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We provide a general classification of template operators, up to next-to-leading order, that appear in
chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking
SU(Ng)/Sp(Ng) and SU(Ng)/SO(Ng). All possible explicit-breaking sources parametrized by spurions
transforming in the fundamental and in the two-index representations of the flavor symmetry are included.
While our general framework can be applied to any model of strong dynamics, we specialize to composite-
Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor
symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and
linear ones a la partial compositeness. Our templates provide a basis for lattice calculations in specific
models. As a special example, we consider the SU(4)/Sp(4) = SO(6)/SO(5) pattern which corresponds to
the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of
the vacuum. In particular, we shed light on the physical properties of the singlet #, showing that it cannot
develop a vacuum expectation value without explicit CP violation in the underlying theory.

DOI: 10.1103/PhysRevD.97.075028

I. INTRODUCTION

The discovery of a Higgs-like boson [1,2] at the LHC
experiments is one of the most remarkable scientific
successes of the beginning of the century, as it concludes
a 50-year-long difficult quest [3]. While our knowledge
of the properties of the new particle is increasing thanks to
the extraordinary effort of the experimental collaborations
[4-6], its true nature is still as elusive as ever. The lack of
signals of new physics in other searches at the LHC (and
other experiments) may be telling us that the Standard
Model (SM) is the correct model after all, or it may be
telling us that new physics may be either light and lurking
in signatures that are difficult to access or heavy and
difficult to produce at the LHC. The latter possibility can be
seen as an indirect support for theories where electroweak
(EW) symmetry breaking is induced by a confining force
at a few TeV scale. The time-honored idea of technicolor
[7,8], in fact, predicts that new resonances besides the
Nambu-Goldstone bosons (NGB) eaten by the massive EW
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gauge bosons should appear above a few TeV and be
weakly coupled to the SM (thus difficult to produce). While
early proposals did not have a light scalar that could play
the role of the 125 GeV Higgs, such a light scalar can
be obtained either as an additional pseudo-NGB (pNGB)
[9-11] or as a light resonance (whose lightness may derive
from an approximate infrared conformal behavior of the
theory [12—17]). The idea of a pNGB Higgs has recently
been revived via holographic realizations in extra dimen-
sions [18], which share common traits to gauge-Higgs
unification models [19-21].

While most of the recent progress has been based either on
holography or on effective theories (see, for instance,
Refs. [22-24]), models that can be based on an underlying
theory have a special role to play. On the one hand, they may
truly be addressing the hierarchy problem as no scalars are
presentin the theory.1 On the other hand, they can be studied
on the lattice, thus providing quantitative predictions for
the phenomenology of the Higgs boson. In addition, the
symmetry-breaking pattern is linked to the properties of the
representation of the underlying fermions [25,26]: only
three cases exist, SU(Ng)/Sp(Ng), SU(Ng)/SO(Ng), and
SU(Ng) x SU(Ng)/SU(N¢) for pseudoreal, real, and com-
plex representations, respectively. The minimal composite-
Higgs model can be achieved for the first class with Np = 4
[27]. A simple underlying theory based on a gauged SU(2)

'"This statement is, of course, incomplete unless a theory that
generates the coupling of fermions is also specified.
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has been proposed in Refs. [28,29] and studied on the lattice
[30-36] [preliminary results for an underlying Sp(4)
theory can be found in Ref. [37]]. Other theories widely
studied on the lattice are the ones that feature a light CP-even
scalar resonance [38,39] (where the lightness is defined
by comparison to the other resonances, such as spin-1
ones). This state has been proposed as a candidate for
the discovered Higgs-like boson [12,15,40], even though it
is not clear if its couplings can really mimic the ones of
the SM Higgs [41]. A next-to-leading order (NLO) chiral
Lagrangian including the singlet has been presented
in Ref. [42].

Motivated by the great progress on the lattice, in this
work we focus on the construction of effective theories up
to NLO, which include the effect of spurions that explicitly
break the global symmetry of the theory. We limit our study
to spurions in up to two-index representations of the global
symmetry and provide a complete list of template operators
that can be used to construct the NLO counterterm operators
once the nature of the spurions is specified. We then focus on
spurions relevant for composite-Higgs models, namely a
current mass for the underlying fermions, the gauging of the
EW symmetry (embedded in the global symmetry), and the
sources generating the Yukawa coupling for the top quark.
The latter play an important role, as they usually are the most
relevant spurions in the theory. There are two distinct ways
to introduce such coupling: either via bilinear couplings to a
scalar operator or by linear couplings to fermionic operators.
The former follows the old proposal of extended technicolor
interactions [43], while the latter is based on the idea of
partial compositeness [44] which was also realized in
holographic models. In this work we will consider both:
note that, in terms of an underlying theory, both appear as
four-fermion interactions involving underlying fermions
and elementary ones. Realizing partial compositeness in
an underlying theory often requires the presence of two
distinct representations of the underlying gauge group, with
chromodynamics (QCD) interactions sequestered by one
and the job of EW symmetry breaking assigned to the other
[45,46]. An NLO chiral Lagrangian for this situation has
been constructed in Ref. [47], while preliminary lattice
results for the specific model of Ref. [48] can be found in
Refs. [49-51]. The main role of the spurions for the
phenomenology of the composite Higgs is to misalign the
vacuum toward EW symmetry breaking.

Up to now, the global symmetry Gy has been assumed to
be only spontaneously broken by the condensation of the
strong sector to a subgroup Hg. All alignments of Hg within
the global symmetry are equivalent from the point of view of
the confining force. However, when explicit breaking
sources external to the strong dynamics are present, one
direction may be preferred. Furthermore, the sources may
also break Hy explicitly: the prime example is QCD where
the current masses and the gauging of electromagnetism
explicitly break SU(Ng)y down to U(1)gy, generating a

mass for the pNGBs, i.e. the pions. In composite-Higgs
models, the explicit breaking sources are crucial to misalign
the vacuum with respect to the EW gauge sector and,
therefore, to drive EW symmetry breaking and give mass
to the Higgs (and additional pNGBs).

The misalignment between the EW preserving and
physical vacua is conveniently parametrized by an angle,
0 [11], and the physical vacuum, E,, can be written as

Ey = UyEU?, (1)

where E is an EW preserving vacuum, and U, is a rotation
matrix of G connecting the two vacua. In Eq. (1), we have
assumed that the underlying fermions are pseudoreal or real,
in which case the vacuum is an antisymmetric or symmetric
matrix. The interpretation of the angle € is simple, as it can be
directly linked to the electroweak scale as sinf = v/f, f
being the decay constant of the pNGBs. Thus, the limit
6 < 1 corresponds to a pNGB Higgs, while for 0 = z/2 we
have a technicolor model where v = f. The value of the
angle 6 (as well as the form of the EW preserving vacuum E)
will be determined by the interplay between the spurions
of the theory.

In general, the vacuum may be misaligned along more
than one direction, and not just along the Higgs one. This
can easily be implemented by rotating the vacuum E (or E,)
with other rotations in Gy parametrized by the appropriate
(broken) generators. Loosely, the misalignment can be
thought of as a vacuum expectation value for some of
the pNGBs, even though this formalism does not respect
the shift symmetry of the theory along the rotated vacuum
and is thus dangerous.

The paper is organized as follows. In Sec. II, we present
the chiral perturbation theory based on the two patterns
of symmetry breaking: SU(Ng)/SO(Ng) and SU(Ng)/
Sp(Ng). We introduce generic spurions belonging to the
fundamental and to the two-index representations of the
flavor symmetry and classify, up to NLO, the nonderivative
operators. We then specialize to the three main explicit
breaking sources in composite-Higgs models. In Sec. I1I, we
give a concrete example with the minimal fundamental
composite-Higgs model based on SU(4)/Sp(4). We discuss
the vacuum alignment when NLO contributions are included
as well as the properties of the additional pNGB singlet, 7.
We finally present our conclusions in Sec. IV. More details
about the classification of the relevant operators and a
complete list of templates are given in the Appendixes.

