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NOTES ON THE RODRIGUES FORMULAS FOR TWO KINDS

OF THE CHEBYSHEV POLYNOMIALS

FENG QI, DA-WEI NIU, AND DONGKYU LIM

Abstract. In the paper, the authors derive, from the Rodrigues formulas for
the Chebyshev polynomials of the first and second kinds and by virtue of the

Faà di Bruno formula and two identities for the Bell polynomials of the second

kind, two explicit formulas for the Chebyshev polynomials of the first and sec-
ond kinds, find, by virtue of an inversion formula for combinatorial coefficients,

two inversion formulas for explicit formulas of the Chebyshev polynomials of

the first and second kinds, and collect variants of the Rodrigues formulas for
the Chebyshev polynomials of the first and second kinds.
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1. Introduction and main results

It is well known [2, 3, 4] that the Chebyshev polynomials of the first and second
kinds Tn and Un(x) are very important in mathematical sciences and that, in
the study of ordinary differential equations [2, pp. xxxv and 1004], they arise as
solutions to the Chebyshev differential equations

(1− x2)y′′ − xy′ + n2y = 0 and (1− x2)y′′ − 3xy′ + n(n+ 2)y = 0

for the Chebyshev polynomials of the first and second kinds Tn and Un respectively.
In [3, Eqs. (4.30) and (4.31)], the Rodrigues formulas for the Chebyshev polynomials
of the first and second kinds Tn and Un read that

Tn(x) = (−1)n
2nn!

(2n)!

(
1− x2

)1/2 dn

dxn
[(

1− x2
)n−1/2]

(1)

and

Un(x) = (−1)n
2n(n+ 1)!

(2n+ 1)!

(
1− x2

)−1/2 dn

dxn
[(

1− x2
)n+1/2]

. (2)
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In [10, pp. 432–433],

Tn(x) =
n

2

bn/2c∑
m=0

(−1)m
(n−m− 1)!

m!(n− 2m)!
(2x)n−2m (3)

and

Un(x) =

bn/2c∑
m=0

(−1)m
(n−m)!

m!(n− 2m)!
(2x)n−2m, (4)

where n ∈ N and btc denotes the floor function whose value equals the largest
integer less than or equal to t.

We notice that the formulas (3) and (4) can be rearranged as

Tn(x) =
n

2

bn/2c∑
m=0

(−1)m
(
n−m
m

)
(2x)n−2m

n−m
(5)

and

Un(x) =

bn/2c∑
m=0

(−1)m
(
n−m
m

)
(2x)n−2m. (6)

In this paper, starting out from (1) and (2), by virtue of the Faà di Bruno formula,
two identities for the Bell polynomials of the second kind, and an inversion theorem
of combinatorial numbers, we will derive two explicit formulas for the Chebyshev
polynomials Tn and Un below.

Theorem 1. For n ≥ 0, the Chebyshev polynomials Tn and Un can be explicitly
computed by

Tn(x) = xn
bn/2c∑
`=0

(
n

2`

)(
1− 1

x2

)`

(7)

and

Un(x) = xn
bn/2c∑
`=0

(
n+ 1

2`+ 1

)(
1− 1

x2

)`

. (8)

Employing an inversion theorem for combinatorial numbers in [9, Theorem 4.3],
we will find inversion formulas of the formulas (5) and (6).

Theorem 2. For n ∈ N, we have

n∑
k=1

(
2n− k − 1

n− 1

)
(2x)kTk(x) = 22n−1x2n (9)

and
n∑

k=1

k

(
2n− k − 1

n− 1

)
(2x)kUk(x) = n(2x)2n. (10)

In the last section, we will collect variants of the Rodrigues formulas for the
Chebyshev polynomials of the first and second kinds Tn and Un.

2. Lemmas

In this paper, we need the following lemmas.
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Lemma 1 ([1, pp. 134 and 139]). For n ≥ k ≥ 0, the Bell polynomials of the
second kind, or say, partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1),
are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

Faà di Bruno’s formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (11)

Lemma 2 ([1, p. 135]). For n ≥ k ≥ 0, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1), (12)

where a and b are any complex numbers.

