP in the next time slice, then it will be able to manage much more
efficiently its inventory.

The setup is very similar as that for order flow prediction, except that the vector
vt1+1 to predict now contains the signs of the changes of the broker’s VWAP. In other
words, we still face a classification problem, but for the VWAP signed difference
this time. We keep the same parameters as before. Figure 14 displays the results
for EURUSD and SQ: predictability is clearly significant and even better than for the
sign of the order flow. Figure 15 shows that the predictability of the sign of VWAP
change is particularly significant at the most active hours for all currency pairs
for SQ. LB customers on the hand show once again exactly the opposite behavior:
prediction ability is the worst during the most active hours: VWAP change is not
predictable if the order flow signs are not.

5. Conclusion and perspectives

Our aim was first to introduce an unsupervised lead-lag network inference method
and show the existence of persistent agent lead-lag networks in financial data. Quite
remarkably, these hidden causal networks open the way to useful predictions at a
one-hour time horizon in one of the most unpredictable complex systems. Admit-
tedly, we used more detailed (and private) information than most market partic-
ipants can obtain: the point is that this kind of information makes the origin of
predictability explicit. Reversely, one then understands why predictability is not
significant when lead-lag networks are too sparse, either because the trader activity
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similarity is too small or because the chosen timescale does not correspond to the
natural activity rate of the agents.

Being able to predict the evolution of one’s inventory is very useful in practice for
improving internal order matching and inventory management, in particular with
respect to risk constraints. This implies that theoretical results about inventory
management must be generalized in order to include predictability both of order
flow and VWAP (e.g. [15]).

Avoiding overfitting was one of the focus of the applied part of this paper.
However, substantial improvements to the learning methods can easily be achieved.
First, more relevant information can be added to predictors, such as the group states
lagged more than once. This will be helpful if some traders have typical holding
periods larger than the duration of time slices. In addition, we have not exploited
the full potential of random forests, which do not output binary predictions, but the
fraction of trees that predict a given state. Finally, simple learning schemes such as
follow-the-leader may improve much the aggregation of the predictions from each
time-window calibration lengths, hence the overall prediction performance. These
kind of methods simple are likely to exploit better the available information without
adding sources of overfitting.

We have also avoided method overfitting by using a single machine learning
method without trying to vary any of its parameters. Improvements to random
forests such as oblique Random Forests [33], or boosted trees [14], may yield better
performance. This would also open the way to ensemble learning. Finally, while we
arbitrarily chose one-hour time slices, one should investigate lead-lag networks at
various time scales at the same time.

On a more philosophical note, our work is a first step towards the understanding
of what triggers the activity of an investor, one of the current mysteries in Finance.
We cannot explain yet why a group of traders acts at time t. However, their activity
depends on the past activity of some other groups or themselves, which is expected
since most trading activity is self-referential in financial markets. The fact that
VWAP changes are predictable points out that traders react at least in part to
past the direction of past price changes. This recursive (thus indirect) answer to
a fundamental question also deserves further investigation, in particular with a
multiple timescales approach.

Finally, coming back to complex systems, this work shows how an unpredictable
complex system becomes predictable once agent-resolved data is simplified and pre-
pared so as to make lead-lag networks learnable, which promises to improve ones’
tools to manage risk dynamically. Future work will estimate how predictable agent
behavior is in other contexts such as communication networks and on-line shopping.
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EURCHF RF logistic

Chou Chu 3.5e-06 4.8e-05
t 5.0e-12 2.4e-05

Wilcoxon 3.9e-13 1.3e-05

EURGBP RF logistic

Chou Chu 8.2e-05 3.6e-04
t 4.7e-03 1.8e-04

Wilcoxon 5.0e-05 4.2e-05

USDJPY RF logistic

Chou Chu 4.8e-05 7.9e-01
t 4.7e-03 3.9e-01

Wilcoxon 4.0e-06 1.7e-03

Table 4. P-values of various tests for positive performance for logistic regression and random forests
(RF) on SQ2014-6 dataset.

