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NOTES ON EXPLICIT AND INVERSION FORMULAS FOR THE

CHEBYSHEV POLYNOMIALS OF THE FIRST TWO KINDS

FENG QI, DA-WEI NIU, AND DONGKYU LIM

Abstract. In the paper, starting from the Rodrigues formulas for the Chebyshev
polynomials of the first and second kinds, by virtue of the Faà di Bruno formula,

with the help of two identities for the Bell polynomials of the second kind, and

making use of a new inversion theorem for combinatorial coefficients, the authors
derive two nice explicit formulas and their corresponding inversion formulas for

the Chebyshev polynomials of the first and second kinds.

1. Introduction

It is well known [5–7, 29] that the Chebyshev polynomials of the first and second
kinds Tn and Un(x) are very important in mathematical sciences and that, in the
study of ordinary differential equations [5, pp. xxxv and 1004], they arise as solutions
to the Chebyshev differential equations(

1− x2
)
y′′ − xy′ + n2y = 0 and

(
1− x2

)
y′′ − 3xy′ + n(n+ 2)y = 0

for the Chebyshev polynomials of the first and second kinds Tn and Un respectively.
In [6, Eqs. (4.30) and (4.31)], the Rodrigues formulas for the Chebyshev polyno-

mials of the first and second kinds Tn and Un read that

Tn(x) = (−1)n
2nn!

(2n)!

(
1− x2

)1/2 dn

dxn
[(

1− x2
)n−1/2]

(1.1)

and

Un(x) = (−1)n
2n(n+ 1)!

(2n+ 1)!

(
1− x2

)−1/2 dn

dxn
[(

1− x2
)n+1/2]

. (1.2)

For variants of the Rodrigues formulas for the Chebyshev polynomials of the first
and second kinds Tn and Un, please refer to, for example, [5, pp. 1003–1004], [7,
p. 442], [18, Sectiion 4], and [29, pp. 432–433].

In [5, p. 1003], the Rodrigues formulas for Tn(x) and Un(x) are written in the forms

Tn(x) = (−1)n
√

1− x2
(2n− 1)!!

dn

dxn
[(

1− x2
)n−1/2]

(1.3)
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and

Un(x) =
(−1)n(n+ 1)√
1− x2 (2n+ 1)!!

dn

dxn
[(

1− x2
)n+1/2]

. (1.4)

In [5, p. 1004] and [29, pp. 432–433], the Rodrigues formulas for Tn(x) and Un(x) are
formulated as

Tn(x) =
(−1)n

√
π

2nΓ(n+ 1/2)

(
1− x2

)1/2 dn

dxn
[(

1− x2
)n−1/2]

(1.5)

and

Un(x) =
(−1)n

√
π (n+ 1)

2n+1Γ(n+ 3/2)

(
1− x2

)−1/2 dn

dxn
[(

1− x2
)n+1/2]

, (1.6)

where Γ(z) stands for the classical gamma function which can be defined [?,?] by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

or by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0.

In [7, p. 442], the Rodrigues formulas for Tn(x) and Un(x) are arranged as

Tn(x) =

(
1− x2

)1/2
(−2)n(1/2)n

dn

dxn
[(

1− x2
)n−1/2]

(1.7)

and

Un(x) =
(n+ 1)

(
1− x2

)−1/2
(−2)n(3/2)n

dn

dxn
[(

1− x2
)n+1/2]

, (1.8)

where (x)n for n ≥ 0 and x ∈ R denotes the rising factorial which can be defined [22]
by

(x)n =

n−1∏
`=0

(x+ `) =
Γ(x+ n)

Γ(x)
=

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0.

By virtue of the recurrence relation Γ(x+ 1) = xΓ(x), we have

Γ

(
n+

1

2

)
=

n−1∏
`=0

(
n− `− 1

2

)
Γ

(
1

2

)
=

(
1

2

)
n

√
π =

(2n− 1)!!

2n
√
π

and

Γ

(
n+

3

2

)
=

n∏
`=0

(
n− `+

1

2

)
Γ

(
1

2

)
=

(
3

2

)
n

√
π

2
=

(2n+ 1)!!

2n+1

√
π .

Substituting these into (1.5) and (1.6) respectively leads to (1.3), (1.4), (1.7), and (1.8)
which are equivalent to (1.1) and (1.2) respectively.