II. CHIRAL PERTURBATION THEORY FOR
PSEUDOREAL AND REAL REPRESENTATIONS

The chiral perturbation theory that we introduce in this
section is intended to parametrize the low-energy physics
of some strongly coupled hypercolor (HC) gauge theories.
We focus on the sector of the theory that is responsible for
the breaking of the EW sector of the SM with the aim of
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providing a dynamical symmetry breaking and solving the
hierarchy problem of the Higgs mass. Thus, the matter
content consists of fermions, and their representation under
the HC interactions completely determines the pattern of
global symmetry breaking [25] of the model. In particular,
Ng Weyl fermions in a real or pseudoreal representation
lead to a global symmetry Gg = SU(Ng) which can only be
spontaneously broken to Hr = SO(Ng) or Hr = Sp(Ng),
respectively. Note that N is necessarily even for pseudor-
eal representations to avoid Witten anomalies [52], while
no constraint applies to the real case. If the representation is
complex, Ng Weyl fermions need to be accompanied by
equally many antifermions to cancel gauge anomalies,” and
the global Gr = SU(Ng) x SU(Ng) can only be sponta-
neously broken to the diagonal subgroup SU(Ng)p, exactly
as in QCD. After spontaneous breaking, the Weyl fermions
pair into massive Dirac fermions, with the dynamical mass
leaving the HC symmetry, Gyc, unbroken. In the case of an
odd number of Weyl fermions® in a real representation of
Gyc, instead, the dynamics generates a gauge-invariant
Majorana mass.

Note that underlying models with a different gauge group
and fermionic representations may lead, at low energy, to the
same chiral perturbation theory, i.e. to the same global
symmetry-breaking pattern. Furthermore, the number of
fermions N is constrained by the fact that the unbroken
global symmetry needs to contain the EW gauge symmetry
of the SM extended to the full custodial symmetry,
Gew = SU(2);. x U(1)y € SU(2); x SU(2)g C Hg, and a
Higgs doublet candidate in the coset. Under these condi-
tions, the minimal coset with an underlying fermionic origin
is SU(4)/Sp(4) [27], which can be generated by a Gy =
SU(2) gauge group with four Weyl fermions transforming as
doublets [28,29]. The next-to-minimal cosets are G/ Hp =
SU(6)/Sp(6) [53], SU(5)/SO(5) [11,48], and SU(4) x
SU(4)/SU(4), [54] for the pseudoreal, real, and complex
cases, respectively. We focus here on the real and pseudoreal
cases as they can be described by a chiral Lagrangian of the
same form, and they are associated with the smallest viable
cosets. Moreover, the complex case is the one associated
with QCD, and it has already been explored in great detail in
the literature [55-58]. We leave the number of flavors, N,
free in order to remain as general as possible.

Besides the spontaneous breaking of Gy due to the strong
dynamics, the global symmetries are also explicitly broken
by the interactions with the elementary states of the SM: the
EW gauge interactions and the interactions giving rise to
the top mass are the prime examples. Note also that, as the
theories we study are vectorlike with respect to the SM
gauge interactions (and also nonchiral with respect to the

We assume that the theory is vectorlike with respect to the SM
gauge quantum numbers, so that an EW preserving vacuum is
allowed.

3However, this class of models can no longer be considered as
vectorlike gauge theories [25,26].

HC interactions), a bare mass term for the fermions can
(and should) always be added. The explicit breaking terms
can be thought of as spurions that transform under both the
global symmetry, Gg, and the SM symmetries (both gauged
and global). The fact that they are not dynamical fields
explicitly breaks Gg. They will play a crucial role for the
alignment of the condensate with respect to the EW
symmetries.

In the following, we first present the chiral Lagrangian
associated with the real and pseudoreal cases [59,60] up to
NLO in the chiral expansion. Then, we parametrize the
effect of the explicit breaking interactions in the chiral
perturbation theory through generic spurionic fields.
Finally, we specialize to the explicit-breaking sources
appearing in composite-Higgs models, namely a current
mass for the fundamental fermions, the gauging of Ggy,
and the linear or bilinear couplings between the elementary
top quark and the strong sector.

A. Chiral Lagrangian up to NLO

In this section, we present the NLO chiral perturbation
theory for the real and pseudoreal cases. Both give rise to an
SU(Ng) global symmetry, Ng > 4, and they can, therefore,
be described within a unified framework. We will para-
metrize the NGBs in terms of a linearly transforming
matrix, 2, which is symmetric under flavor indices of Gg
for the real case and antisymmetric for the pseudoreal one.
We finally remind the reader that the chiral expansion is in
terms of powers of the momentum p,, of the NGBs. At LO,

i.e. order p?, the chiral Lagrangian reads

_r
Lz_8c%

Tr[(D,Z) DS +

fZ
ST + 5 ()

8c7
where f is related to the decay constant of the NGB s, and
the complex matrix y (and the covariant derivative D,)
contain scalar (and axial/vector) sources. Following
Ref. [61], we introduce a normalization factor ¢, (equal
to /2 for real representations, and 1 for pseudoreal) so that
the relation between f and the EW scale, v, is the same for
all models. X

The NGBs, G#, are parametrized by the matrix X as
follows:

¥ = exp(2Vv2¢,iGA X/ f)E, X-gxg". (4)

4By expanding the kinetic term in Eq. (2), one obtains the
relation to the decay constant defined by

(vacl 73 (0)|GP (p)) = ip,,#(s“, P=0. (3)

’In the technicolor limit, f = ». This is valid if the EW
symmetry is embedded in Sp(2) ~ SU(2) subgroups of Sp(Ng)
and SO(4) subgroups of SO(Ng).
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TABLE 1.

Properties of the NGB matrix, 2, and of the external sources, a

s Uy» and y. The representations under the unbroken global

symmetry, Hr, are shown in general for the real (R) and pseudoreal (PR) cases as well as for the minimal composite-Higgs models based
on SU(4)/Sp(4) and SU(5)/SO(5). The chiral counting is also given in the last column.

Transformation Hg reps (PR) Hry reps (R)
Fields under Gg SuU(4)/Sp(4) SU(5)/S0(5) Counting
z 2 - gZg" o(p°)

=5 =14
D, D= - ¢(D,Z)g" - O(p)
X X =g =5 Eéj =14 o(p?)
Ju = Uy . Lo+ (11=10 =10
U 9,9)" (@)

jy = a, Ju = 99" +ig(9,9) O=5 =14 (p)
Juw Juw = G’ Same as j, O(p?)

where E is a matrix giving the orientation of the vacuum

within Gg, and XA are the corresponding broken generators.
In the absence of explicit breaking of the global symmetry,

all the vacua are equivalent. The broken X# and unbroken 4
generators are defined by the following relations:

XAE-EXNT =0, SAE+ESYHT =0, (5)

and are normalized according to Tr[SAS8] = 1/2548 and
Tr[XAX5] = 1/288.
The covariant derivative is defined as follows:
D,2=09,2-ij,2—i%jl, j,=viS*+alXx?, (6)
|

where v, and a, are the vector and axial sources, respec-
tively. It is convenient to define the field strength tensor
j;w = /ljl/ - auju - gj;ng°

Note that, apart from the NGB matrix, X, the other fields
appearing in the Lagrangian are external sources that
transform in complete representations of Gg. They should
not be confused with the spurions that we will introduce in
the next section, because they do not break the global
symmetries of the strong dynamics. The transformation
properties under Gg of the NGB matrix and of the external
sources, as well as their chiral counting, are summarized in
Table 1.

The NLO chiral Lagrangian at order O(p?) is given
by [62]

L, = LyTr[D,2(D,2)"D*3(D*L)] + L, Tr[D,2(D'E)")? + L, Tr[D,Z(D, %) | Tr[DFZ(DVE) ]
+ L3 Tr[D,(D*%) D, X(D'Z) ] + L, Tr[(D,Z)(D*E) | Tr[y = + Zy']
+ LsTr[(D,Z)(D'E)" (27 + Z¢ )] 4+ LeTr[y " + Zy]? + L Tr[y = — Sy ]2 4+ LTr[y T2t + Sy "5y ]
— iLoTr[j,, D'Z(DE)" — ji, (DVE) DVE] + Ly Tr[Zj, X j**] + 2H | Tr[j,, j**] + HyTrlyx '], (7)

where the coefficients L; and H; are low-energy constants
(LEC) that only depend on the strong dynamics and can be
computed on the lattice once the details of the underlying
theory are specified. The above Lagrangian is expressed in
a particular basis where we remove the redundant oper-
ators’ in complete analogy with the Gasser and Leutwyler
[58] Lagrangian for the complex case.