Appendix A. Prediction with logistic regression

For the sake of meaningful comparisons, we gave to logistic regression the same
inputs as to random forests (but split the hour of the day into separate factors),
used the same calibration window lengths, and fitted a logistic model every day.
The prediction of the model is then rounded to either -1 or +1. The performance
summary statistics corresponding to the majority vote between all the calibration
window lengths both for logistic regression and random forests fare are reported in
Table 4. It is quite clear that logistic regression is out-performed by random forests.
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Fig. 4. Agent clustering time evolution. Each elementary line width represents the trajectory of an
agent from one group to an other group. Hourly time slices, 12 weeks in-sample, weekly clustering;
SQ 2012, EURUSD.
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Fig. 5. Examples of lead-lag networks between groups at an hourly scale, for a given given date
and a calibration window of 50 days (EURUSD, left: SQ, right: LB). 2 labels the neutral state.
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Fig. 6. Lead-lag network of traders: number of links as a function of time. Sliding windows of 45
days of calibration.



July 27, 2018 0:50 WSPC/INSTRUCTION FILE manuscript

24 CHALLET, CHICHEPORTICHE, LALLOUACHE, KASSIBRAKIS

0.00

0.25

0.50

0.75

1.00

2014−07 2015−01 2015−07 2016−01

β

SQ EURUSD

0.00

0.25

0.50

0.75

1.00

07−2013 01−2014 07−2014
β

LB EURUSD

Fig. 7. Trader-trader lead-lag overlap ratio β as a function of time. Same parameters as in Figure
6.
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Fig. 8. Out-of-sample performance: cumulated product of the predicted order flow sign and actual
sign (upper left), cumulated product of the predicted order flow sign and actual order flow (upper
right), cumulated product of the predicted order flow sign and actual order flow, and the cumulated
actual flow (lower left), cumulated product of the predicted order flow direction and actual order
flow (black line) and cumulated actual order flow (red line); EURUSD, Swissquote. The thick black
lines correspond to a majority vote between all calibration window lengths.
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Fig. 9. Out-of-sample performance: cumulated product of the predicted order flow sign and actual
sign (upper left), cumulated product of the predicted order flow sign and actual order flow (upper
right), cumulated product of the predicted order flow sign and actual order flow, and the cumulated
actual flow (lower left), cumulated product of the predicted order flow direction and actual order
flow (black line) and cumulated actual order flow (red line); EURUSD, LB. The thick black lines
correspond to a majority vote between all calibration window lengths.
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Fig. 10. Tests of the predictive power of the binary prediction (left plot) and two tests of the
out-of-sample flow prediction performance. Smoothed curves and dashed lines at y = 0.01 are for
eye-guidance only.
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Fig. 11. Test of the predictive power of the binary prediction (Chou-Chu) and of the resulting
cumulated predicted imbalance (Wilcoxon and t) as a function of the time of the day.
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of time (left plot) and its histogram (middle plot). The right plot reports the dependence on the
Area Under Curve (AUC) of rh, averaged over all Tin, as a function the hour of the day. Dataset:
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Fig. 13. Area Under Curve (AUC) vs the hour of the day for the trader-trader lead-lag persistence
measure β; SQ 2014-6 dataset.



July 27, 2018 0:50 WSPC/INSTRUCTION FILE manuscript

30 CHALLET, CHICHEPORTICHE, LALLOUACHE, KASSIBRAKIS

0

200

400

600

2015−01 2015−07 2016−01

C
um

ul
at

ed
 p

er
fo

rm
an

ce
 [s

ig
n]

Tin
45
50
55
60
65
70
75
80
85
90

SQ VWAP EURUSD

1.0

1.5

2.0

2.5

3.0

2015−01 2015−07 2016−01

C
um

ul
at

ed
 p

er
fo

rm
an

ce
 Tin

45
50
55
60
65
70
75
80
85
90

SQ VWAP EURUSD

Fig. 14. Out-of-sample performance: cumulated product of the predicted VWAP sign change and
actual sign (upper left), cumulated product of the predicted VWAP sign change and actual sign
change (upper right); SQ EURUSD. The thick black lines correspond to a majority vote between all
calibration window lengths.
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Fig. 15. VWAP change prediction: test of the predictive power of the binary prediction (Chou-
Chu) and of the resulting cumulated predicted performance (Wilcoxon and t) as a function of the
time of the day; SQ.
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Fig. 16. Out-of-sample performance: cumulated product of the predicted VWAP sign change and
actual sign (upper left), cumulated product of the predicted VWAP sign change and actual sign
change (upper right); LB EURUSD. The thick black lines correspond to a majority vote between all
calibration window lengths.
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Fig. 17. VWAP change prediction: test of the predictive power of the binary prediction (Chou-
Chu) and of the resulting cumulated predicted performance (Wilcoxon and t) as a function of the
time of the day; LB, EURUSD.
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Fig. 18. Hourly statistics of the prediction performance of a logistic regression; SQ2014-6.
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