In [29, pp. 432–433], it was listed that

Tn(x) =
n

2

bn/2c∑
m=0

(−1)m
(n−m− 1)!

m!(n− 2m)!
(2x)n−2m (1.9)

and

Un(x) =

bn/2c∑
m=0

(−1)m
(n−m)!

m!(n− 2m)!
(2x)n−2m, (1.10)
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where n ∈ N and btc denotes the floor function whose value equals the largest integer
less than or equal to t.

In this paper, starting from the four formulas (1.1), (1.2), (1.9), and (1.10), by
virtue of the Faà di Bruno formula, with the help of two identities for the Bell poly-
nomials of the second kind, and making use of a new inversion theorem [26, Theo-
rem 4.3] for combinatorial coefficients, we will derive the following two nice explicit
formulas and their corresponding inversion formulas for the Chebyshev polynomials
Tn and Un.

2. Four lemmas

For proving our main results, Theorems 1 and 2 below, we need the following four
lemmas.

Lemma 1 ( [4, pp. 134 and 139]). For n ≥ k ≥ 0, the Faà di Bruno formula can be
described in terms of the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1)
by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (2.1)

Lemma 2 ( [4, p. 135]). For n ≥ k ≥ 0, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1), (2.2)

where a and b are any complex numbers.

Lemma 3 ( [13, Theorem 5.1] and [25, Section 3]). For n ≥ k ≥ 0, the Bell polyno-
mials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n, (2.3)

where
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0.

Lemma 4 ( [26, Theorem 4.3]). For n ≥ k ≥ 1, let sk and Sk be two sequences
independent of n. Then

sn
n!

=

n∑
k=1

(−1)k
(

k

n− k

)
Sk

if and only if

nSn =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
sk.

3. Main results and their proofs

Now we begin to state and prove our main results, Theorems 1 and 2 below.

Theorem 1. For n ≥ 0, the Chebyshev polynomials Tn and Un can be explicitly
computed by

Tn(x) = xn
bn/2c∑
`=0

(
n

2`

)(
1− 1

x2

)`

(3.1)
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and

Un(x) = xn
bn/2c∑
`=0

(
n+ 1

2`+ 1

)(
1− 1

x2

)`

. (3.2)

Proof. By virtue of the formuals (2.1), (2.2), and (2.3), we have

dn

dxn
[(

1− x2
)n−1/2]

=

n∑
k=1

dk un−1/2

duk
Bn,k(−2x,−2, 0 . . . , 0)

=

n∑
k=1

k−1∏
`=0

(
n− `− 1

2

)
un−k−1/2(−2)k Bn,k(x, 1, 0 . . . , 0)

=

n∑
k=1

1

2k

k−1∏
`=0

(2n− 2`− 1)
(
1− x2

)n−k−1/2
(−2)k

1

2n−k
n!

k!

(
k

n− k

)
x2k−n

=
n!

(2x)n
(
1− x2

)n−1/2 n∑
k=1

(−1)k
(

k

n− k

)
(2n− 1)!!

[2(n− k)− 1]!!

2k

k!

(
x2

1− x2

)k

=
n!(2n− 1)!!

(2x)n
(
1− x2

)n−1/2 n∑
k=1

(−1)k
(

k

n− k

)
2k

k![2(n− k)− 1]!!

(
x2

1− x2

)k

,

where n ∈ N, u = u(x) = 1 − x2, and the double factorial of negative odd integers
−2n− 1 is defined by

(−2n− 1)!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!
, n ≥ 0.

Substituting the above established equality into (1.1) and simplifying lead to

Tn(x) =

n∑
k=1

(−1)n−k

4n−k

(
k

n− k

)(
n

k

)
[2(n− k)]!!

[2(n− k)− 1]!!
x2k−n

(
1− x2

)n−k
which can be rearranged, by replacing n− k by `, as

Tn(x) = xn
n−1∑
`=0

(−1)`

4`

(
n

n− `

)(
n− `
`

)
(2`)!!

(2`− 1)!!

(
1

x2
− 1

)`

.

Since
1

4`

(
n

n− `

)(
n− `
`

)
(2`)!!

(2`− 1)!!
=

(
n

2`

)
,

we arrives at the identity (3.1).
Repeating the above process, we can obtain

dn

dxn
[(

1− x2
)n+1/2]

=

n∑
k=1

dk un+1/2

duk
Bn,k(−2x,−2, 0 . . . , 0)

=

n∑
k=1

k−1∏
`=0

(
n− `+

1

2

)
un−k+1/2(−2)k Bn,k(x, 1, 0 . . . , 0)

=

n∑
k=1

1

2k

k−1∏
`=0

(2n− 2`+ 1)
(
1− x2

)n−k+1/2
(−2)k

1

2n−k
n!

k!