B. Generic spurionic operators

The chiral Lagrangian can be completed by introducing
explicit breaking terms of the flavor symmetry, Gg: in the
following, we will employ the spurion technique by

*When the number of flavors, N, is small, the Caley-Hamilton
relations may be used to remove additional redundant operators.
The equations of motion have also been used to remove two other
operators.

|
defining nondynamical spurions, E, that transform as
complete representations of Gg. We will limit ourselves
to the lowest-dimensional representations with up to two
indices, so that the subscripts F, A, S, and Adj indicate, in
the following, the fundamental, antisymmetric, symmetric,
and adjoint representation, respectively. The spurions also
carry quantum numbers related to the SM gauge and global
symmetries. Being agnostic of their origin, we will over-
look this in this section, together with their proper counting
in the chiral expansion: we will, thus, classify the operators
based on the number of spurions. We will then specialize to
the quantum numbers and chiral counting for various
models of composite Higgs in the next section. Note that,
sometimes, it will be convenient to embed one, or more,
elementary SM fields in the definition of the spurion, as we
will see in concrete examples in the next section.
Spurions in representations up to two Gg indices are
sufficient to describe all the composite-Higgs models we
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TABLEII. Transformations under G of the generic spurions in
the fundamental and two-index representations. Convenient
combinations of these spurions with the NGB matrix, X, are
also shown, transforming as X — ngT, as they allow one to
easily construct the explicit operators. The tensor product (x)
allows one to define a two-index matrix out of a fundamental and
an antifundamental, F % F.

Spurions Transformation Convenient form

Eg Er — ¢Er Bg * B, L8+ EL2
B+ 2L3F, 228 5 5]

= = = T = =t

=S/A Es/a = 9=s/a9 Es/aZl, TEg/a

= —_ — —_ —T

ZAdj Zadj g:‘Adng =Adj» Z:‘AdeT

are interested in. In Table II we list the spurions with their
transformation properties. We found it useful to construct,
out of these spurions, objects that transform like the adjoint,
as they are convenient building blocks for Gg-invariant
operators. We also truncate the classification to operators
with up to four spurions. Without a proper chiral counting
this restriction may seem arbitrary. However, as we will see
in the following, it is enough to derive all the NLO
operators we are interested in. We are now armed to build
a general basis of operators: the results we present here and
in the Appendixes are for the case of pseudoreal repre-
sentations for which X is an antisymmetric matrix. The case
of real representations, for which X is symmetric, can easily
be derived by exchanging &, <> Eg in the operators. Using
the properties of the spurions, one finds that the only
operator involving one spurion is Tr[Z,X"] + H.c. Using
the convenient forms, operators with two spurions can be
straightforwardly constructed, and they are listed in
Table III. The classification of operators with three and
four spurions is more involved; thus we reported details and
results in Appendix C.

Explicit models can contain more than one spurion
transforming under the same Gy representation that is
distinguished by their SM quantum numbers; thus the list
of operators we present here are to be considered a template

TABLE III.  Operators with one or two spurions Eg/», Eg, and
Eagj and no derivatives.

No Linear in £ Quadratic in X
One Tr[EAX] + H.c.
spurion
Two Tr(Es/aE a) TrEs/aZ'Bag] Tr[EAZNTr[EE]]
spurions +H.c.
Tr(E34] EITTE: + He. Tr[EAZ)? + Hec.
S Tr[Eg/a 2 Eg/a X'

+H.c.
Tr[Eag ZEL ;2]

to build explicit operators in specific models. Operators that
are singlet under the SM symmetries correspond to a
potential for the NGBs that will fix the alignment of the
vacuum in the Gg space. Operators that are not singlets,
however, need to be coupled to SM fields; alternatively, one
can embed the SM fields in dynamical spurions that,
therefore, may carry Lorentz indices and spin. Operators
containing derivatives can, in principle, be inferred system-
atically from the nonderivative ones as explained in
Appendix C. We finally remark that the list of operators
derived from the above templates may contain redundant
operators, which need to be eliminated case by case if one
wants to identify the minimal number of independent LECs
in the model. As already mentioned, the chiral counting of
each operator crucially depends on the physical origin of the
spurions, and this will be discussed in the following section.

C. Explicit breaking sources in composite-Higgs models

Having at our disposal a complete basis of nonderivative
operators involving up to four spurions (see Table III and
Appendix C), we now specify the sources of explicit
breaking that are relevant in the context of composite-
Higgs models. We focus on the following possibilities:

(1) A current mass for the underlying fermions .
In general, this spurion transforms in the same
representation of the NGB matrix, . The maximally
symmetric case corresponds to a common mass with
the flavor structure aligned to the EW preserving
vacuum, E.

(ii) The gauging of the EW symmetry, Ggw = SU(2); x
U(1)y C Gg. Note that, in general, additional gaug-
ing is allowed if the flavor symmetry, G, is large
enough: for instance, the SU(3), of QCD may be
included [63], or additional non-SM gauge sym-
metries. Examples of the latter are a U(1) symmetry
broken on the EW-preserving vacuum, E, in the
SU(4)/Sp(4) case [27], or duplicates of the SM
gauge symmetries in little-Higgs models [53,64].

(iii) A SM-like bilinear coupling between the elementary
top quark multiplets and the strong dynamics: Qt¢
couples to a scalar operator of the strong sector Oy,
that has the same quantum numbers as the Higgs
doublet in the SM. Note that the coset may allow for
more than one doublet, so that multiple choices for
Og; within the NGB matrix are allowed.

(iv) Linear couplings a la partial compositeness [44]
between the elementary top quark multiplets and the
strong dynamics: Q and ¢ couple separately to the
fermionic operators Oy and O,, respectively.

A detailed list of all the relevant spurions can be found in
Table IV. These sources of explicit breaking generate masses
for the gauge bosons and SM fermions, as well as a potential
for the NGBs and in particular for the Higgs boson. Four-
fermion interactions among the SM fermions are also
generated in the same formalism. The potential determines
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TABLE 1V. Spurions parametrizing the explicit breaking
sources appearing in composite-Higgs models. The representa-
tion of the partial-compositeness spurions depends on the trilinear
baryon involved in the linear couplings, i.e. on the flavor
representation of O, ,. Then i = {F, A, S, Adj}.

Explicit General  Explicit
breaking form form Gsy  Counting
Current mass Ea x (L), O
Gauging SU(2), Elrdi gTitwt  (1.1),  O(p)
E‘ﬁdj ng (1,3)o O(p)
Gauging U(1),  Ziy  gTyB (LD, O(p)
Eadj JTy (1,1), O(p)
Top bilinear Ly P(Q.)" (L1), O(p?)
g%t P (1.2), O(p)
Partial compositeness ~ F; YiL PZQZ’ (L), O(p)
Ef yaPq  (3.2)16 O(/P)
&  ywPrt (L), O(p)
E yrPr (3.1) ;5 O(/P)

the alignment of the vacuum within the flavor symmetry, G,
thus allowing for a spontaneous breaking of the EW
symmetry and for mass generation for some of the NGBs
(that thus become pseudo-NGB, or pNGB, in the following).
The time-honored result is that the top loops, associated with
(iii) and (iv), have the correct sign to destabilize the Higgs
potential, while the current mass and the EW gauging cannot
break Gryw alone. The vacuum alignment in the presence of
the above spurions and in the context of the minimal
SU(4)/Sp(4) model will be discussed in detail in Sec. TIT C.

The underlying fundamental theory involving the hyper-
fermions, y, dictates the form and the properties of the
spurions. We start, therefore, from the fundamental inter-
actions in order to derive the chiral counting of the spurions
as well as their general properties. These underlying
properties imply that a large number of operators present
in the general classification are not anymore allowed in
these specific cases. In the following, we describe in detail
the underlying properties of the composite-Higgs spurions.
The complete NLO basis of nonderivative operators is
reported in Appendixes A and B where more details on its
derivation are given.

1. Current mass

Let us start with the simplest source of explicit breaking,
namely a current mass for the hyperfermions. At the
fundamental level, the relevant Lagrangian is given by

1 )
Ly = =5 My +y My’

1 .
= =5 (m'wEy + my E'y). (8)

In the second equality, we consider explicitly the max-
imally symmetric case where the mass matrix is aligned to
the EW preserving vacuum E: this is not an arbitrary
choice, as the mass term itself generates a potential that
aligns the vacuum inside Gg. In other words, it is the mass
term that fixes the matrix E. With the maximally symmetric
choice, the mass term explicitly breaks Gy to Hg,
thus giving mass to all the NGBs. Additional terms
further breaking Hg are also possible, and they can be
parametrized as additional mass parameters proportional
to other EW preserving directions in the vacuum E), so
that in general the mass term can be written as
M =mE+ > ;6m;E!. In chiral perturbation theory, the
spurion associated with the mass transforms as the NGB
matrix Z [as it can be inferred from Eq. (8)], and it can be
introduced as a vacuum expectation value for the scalar
source, y, that we introduced in Egs. (2) and (8). It is
defined as follows:

¥ =2ByM = 2mB,E, (9)

with B, being a positive LEC.