Lemma 3 ([6, Theorem 4.1]). For n ≥ k ≥ 0, the Bell polynomials of the second
kind Bn,k satisfy

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n, (13)

where
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0.

Lemma 4 ([9, Theorem 4.3]). For k ≥ 1, let sk and Sk be two sequences indepen-
dent of n such that n ≥ k ≥ 1. Then

sn
n!

=

n∑
k=1

(−1)k
(

k

n− k

)
Sk if and only if nSn =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
sk.

3. Proofs of main results

Now we begin to prove our main results stated in the first section.

Proof of Theorem 1. By virtue of the formuals (11), (12), and (13), we have

dn

dxn
[(

1− x2
)n−1/2]

=

n∑
k=1

dk un−1/2

duk
Bn,k(−2x,−2, 0 . . . , 0)

=

n∑
k=1

k−1∏
`=0

(
n− `− 1

2

)
un−k−1/2(−2)k Bn,k(x, 1, 0 . . . , 0)

=

n∑
k=1

1

2k

k−1∏
`=0

(2n− 2`− 1)
(
1− x2

)n−k−1/2
(−2)k

1

2n−k
n!

k!

(
k

n− k

)
x2k−n

=
n!

(2x)n
(
1− x2

)n−1/2 n∑
k=1

(−1)k
(

k

n− k

)
(2n− 1)!!

[2(n− k)− 1]!!

2k

k!

(
x2

1− x2

)k

=
n!(2n− 1)!!

(2x)n
(
1− x2

)n−1/2 n∑
k=1

(−1)k
(

k

n− k

)
2k

k![2(n− k)− 1]!!

(
x2

1− x2

)k

,

where n ∈ N, u = u(x) = 1− x2, and the double factorial of negative odd integers
−2n− 1 is defined by

(−2n− 1)!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!
, n ≥ 0.



4 F. QI, D.-W. NIU, AND D. LIM

Substituting the above established equality into (1) and simplifying lead to

Tn(x) =

n∑
k=1

(−1)n−k

4n−k

(
k

n− k

)(
n

k

)
[2(n− k)]!!

[2(n− k)− 1]!!
x2k−n

(
1− x2

)n−k
which can be rearranged, by replacing n− k by `, as

Tn(x) = xn
n−1∑
`=0

(−1)`

4`

(
n

n− `

)(
n− `
`

)
(2`)!!

(2`− 1)!!

(
1

x2
− 1

)`

.

Since
1

4`

(
n

n− `

)(
n− `
`

)
(2`)!!

(2`− 1)!!
=

(
n

2`

)
,

we arrives at the identity (7).
Repeating the above process, we can obtain

dn

dxn
[(

1− x2
)n+1/2]

=

n∑
k=1

dk un+1/2

duk
Bn,k(−2x,−2, 0 . . . , 0)

=

n∑
k=1

k−1∏
`=0

(
n− `+

1

2

)
un−k+1/2(−2)k Bn,k(x, 1, 0 . . . , 0)

=

n∑
k=1

1

2k

k−1∏
`=0

(2n− 2`+ 1)
(
1− x2

)n−k+1/2
(−2)k

1

2n−k
n!

k!

(
k

n− k

)
x2k−n

=
n!

(2x)n
(
1− x2

)n+1/2
n∑

k=1

(−1)k
(

k

n− k

)
(2n+ 1)!!

[2(n− k) + 1]!!

2k

k!

(
x2

1− x2

)k

=
n!(2n+ 1)!!

(2x)n
(
1− x2

)n+1/2
n∑

k=1

(−1)k
(

k

n− k

)
2k

k![2(n− k) + 1]!!

(
x2

1− x2

)k

.

Substituting this into (2) and simplifying lead to

Un(x) =

n∑
k=1

(−1)n−k

22n−2k+1

(
k

n− k

)(
n+ 1

k

)
[2(n− k + 1)]!!