(
k

n− k

)
x2k−n
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=
n!

(2x)n
(
1− x2

)n+1/2
n∑

k=1

(−1)k
(

k

n− k

)
(2n+ 1)!!

[2(n− k) + 1]!!

2k

k!

(
x2

1− x2

)k

=
n!(2n+ 1)!!

(2x)n
(
1− x2

)n+1/2
n∑

k=1

(−1)k
(

k

n− k

)
2k

k![2(n− k) + 1]!!

(
x2

1− x2

)k

.

Substituting this into (1.2) and simplifying lead to

Un(x) =

n∑
k=1

(−1)n−k

22n−2k+1

(
k

n− k

)(
n+ 1

k

)
[2(n− k + 1)]!!

[2(n− k) + 1]!!
x2k−n

(
1− x2

)n−k
.

Replacing n− k by ` reveals that

Un(x) =

n−1∑
`=0

(−1)`

22`+1

(
n+ 1

n− `

)(
n− `
`

)
[2(`+ 1)]!!

(2`+ 1)!!
xn−2`

(
1− x2

)`
.

Due to
1

22`+1

(
n+ 1

n− `

)(
n− `
`

)
[2(`+ 1)]!!

(2`+ 1)!!
=

(
n+ 1

2`+ 1

)
,

we derive (3.2). The proof of Theorem 1 is complete. �

Theorem 2. For n ∈ N, we have
n∑

k=1

(
2n− k − 1

n− 1

)
(2x)kTk(x) =

1

2
(2x)2n (3.3)

and
n∑

k=1

k

(
2n− k − 1

n− 1

)
(2x)kUk(x) = n(2x)2n. (3.4)

Proof. We notice that the formulas (1.9) and (1.10) can be rearranged as

Tn(x) =
n

2

bn/2c∑
m=0

(−1)m
(
n−m
m

)
(2x)n−2m

n−m
(3.5)

and

Un(x) =

bn/2c∑
m=0

(−1)m
(
n−m
m

)
(2x)n−2m. (3.6)

The inversion theorem in Lemma 4 can be restated as

(−1)n
sn
n!

=

n−1∑
`=0

(−1)`
(
n− `
`

)
Sn−` =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
Sn−`

if and only if

nSn =

n∑
`=1

(−1)`

(`− 1)!

(
2n− `− 1

n− 1

)
s`.

The formulas (3.5) and (3.6) can be rearranged as

2

n
(2x)nTn(x) =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
(2x)2(n−`)

n− `



6 F. QI, D.-W. NIU, AND D. LIM

and

(2x)nUn(x) =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
(2x)2(n−`).

Consequently, we obtain

n
(2x)2n

n
=

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
(−1)k2(k − 1)!(2x)kTk(x)

and

n(2x)2n =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
(−1)kk!(2x)kUk(x)

which can be simplified as (3.3) and (3.4). The proof of Theorem 2 is complete. �

4. Remarks

In this section, we will list several remarks to explain more about the formula (2.3),
Lemma 4, our main results, and other things.

Remark 1. To the best of our knowledge, the nice formula (2.3) was first concluded
in [13] and has been extensively applied in the papers [8–16, 18, 19, 21, 23, 25, 27, 28]
and closely related references therein. The formula (2.3) has been generalized in the
papers [16,19,20] and closely related references therein.

Remark 2. To the best of our knowledge, Lemma 4 is a new inversion theorem and
has been applied in the paper [8, 17,18,24].

Remark 3. Because both the formula (2.3) and Lemma 4 are new, our main results
stated in Theorems 1 and 2, or at least their proofs, are also new.

Remark 4. The Chebyshev polynomials are classical, but their study is still very
active. As examples, we recommend three newly-published papers [1–3] to readers.
Considering the length of this paper, we would not like to detail main results in these
three papers and the closely-related references therein.

Remark 5. This paper is a slightly revised version of the preprint [18].

Acknowledgements. The third author was supported by the National Research
Foundation of Korea (Grant No. 2018R1D1A1B07041846).

The authors appreciate anonymous referees for their valuable comments on the
original version of this paper.
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