From Table III, we derive the LO operator (with one
spurion) involving y. Note that this operator has the same
form as the second term in Eq. (2) once we replace the
scalar source with the spurion defined in Eq. (9).
Expanding to second order in the Goldstone fields, we
get for the pNGB mass M2G = 2Bym, and thus y counts as
O(p?). The NLO operators involving the mass spurion, y,
can be derived in the same way starting from our general
basis of operators. Due to the counting of y, a great
simplification appears at NLO: only the operators with
two spurions need to be considered. The result is reported
in Appendix A and is in agreement with Eq. (8) providing a
first check of our procedure to derive all the nonderivative
NLO operators starting from our template list.

2. Gauging of flavor symmetries

We now turn to the second obvious source of explicit
breaking, i.e. the gauging of the EW symmetry, Ggyw C Gr.
At the fundamental level, the fermions are minimally
coupled to the SM gauge bosons via a covariant derivative
Loge =16 Dy, D,=0,—igT{Wa—igTyB,. (10)
Note that the generators 7% and Ty are written as matrices
in the G space. However, they are not normalized as the
Gg generators in Eq. (5) but in order to reproduce the
correct transformation properties of each of the components
of . For each gauged generator, thus, one can define a
spurion transforming as the adjoint of Gg, 4y = ¢7T7 and
E/{dj = ¢'Ty, that also transforms as the adjoint represen-
tations of the gauge groups. In the chiral expansion, they
inherit the same counting as derivatives, i.e. O(p). It is also
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convenient to define a spurion that contains the gauge
fields, i.e. E’;dj = gT¢ Wﬁ + ¢ TyB,,, that can be introduced
by replacing the vector and axial sources as j* — E’fxaj? see
Eq. (6). The LO and NLO operators containing EW gauge
fields can easily be read off from Egs. (2) and (8).

The effect of the gauging also appears in nonderivative
operators that can be built in terms of the spurions 2 AdJ and
= Adj : technically, they should be thought of as counterterms
necessary to regulate loops of gauge bosons. Thus, besides
the counting of the chiral expansion, one needs to add loop
suppression factors in order to correctly estimate the impact
of such operators. The LO operators, containing two
spurions and thus appearing at O(p?), read

2
VY = Cy(@Fos 2 THTEE(TE)TE

+PEN TS, ()

where there appears a single LEC, C, that depends on the HC
dynamics. The two factors, F,p,, contain the details of the
loop of elementary gauge bosons: as for both groups we need
to consider massless gauge bosons, the loop factors are
approximately the same, and they can be estimated to be [65]

1

floop 161 2

~f2, (12)
where the A ~ (4zf)? factor comes from the quadratic
divergence of the loop. Thus, the loop suppression is
compensated by the quadratic sensitivity to the cutoff
of the effective theory, and the operators can be estimated to

VY = C (P TR TES(T) TSN + o F*TeTy (Ty ) TET]).
(13)

Itis natural to expect that the contribution of the gauge bosons
cannot break the gauge symmetry by misaligning the vacuum
[66,67]; thus we can assume C, > 0. Following the chiral
counting, NLO terms are generated with four spurions and are
proportional to the gauge couplings to the fourth power.
However, due to the smallness of the gauge couplings, one
can realistically restrict to order ¢> and ¢, as it is done in
QCD [68,69]. Furthermore, we would like to remind the
reader that the gauging of additional gauge interactions can be
introduced in a similar way as done for the EW ones. A
complete list of NLO nonderivative operators containing
gauge spurions can be found in Table V in Appendix A.
Finally, we would like to point out that the effect of the
gauging of additional symmetries within G, such as QCD
or beyond-the-SM symmetries, can be included by adding
appropriate terms to Eqs. (11) and (13). No additional
LECs are needed, as long as the masses of the additional
gauge bosons are generated by the condensation itself.

3. Top couplings

The third source of explicit breaking relevant for
composite-Higgs models that we consider is due to
couplings between the elementary top quarks and the
strong sector. Two main possibilities are available: cou-
plings that are either bilinear or linear in the SM fields, with
the latter realizing the partial compositeness paradigm.
Linear couplings, however, always need an extension of the
underlying theory as, minimally, hyperfermions charged
under QCD are needed in order to generate QCD-colored
bound states. This can be done either by sequestering the
QCD interactions to a sector containing a different HC
representation [45,46] or by adding heavy flavors in QCD-
like theories [63]. In either case, the fermionic operators
that couple linearly to tops are made of three hyper-
fermions. Another possibility to achieve partial compos-
iteness is to add hypercolored scalars, so that the linear
couplings arise as renormalizable Yukawa couplings in the
underlying theory; see Refs. [70-72]. In all cases, the top
partners always appear in a representation of G with one
or two indices, and thus we will restrict ourselves to these.

Bilinear couplings.—At the fundamental level, we assume
that the top mass is generated by the following operators:

i y
[’?ﬂmear — Af”l (QatL) O(ét ;
i

_ ytt
R

where A,l > Agc are scales independent from the strong
sector,’ and a = 1, 2 stands for the index of an SU(2),
doublet. In the second equality, we assume that the scalar
operators, Oy, ;, originating from the strong sector, are
fermionic bilinears, thus leading to four-fermion operators.
The pI‘O_]CCtOI‘S P¢, select the SU(2), -doublet components
of wTy with hypercharge —1/2: in general there may be
several possibilities, and for an explicit example with four
independent couplings, we refer the reader to Ref. [54].
Note that one can write different types of operators where
the spurion transforms as X, with Op,; = w'Pfy*; how-
ever, the physical results are the same as the matrix X is
always symmetric or antisymmetric.

The spurion encoding the explicit breaking is
E%T = 3.y,P% transforming as a doublet of SU(2), with
hypercharge —1/2, so that it always needs to appear in pairs
in order to build gauge-invariant operators. Similar to what
we did for the gauging, we define a single spurion including

elementary fields that reads 22" = >y, PH(Q41)". Then,

+ H.c.

(Qut)'w" Py +He.,  (14)

"The scales A, ; need to be, at least, larger than the cutoff of the
effective theory, because they correspond to additional inter-
actions that may affect the low-energy properties of the strong
dynamics. For an explicit example, see Ref. [73].
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the LO operators associated with the bilinear spurion are
given by [27,29]

e =cf (Zy,.iTr[ZP?J (Qut)' + H-c~>

- lezf;ggp (Zyl.iTr[ZPa ) (nyzTr PjaZT >
(15)

where the form of the second operator derives from the fact
that it is generated by loops of elementary tops. Only two
LECs are needed: one relative to the operators generating a
mass for the top (the former), and one for the NGB potential
(the latter). Note that the dependence on the scales A,;,
which may contain a large anomalous exponent if the theory
is conformal above Ay, can be embedded in a redefinition
of the couplings y,; without loss of information. In some
cases the presence of many possible alignments of the
doublet within the NGB matrix is superfluous as a trans-
formation of Gg may be used to change basis (i.e. reshuffling
the hyperfermions ) and write a smaller number of
couplings without affecting other spurions. Assuming that
the top, m;,, and Higgs (pNGB) masses are naturally of the
same origin, we can impose the following counting for the
spurions: y,P*(Q,t°)" ~ O(p?) and y,P* ~ O(p). Note that
the two spurions do not have the same counting contrary to
the gauge ones. Similar to the gauge boson loops, the loop
factor for massless tops can be approximated by Eq. (12),
where color and other factors are embedded in the LEC, C,.
At NLO, the O(p*) Lagrangian contains five new
operators contributing to the potential (for simplicity we

omit the sums, so that > ,y,;P¥ — y,P%),
£§4> ) ——f6
Afic

+ CpTr[EPUZPP]Tr[PLE PLET]

+ CATr[PIZ! PLPYEPO) (8455 + 8,5

+ (CuTr[EPTr[EP/|Tr[PLEPJZT] + H.c.)

+ (CsTHEPUTP!|Te[PIZ PIE] + He)}.  (16)
|

{C, (Tr[ZPYTr[PZ1])?

o Qaly PoyXT)

y,L

PC _
L~ =

)’L

(w +38 1T (W Py XT) + He.,
Qi PowX') +735 17 (y"PyX') + He.,

)rL (WTPOQCWXT) + % T (' PywX") +He.,, Exy
Qh(P

SwXTXT) + i\#‘lét"j(P,y/"'X"'XT) +He., EZ"=y, P EL=

where the first three operators are self-Hermitian. Three
additional operators contain one insertion of the hyper-
fermion mass spurion,

4
£0 5 Y (T PP TP )

+ C T [y Tr[PLE Tr[ZP]
+ CgTr[PLENTr[Sy 2P + Hoc.}. (17)

Other operators involving gauge couplings are also present
and listed in Table VII in Appendix A.