[2(n− k) + 1]!!
x2k−n

(
1− x2

)n−k
.

Replacing n− k by ` reveals that

Un(x) =

n−1∑
`=0

(−1)`

22`+1

(
n+ 1

n− `

)(
n− `
`

)
[2(`+ 1)]!!

(2`+ 1)!!
xn−2`

(
1− x2

)`
.

Due to
1

22`+1

(
n+ 1

n− `

)(
n− `
`

)
[2(`+ 1)]!!

(2`+ 1)!!
=

(
n+ 1

2`+ 1

)
,

we derive (8). The proof of Theorem 1 is complete. �

Proof of Theorem 2. The inversion theorem in Lemma 4 can be restated as

(−1)n
sn
n!

=

n−1∑
`=0

(−1)`
(
n− `
`

)
Sn−` =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
Sn−`

if and only if

nSn =

n∑
`=1

(−1)`

(`− 1)!

(
2n− `− 1

n− 1

)
s`.

The formulas (5) and (6) can be rearranged as

2

n
(2x)nTn(x) =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
(2x)2(n−`)

n− `



RODRIGUES FORMULAS FOR CHEBYSHEV POLYNOMIALS 5

and

(2x)nUn(x) =

bn/2c∑
`=0

(−1)`
(
n− `
`

)
(2x)2(n−`).

Consequently, we obtain

n
(2x)2n

n
=

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
(−1)k2(k − 1)!(2x)kTk(x)

and

n(2x)2n =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
(−1)kk!(2x)kUk(x)

which can be simplified as (9) and (10). The proof of Theorem 2 is complete. �

4. Variants of Rodrigues formulas for Chebyshev polynomials

In [2, p. 1003], the Rodrigues formulas for Tn(x) and Un(x) are written in the
forms

Tn(x) = (−1)n
√

1− x2
(2n− 1)!!

dn

dxn
[(

1− x2
)n−1/2]

(14)

and

Un(x) =
(−1)n(n+ 1)√
1− x2 (2n+ 1)!!

dn

dxn
[(

1− x2
)n+1/2]

. (15)

In [2, p. 1004] and [10, pp. 432–433], the Rodrigues formulas for Tn(x) and Un(x)
are formulated as

Tn(x) =
(−1)n

√
π

2nΓ(n+ 1/2)

(
1− x2

)1/2 dn

dxn
[(

1− x2
)n−1/2]

(16)

and

Un(x) =
(−1)n

√
π (n+ 1)

2n+1Γ(n+ 3/2)

(
1− x2

)−1/2 dn

dxn
[(

1− x2
)n+1/2]

, (17)

where Γ(z) stands for the classical gamma function which can be defined [5, 7] by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

or by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0.

In [4, p. 442], the Rodrigues formulas for Tn(x) and Un(x) are arranged as

Tn(x) =

(
1− x2

)1/2
(−2)n(1/2)n

dn

dxn
[(

1− x2
)n−1/2]

(18)

and

Un(x) =
(n+ 1)

(
1− x2

)−1/2
(−2)n(3/2)n

dn

dxn
[(

1− x2
)n+1/2]

, (19)

where (x)n for n ≥ 0 and x ∈ R denotes the rising factorial which can be defined [8]
by

(x)n =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1

1, n = 0
=

n−1∏
`=0

(x+ `) =
Γ(x+ n)

Γ(x)
.

By virtue of the recurrence relation Γ(x+ 1) = xΓ(x), we have

Γ

(
n+

1

2

)
=

n−1∏
`=0

(
n− `− 1

2

)
Γ

(
1

2

)
=

(
1

2

)
n

√
π =

(2n− 1)!!

2n
√
π
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and

Γ

(
n+

3

2

)
=

n∏
`=0

(
n− `+

1

2

)
Γ

(
1

2

)
=

(
3

2

)
n

√
π

2
=

(2n+ 1)!!

2n+1

√
π .

Substituting these into (16) and (17) respectively leads to (14), (15), (18), and (19)
which are equivalent to (1) and (2) respectively.
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