Linear couplings a la partial compositeness.—Let us now
consider the second way of giving mass to the top quark by
means of linear couplings of the elementary top fields
to fermionic operators of the strong dynamics (partial
compositeness),

L = f\’“ Zy"*ftco +Hec., (18)

i

where the sums span over all the possible operators and, as
for the bilinear case, the interactions are generated at scales
A;; > Agc. We will assume that the operators are made of
three underlying fermions, as it happens in all explicit
examples [45,46,48,63]; the linear couplings will thus
correspond to four-fermion operators.® As previously
mentioned, the operators need to contain at least one
hyperfermion that carries QCD color, which we denote
as X, and which corresponds to a different HC representa-
tion or to heavy flavors. As a consequence, either one or
two y’s are allowed: the former case corresponds to the
fundamental of Gg, while the latter corresponds to two-
index representations. The fundamental can also be
obtained in models with scalars [70,71].

Spelling out the various cases, the linear couplings can
thus be rewritten as follows:

‘—‘A/S ytLPQ"_'A/S Vi Prs
E/%(gT = ytLP{é’:K;s Vi Prs (19)
B0y = ytLPlé7E‘Adj = thPt;
thP

$There is also the possibility of a hyperfermion/hypergluon bound state. However, this is unlikely because it would require the
hyperfermion to be in the adjoint representation of HC, thus making the theory lose asymptotic freedom.
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Note that with the preceding definitions the spurions have
the same transformation properties as the left-handed
composite operators and of the left-handed SM quark
fields. We recall that for each operator representation under
Gy, there may be several possibilities to embed the top
partners, and thus an index i should be intended in the
preceding expressions. Furthermore, for the adjoint case,
the right-handed top, 7, may be associated with the singlet
of Gy. Finally, the case of models with scalars, S, charged
under HC can be recovered by replacing XX — A’S in the
case of the fundamental. The projectors Py, and P; select
the components of the bound state that have the same
quantum numbers as the elementary SM tops. In the
following, for simplicity, we will assume that the new
physics generating the four-fermion interactions will only
generate mixing to a single representation of G, or
equivalently that the top mass is dominantly generated by
|

a single operator. A more general case has been discussed at
LOin Refs. [74,75], and it leads to the presence of a plethora
of operators.

The couplings of the underlying theory in Eq. (19)
generate, in the confined phase, linear mixing of the
elementary tops to fermionic resonances (i.e. top partners).
On top of this, effective operators are generated in terms of
the spurions defined above: in the following we will assume
that the leading contribution to the top mass is generated by
the operators. This assumption is valid as long as the top
partners are heavier than the NGB decay constant, f, and
thus cannot be included as light states in the low energy
chiral Lagrangian.

The LO operators contributing to the top mass, for all the
choices of spurion representations, are given by the
following expressions:

Cya 1 Tr[PRE P EI] + Cyp o TH[PEENTHP,ET], A

C sTr[P2xTP %7, S
ytLthf (Qalc)T % »S [ 0 ' } (20)
4n Cyadj Tr[P”éZPtTZW , Adj
CypTr[(P”Q‘ . PIT)ZT], F

plus the Hermitian conjugate. The factor of 1/4x derives from
applying naive dimensional analysis (NDA) as explained in
Refs. [76,77]. Note that, as expected, the preceding operators
involve both spurions y, and y, in order to generate the top
mass, and that only case A involves two independent
operators. The case of the right-handed top mixing to the
singlet can be used only if the left-handed tops are in the
|

|
antisymmetric representation (as that is the only case with an
operator containing a single spurion; see Table I1I), and we do
not consider it in the following because of nonminimality.

Similarly, we can construct the operators contributing to
the potential for the NGBs. At leading order, there exist
operators involving only two spurions for the case of the
antisymmetric and adjoint representations,

co __ft [ CabA TP THEPY,] + 5 TrPZTH(ZP]]). - A (21)
1,PC ar Cng (y%LTr[PgaZP(éTZT] 4 y%RTr[P;rZPZZT]), Adj )

where a factor of 1/4z comes from NDA. The only consistent chiral counting that allows for these operators to appear at
LO, O(p?), is that the Yukawa couplings Vi, count as p. Note that this chiral counting is consistent with the appearance of

the NDA factor in Eq. (20), as the top mass operator would appear at chiral order O(p?).
For the spurions in the symmetric and fundamental representations, the leading operators contain at least four spurions,

leading to the following expressions:

4

2 f T T 3
LAl = ~Cist 7y (v TH[PYE PSTTHEP), £P,] + y4 Tr[P,ETP, ST Tr[EP]£P]]

(4n)?

4

T T f T G Vel
+y2 ¥} Tr[PA X P Y THEP), ZP]]) — Cis2 = — (v Tt[P4 Tt P, P}, TP}, | (5465 + 8357)

(47)?

+ i, Tt[P 2P, P{EP]] + yi 7, (Tr[PY TP, P, P]] + Tr[PGETP,PIEP,))). (22)

for the symmetric S, and
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4

2 f AT <t +
Live - —Ctpw(yi‘LTr[Pg - Py SHTr[SPy, - P),]
+ y} Tr[P, - PN Tt[ZP; - P]]
+ Y2 R T(PG - PISATR(EP; - PL,)),  (23)

for the fundamental F.’

At NLO, many more operators are generated, as listed in
Appendix A. For reasons of space, we will limit ourselves
here to the operators generated in the case of the symmetric
representation. For the potential, mixed operators involving
two Yukawas with the mass spurion or the gauge couplings
arise at the same level as the leading pure Yukawa ones
listed above. There exist only one operator with a mass
insertion,

4
2
AHC

+ YA Try=tP,P]]) + H.c., (24)

4
[’E,P)C ¢ 2 ~Cisa (YL Tr[y = Pg P},

and four involving gauge couplings,

4
4 f ] — [l Ry
£5P>C S ) _CIS,4 —A2 Tr |:‘:‘SET‘:‘Adj:| Tr [ngdzdj]
HC
4

2. yim .  yaigt
—Ciss 2 Tr [usz —‘Adjz‘—‘S“‘Adj}
HC

4

where we have left implicit all the possible combinations of
Yukawas and gauge couplings.

III. MINIMAL SU(4)/Sp(4) MODEL

In this section, we apply the machinery developed in
the previous section to the coset SU(4)/Sp(4). This is the
minimal composite-Higgs framework with underlying
four-dimensional fermionic realizations [27]. Models based
on this coset have been studied from an effective point
of view in Refs. [78-80], and the coset has also been
used to construct minimal technicolor models in
Refs. [27-29,45,46].

°For simplicity we assumed that the LECs are the same for
operators that only differ on the type of spurion insertion, Pg or
P,. More generally, however, differences may arise due to
combinatorics of different origins in the underlying theory of
the operators.

The most minimal underlying fermionic model is based
on a confining SU(2) gauge group with four Weyl fermions
transforming under the fundamental representation of the
new gauge group [28,29]. Since the fundamental repre-
sentation of SU(2) ~ Sp(2) is pseudoreal, the fermion
sector has an enhanced global symmetry, SU(4). The
condensate forming due to the new strong dynamics then
breaks this global symmetry spontaneously to Sp(4), as
confirmed from lattice simulations [30,31]. The spectrum
of this theory has also been extensively studied on the
lattice [33-36]. Preliminary lattice studies based on a
HC Sp(4)10 have also been recently published [37].

In the following, we will revisit the operator analysis that
we detailed in the previous section focusing in particular on
the potential generated for the NGBs of the model.

A. Electroweak embedding

The full custodial symmetry of the SM, SU(2); x SU(2),
is embedded in SU(4) by identifying the left and right
chiral generators to be

1 /o4 O 1/0 O
T} =~ Th =~ 2

where o; are the Pauli matrices. The generator of the
hypercharge is then further identified with the diagonal
generator of the SU(2)y group, ¥ = Ty.

As discussed in Ref. [29], there are two inequivalent real
vacua that leave the SM chiral group invariant, £, and we
denote the one breaking the EW subgroup completely to
the electromagnetic U(1), by Eg. They can be explicitly

written as
E—(i62 0) E—(O 1> 27)
0 tis /) Bo\-1 o)

where we chose the normalization to be real.

In general the vacuum can be written as the superposition
of the EW preserving and breaking ones, and the physical
properties of the NGBs generically do not depend on the
choice of the EW preserving vacuum E_. We will see later
in this section that, in some cases, the choice of the EW-
preserving vacuum is related to some properties of the
spurions. Following Refs. [27,29], in this paper we use E_
and parametrize the vacuum as

Ey = UyE_UY = cosOE_ + sinOEp,

cos?  icysin?
Ug=|. , , ) €SUM), (28)
10, SIn 7 COS 2

lOPurely fermionic underlying theories of partial composite-
ness need at least a Sp(4) hypercolor gauge symmetry.
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where the angle O describes the misalignment of the
unbroken Sp(4) with respect to the EW embedding and
is generated by an SU(4) rotation U, associated with the
generator of the Higgs.

The (nonlinearly realized) scalar variable describing the
dynamics of the NGBs associated with the above breaking
pattern and the vacuum E, can then be written, in the
unitary gauge, as a matrix [27],

2v/2i
Z’—U’Z-Eg—exp[ \J/(_l

= {cos%ﬂ + Z\izi sin? (hY‘1 + an)} -Ey, (29)

(hY?* + qY5)] -E,

with x = \/h*> +n?. The matrix ¥’ transforms linearly
under the flavor symmetry SU(4). The matrix U’ [trans-
forming nonlinearly under SU(4)] contains the NGBs along

the vacuum E,, and the matrices Y** are two of the broken
generators associated with the Higgs and additional singlet,
n (while the remaining three generators are associated with
the exact NGBs eaten by the W and Z bosons). Note that
the normalization we chose for the decay constant, f, is
different from the one adopted in Refs. [27-29] by a factor
of 24/2 as we follow the prescription defined in Eq. (2) such
that f = v/ sin 6. In this way, @ = /2 corresponds to the
technicolor limit where v = f.

B. Explicit form of the SU(4) spurions

We can now explicitly write the relevant spurions
introduced in Sec. IIC in the case of the coset
SU(4)/Sp(4). Let us start by the current mass: this spurion
does not explicitly break the SM gauge symmetry; thus it
needs to be proportional to the EW preserving vacua,

myio 0
N _ > = 2mByE_ + 26mByE., ,
0 my(—io,)

(30)

where we define m=(m,+m,)/2 and ém = (m; —m,)/2.
In order for the EW preserving vacuum to be aligned with
E_, we need to impose m < m because it is the potential
generated by the mass term that will fix the preferred
alignment of the vacuum. Note that both the term propor-
tional to m and the one proportional to dm are invariant
under (different) Sp(4) subgroups, while the presence of
both nonzero values leaves a common SU(2) x SU(2)
subgroup unbroken. In this sense, the parameter 6m can
be thought of as a (small) explicit breaking of the Sp(4)
symmetry in the confined phase. Remarkably, the signs of
the mass terms (which thus decide which EW preserving
vacuum is chosen) are arbitrary as they are associated
with the unphysical phases of the underlying fermions: in

fact, one could also choose complex masses, thus select-
ing a complex (but still CP conserving) vacuum. The
physics of the NGBs will be the same. This fact is very
important when studying the vacuum misalignment in the
model, and we will provide explicit examples at the end of
this section.

The spurions corresponding to the EW gauging
including the elementary fields can be written as
Epw = gTAWA + ¢T3 B* with the explicit forms already
given in Eq. (26).

For the top bilinear spurions, transforming as AT, we
have Ey, = y,P*(Q,°)", and there is a unique choice for
the projectors P> given by [27,29]

00 -1 0 00 0 0
P1_10000 P2100—1o
2110 0 o) 2101 0 0
00 0 O 00 0 O
(31)

The uniqueness is due to the presence of a single (bi)
doublet among the NGBs.

In the case of partial compositeness, we can write
the spurions as 22=3".y,; P§ O and B' = Yy, P, 1":
the two sets of projectors, Py and P, thus select the
components of the fermionic operator of the strong
dynamics that match the quantum numbers of the left-
handed doublet and the right-handed singlet, respectively.
We recall that an additional U(1)y charge needs to be
included in order to fix the hypercharge of the top partners,
so that the SM hypercharge is defined as ¥ = T + X.
For the fundamental representation (that has Xp = 1/6'")
there is only one choice available as clearly seen from
the decomposition of the SU(4) representation under
SU(2); xSU(2)g, i.e. 4—(2,1)&(1,2), and the projectors
sz and P, are given by

0, = (32)

S = O O

0

1
Qi ol

0

(=

We recall that in the above case, 1 belongs to an SU(2)g
antidoublet, and that the partial-compositeness couplings
will violate the extended custodial symmetry needed to

"This charge assignment refers to the partner of Q. For ¢ the
charge assignment is opposite in sign, together with the color
assignment. Recall that we always refer to the left-handed
components following the fact that the underlying theories are
defined in terms of left-handed Weyl spinors.
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protect the Z coupling to left-handed bottom quarks [81].
For the antisymmetric (X, = 2/3) the decomposition reads
6— (2,2)® (1,1) ® (1,1), and thus there is a single
choice for the doublet, but two for the singlet:

0 010 0 00
p_ L0 000] L 1f0 10
e l-tooo|l” ¢ v2]l0 -1 00]
0 000 0 0 00

00 0 0 0 100

p_ 1|00 00 o 1]-1000
"v2loo o 1|0 R V2 000
00 -1 0 00

(33)

Note that P, — P, is aligned with the vacuum E_, so it
corresponds to a singlet of Sp(4) along the EW preserving
vacuum, while P, + P, is part of a 5-plet together with the
doublet. We want to stress that this assignment is relative to
the choice of vacuum, as, forinstance, P, + P,, corresponds
to the singlet for the £, vacuum. In general, the right-handed
top will couple to a linear combination of the two spurions,
i.e. with a generalized projector,

P,=AP, +BP,, with |[AP+|B?=1. (34)

1y

The relative phase of the two coefficients, however, can be
rotated away by the use of an SU(4) transformation along the

generator X° associated with the singlet in the EW preserv-
ing vacuum E_. This corresponds to a relative phase
redefinition of the two hyperfermion doublets: therefore,
only if a mass term is present can this phase have physical
effects, as we will see in a later section. Noteworthy, the
real parts cannot be removed without affecting the gauge
spurions.

For the symmetric (Xg = 2/3), the decomposition reads
10 — (2,2) + (3, 1) + (1, 3): for both doublet and singlet
there is a single choice, with the singlet associated with the
neutral component of the SU(2)y triplet. The projectors are
similar to the P{ and P, of the antisymmetric by
replacing —1 — 1.

Finally the adjoint (Xaq =2/3) decomposes as
15— (2,2)+(2,2) + (3, 1)+ (1,3) + (1, 1), and thus
there are two options for both left- and right-handed
tops:

0001 0000
0000 0001

Py = N ,

2 0000 2 0000
0000 0000
000 0O 00 00
1{ooo0 o 0000

Pt:_ 5 1Q: 5

21001 0 > o-100
000 —1 00 00
0000 100 0
0000 1lo1 0o o

Py = . P,=z 35

2 1000 22100 -1 0 (3)
0000 00 0 —1

Note that in terms of Sp(4), the adjoint decomposes
into one symmetric and one antisymmetric: we find that
Py, + Py, and P, project states in the symmetric [with
t° in an SU(2)y triplet], while Py, — Py, and P,, in the
antisymmetric. For both left- and right-handed tops, the
projector is a superposition of the two:

Py =AgPg, + ByPy,,
P, :AtPtl +BtPtz7
[Agi* + [Bosl* = 1. (36)

with

For the doublet combination P, the relative phase of the
two coefficients can be removed by the same SU(4)
rotation (along X°). For the right-handed top, the two
coefficients are always physical as they mix a singlet and a
triplet of SU(2)g. Note also that along the other EW-
preserving vacuum E ., the role of the two combinations
of doublet embeddings, Py, + Pg,, are reversed.

C. Vacuum alignment

We study the vacuum alignment induced by the breaking
terms that have been discussed previously. The purpose is to
isolate cases where the misalignment angle, 6, is sufficiently
small, but nonzero, to comply with composite-Higgs mod-
els. The most general form (up to NLO) of the potential can
be inferred from the tables in Appendix A and takes the
following form:

V(0) = c155 + o84 + 3¢9 + C4Cy55. (37)

We use here and in the following the shorthand notations
s, = sinx and ¢, = cos x. Note that only a nonzero current
mass may induce the coefficients c5 and c,. Moreover, c; is
generated by LO and NLO operators (including mixed
contributions), while ¢, arises only at NLO. The coefficients
¢, comes only from NLO operators containing gauge and/or
top spurions, while the remaining coefficient ¢; may be
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generated by all the three sources of explicit breaking
starting from LO gauge and top operators.

For simplicity, let us discuss first the LO effects of each
explicit breaking source independently. As discussed in
Sec. IIC 2, the gauge contributions alone are not able to
break the EW symmetry. In particular, the LO gauge
operators in Eq. (11) correspond to ¢y >0, cy=c3=
¢4 =0, such that the minimum of the potential is at 8 = 0.
For the LO mass contribution, Tr[y=" + Zy'], we have
c3 # 0 positive or negative, while ¢; = ¢, = ¢4 =0, and
the minimum is, thus, either at @ = 0 or at z/2 depending on
the sign of c¢;. Finally, the LO top contribution, Eq. (15),
corresponds to ¢; <0, ¢y =c¢3 =c4 =0 such that the
minimum is at § = /2.

The challenge in composite-Higgs models is to generate
a small misalignment (f < 1) in order to have a small
hierarchy between the EW and the compositeness scale,
v < f. To depart from the EW preserving vacuum (6 = 0)
and from the technicolor limit (¢ = z/2), one needs to
consider several explicit breaking sources at the same time.
To this end, let us focus on two simplified scenarios:

(i) A potential generated only by the gauge and top
explicit breaking interactions such that the current
masses are set to zero, and we have ¢c; = ¢4 = 0. In
that case, the breaking of the EW symmetry is driven
by the coefficient c,, and one needs to include the
NLO contributions to the potential. This scenario is
commonly used in composite models with partially
composite tops based on holography [22,82].

(i1) A potential generated by gauge and top spurions as
well as a nonzero current mass. In this case, it is
enough to restrict to the LO contributions, and we
thus assume ¢, = ¢4 = 0. This scenario is well
known, and we refer to Ref. [27] for details. Here
we just briefly outline this scenario for comparison.

In case (i), the minimization of the potential in Eq. (37)
leads to

v
— = 2¢psg(cy + 2¢,53) = 0. (38)
00

Setting aside the limit where the EW symmetry remains
unbroken (60 =0) as well as the technicolor limit

(0 = /2), the third extremum corresponds to s3 = —2;

for which V(6) = —c?/(4c,). This extremum is the global
minimum of the potential only if ¢, > 0 and ¢; <0 (as
expected; see Ref. [27]). Moreover, a small misalignment
angle requires |c;| < |c,|. As we will see, this requirement
can be obtained in several ways depending on the top
coupling representation.

For case (ii), the minimization of the potential leads to

ov

50 sp[2¢c1cg —c3] = 0. (39)

Focusing again on the EW breaking vacuum alignment
(0 <« 1), the potential is extremized for ¢, = 26731 where
V(0) = (4¢ + c3)/4c;. A small misalignment implies
|c3| 2 |2¢|. Moreover, for the extremum to be the global
minimum, one needs |c3| < |2¢;|, where ¢;3 < 0,0rc; <0
and ¢; > 0.

Let us now explore in detail how the scenario (i) could
be realized when NLO contributions are taken into
account. In practice this requires obtaining |c|| < |c,|
in a natural way.

1. Hierarchy between the LECs (|C,/C}| < 1)

This case relies on the usual hypothesis that the top
loops are the dominant contributions to the coefficients ¢,
and ¢, and, for some reason, the strong dynamics leads
to |c1/c,| < 1. In other words, the LECs associated with
the operators generating c¢; need to be suppressed. For
simplicity, one can neglect the gauging of the SM as its
effect is negligible in comparison to the top quark
contributions. Moreover, let us consider a bilinear cou-
pling as an example. The potential takes the following
form:

V(0) = =Ciyifts; + Cyifsg, (40)
where the positive coefficients C, and C} are functions of
the different LECs associated with the operators in
Table VII. Note that the discussion can also be applied
to all the linear couplings as they also generate the
coefficients C, and C, (for reference to the vast literature
on this topic we refer the reader to the reviews in
Refs. [22-24]). To get a small misalignment requires
|C,/y}Ci| < 1; i.e. some cancellation should happen at
LO making that contribution comparable to if not smaller
than the NLO one. In models inspired by holography this
is achieved by assuming that the main contribution to the
LECs comes from top and top partner loops and that other
UV effects are negligible [83]. We remark, however, that
this is a very specific assumption, and not all models
(especially with an underlying gauge-fermion theory) will
respect it.

2. Linear coupling in the symmetric
representation (y, SYy;,)

Choosing a symmetric representation for the left- and
right-handed top couplings, one finds that the LO con-
tributions generate c¢; and ¢, at the same order in the chiral
expansion. This is due to the fact that the Goldstone matrix
is antisymmetric (pseudoreal case) such that the LO
operators involve four top spurions (see Table X).

For simplicity, let us first consider operators of the
general form Tr[E¢XiE | Tr[ZE[Z=]]. The correspond-
ing potential is given by the operators in Eq. (22),
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f4
C

1S,1 77 \2 (4 )
+ v} Tr[P, =P | Tr[=P] = P]]

V,(0) = (y,, Tr[P4 S Ph S Tr[EP), 2P ]

+y? y,2RTr[szTP,ZT]Tr[ZPg(IZP;"])

_ zS lf [
(47)

such that ¢, =C f*(y7,y7 —2y1)/(162%) and ¢, =
Cis1f* (i, +yi, —¥i,y7,)/(167%). Achieving ¢; <0 and
¢y > 0 is fairly easy as long as y, < \/zy,R. Note that a
small misalignment angle is achieved by tuning the value of
Y, close to the upper bound. Using the constraint on the top
mass coming from Eq. (20), we can express the Higgs mass
as a function of the two relevant LECs and the misalign-
ment angle as follows:

+thC.9 +ytLthCHS¢9] (41)

C mg, 12¢
m2 — 48 tS,1 top ~ 1S,1 m20 + 10) (94 ’
! Cis (VI0—6ch+2)  Cig " @)
(42)

while the singlet remains massless [79] (a mass can easily
be generated by adding current masses). We see that a small
enhancement in Cyg, or an order 1/10 suppression in Cig 1,
is sufficient to achieve the measured value of the Higgs
mass. The second type of operators that follow the template
Tr[2sX B E 2] provide an additional term in the poten-
tial proportional to s3,

Cisaf* 631, — yi.vi, = 2yt P
(4r)? 4 o’

(43)

which adds up to ¢; and might help relieve the tension in
the alignment and Higgs mass if C;s, < 0.

For completeness, we also report the expression for the
top mass and linear couplings to the NGBs,

N\ m C .S
(Q1t°)'<mmp+ = <£h—t—9n)+-~-),
v Co Co

YiLYiRCoSo
Mypp = Ly #f? (44)

where we remark the presence of a coupling of the
pseudoscalar singlet # to tops.

D. Masses and couplings of the pNGBs

The general potential presented in Eq. (37) can be further
expanded to obtain the masses for the pPNGBs (Higgs and )
as well as the couplings among them. We find that, if all the
coefficients and couplings are real, the four terms corre-
spond to universal functions of the fields:

4

3
= cifi(O0.hon) + Y cifi(O.h.n).  (45)
i=1

i=1

V(0 h,n)

The four functions f; correspond to the four basic functions
appearing in the potential in Eq. (37), while the three
functions f! contain additional contributions to the mass
and couplings of the singlet » that arise in special cases.'”
For simplicity, in the following we will neglect these
special contributions and set ¢; = 0. Up to trilinear cou-
plings, the functions f; read

]’l h2 2
f1(0,h.n) :S§+2C9S9}+029J72—S5]72
4 h(R 4P
——C959f< 72 )+ "

h h
f2(6,h, 11)fs3+4c,9s€f+2s9(1+2c29)f

B2 P
——"cps3
f3 3 99f3
ho 1 (B+i?)
=gy
1 h(h2+77)+
6 ‘s '
L1 h
f4(¢9,h,'7):C9S9+§Sa(1+3029)?
h* 3 7>
1— 2
“"( S")fz 20
13 27 o7 h2
(12 29>f3 o° so(1+3c29)—5 73 +-

(40)

2 2
i
2se]72

4
—§c9s9(1 —4cyp)
f3(0,h.n)

+

We can thus trade three of the coefficients, say cy, ¢,
and c3, for the value of the misalignment angle at the
minimum, 6, and the masses of the Higgs, m,,, and of the
singlet, m,,

f2m2

22
mhf n Cy
=- - 143 -—, 47
€1 4C§ 805 ( + C29) co ( )
2,2 2,2
(&) :f ’?h _f n;n “ ) (48)
2550 8¢y 2cy
c3 = —f*mico — 455 (49)

12 . . . .
/1 arises in cases where the potential contains constant

pieces, f% when the potential consists of s(z, or sé terms, and both
are only present when the top spurions are embedded into two
different Sp(4) representations of a given SU(4) spurion; f%
corresponds to potential terms cy and cyss, and it receives
contributions from NLO operators containing the mass spurion
in Table V.
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With these, we can thus predict the value of the trilinear
coupling of the Higgs bosons and the coupling between the
singlet and the Higgs:

2 2 4
_ My MhSe €4 3 50
I =2 cog 2wcy f3 5o (50)
(m,% —mj) 53 Cy4
=T~ )% 4 51

Case (i), which includes the results for the symmetric top
partner representation, is recovered for ¢4, = 0 and m,, = 0.
The fact that the singlet remains massless is to be expected,
and a mass can be generated by adding a current mass that
will generate a nonzero c3. In case (ii) obtained for
¢y = ¢4 = 0, the condition ¢, = 0 imposes the well-known
relation between the masses m;, = m,sy: this was already
shown at LO for a bilinear top coupling agreeing with
Ref. [84]. Here we show that the relation also holds for any
linear coupling up to two-index representations.

The trilinear couplings in Egs. (50) and (51) are relevant
for the phenomenology of the composite Higgs. It is well
known that the modifications of the Higgs couplings to
fermions and gauge bosons with respect to the SM ones
are small, as corrections scale with 53~ v?/f?. On the
other hand, the Higgs trilinear coupling may receive larger
corrections. In Fig. 1 we show contours of the trilinear
coupling normalized to the SM value as a function of m,
and sy (for ¢, = 0). Sizable modifications are only present
for large sy > 0.2, with an increase of the couplings for
large singlet masses. The effect of the trilinear coupling on
di-Higgs production via gluon fusion is shown in the left
panel, where we plot contours of the cross section at the

0.4

200 400 600 800 1000
my, (GeV)

FIG. 1.

Right panel: trilinear Higgs coupling normalized to the SM value as a function of m

LHC with a center of mass energy of 14 TeV [85].
Interestingly, the cross section is always reduced with
respect to the SM ones: the solid (dashed) contours
correspond to bilinear top couplings (linear top couplings)
for which the top coupling to the Higgs is rescaled by a
factor ¢y (cq9/ cg) with respect to the SM value. The case of
linear couplings to the fundamental representation follows
the bilinear case. Note that we do not consider here
operators generated by the strong dynamics that couple
the composite Higgs directly to gluons. The coupling of the
Higgs to two singlets in Eq. (51) is shown in Fig. 2. If the
mass of the singlet # is smaller than half the Higgs mass,
this coupling will contribute to nonstandard decays of the
Higgs, as shown in the left panel of Fig. 2. Bounds on this
branching ratio are obtained from global fits of the Higgs
properties, independently on the decay modes of the
singlet: the current bound from the Higgs data combination
after Run-I is at 34% [86], and thus is unable to probe the
parameter space, while projections for the high luminosity
phase with a data set of 3 ab™! estimate the reach to 10%
[87]. We remark that dedicated searches for 4 — #n may
give stronger bounds, but depend on the final states the
singlets decay into.

1. ntt coupling

A coupling of the singlet # to tops may be generated from
the same operator that generates the top mass, as we have
seen in Eq. (44). This coupling is phenomenologically very
important as it opens new decay modes for the singlet,
besides the diboson final states from the Wess-Zumino-
Witten anomaly [27,29], and induces gluon fusion at one
loop thus enhancing its production at hadron colliders [84].
The 5tt coupling is not present at LO for bilinear top

200 400 600 800 1000
my (GeV)

, and sq (for ¢4 = 0). Left panel: contours

of the di-Higgs cross section via gluon fusion at the LHC@14 TeV, normalized to the SM one. The continuous lines correspond to
bilinear top couplings and linear couplings in the fundamental representation, and the dotted lines correspond to linear couplings in two-

index representations.

075028-15



ALANNE, BIZOT, CACCIAPAGLIA, and SANNINO

PHYS. REV. D 97, 075028 (2018)
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0.3

Sg

40
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FIG. 2. Right panel: Higgs coupling to # normalized to the SM Higgs trilinear coupling as a function of m, and s, (for ¢, = 0). Left
panel: contours of the branching ratio BR(4 — 5n) for singlet mass below threshold. The continuous lines correspond to bilinear top
couplings and linear couplings in the fundamental representation, and the dotted lines correspond to linear couplings in two-index

representations.

couplings nor in the case of linear coupling with funda-
mental top-partner representation. However, it appears at
NLO in mixed operators involving mass and top spurions.
For instance, for the bilinear case we have [29]

v, Tr[PPE|Tr[Zy "] (G qtr) + H.c.

= —4y,Bysg|co(my +my) +i(my —my)—+---|(fLtg)

~|=

+H.c. (52)
and similarly for the other mixed operators. Note that the
coupling is proportional to the Sp(4) violating current mass.
Interestingly, couplings that do not need such violation are
generated by higher-order operators containing all types of
spurions [84].

The situation is different for linear couplings to two-
index representations. For the symmetric, we already found
in Eq. (44) that a coupling of the singlet proportional to the
top mass is generated. For the other two representations the
situation is more complex due to the fact that the embed-
ding of the elementary top fields within the top partner
representation is not unique. For the antisymmetric, two
possible embeddings of the singlet are allowed. Using the
spurion defined in Eq. (34), the mass of the top is given by
the first line in Eq. (20),

Vi, Vg
Miop A =
°p, 47

(Cyas +2Cyp0)(B—A)fcysg,  (53)

where we see that only the component of the spurion aligned
with the Sp(4) singlet (along the vacuum E_) contributes.
From the same operator, we derive the couplings,

_imtopB—i—A
fC.g B—-A

- h
LD —mtoptt<1 y22e2 )

Cyp U

et
(54)

where we see that the coupling of the singlet is only
generated by the component of the right-handed top aligned
with the singlet inside the Sp(4) 5-plet. Via the same
mechanism, couplings of the single to a top partner and a
top are also generated [88]. A similar situation occurs for the
adjoint, where for both doublet and singlet two possible
embeddings are allowed. Using the spurions in Eq. (36), the
top mass given by the third line in Eq. (20) reads

Yy

_ r
Myop Adj — 4 CyAdj

1
X ((AQ + By)B, + ﬁ (Bg — AQ)A,)fcgsg.

(55)

The above result can easily be interpreted: when the right-
handed top is aligned with the singlet of SU(2)y [i.e. in the
5-plet of Sp(4) of E_] the doublet is projected on the 10-plet,
while when the right-handed top is in the SU(2)y triplet
(which is part of the 10-plet) the doublet is projected on the
5-plet. The couplings acquire the form

- h
LD —mmptt(l pe2 )
Cg U

_ Mhop V2(Bg = Ag)B: + (Bg + Ag)A, TR
feo Va(Ag+ Bg)B, + (Bg — Ag)A, ’
(56)
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where we see that a coupling to the singlet  is not generated
only when the left- and right-handed tops are in different
Sp(4) representations.

2. Vacuum expectation value of n, CP-violation,
and the choice of vacuum

So far we have only considered a vacuum misaligned
along the direction of the Higgs. However, in general, we
should also consider a misalignment along the direction of
the singlet 7. This can be done by rotating the vacuum with

an SU(4) transformation along X,

ia/2
U = 6\/51-00(§ = em/ O
a 0 e—ia/2

) e su), (57)

where a is related to the vacuum expectation value of the
singlet. Remarkably, it appears as a phase, in accordance to
the fact that # is a pseudoscalar. This corresponds to a
change in the relative phase of the two hyperfermion
doublets, and it will affect the phase associated with the
current mass, if present. Thus, the presence of the phase in
the vacuum is correlated to a phase in the current mass. One
can always make the simplifying assumption of real masses
and thus start with a real vacuum. As a consistency check,
one can verify that a tadpole for # is generated by the
current mass spurion if a phase is present:

Tr[y="] + H.c. = 8By Im(m; —m,)—+---. (58)

=

Once other spurions are included, it is always the phase of
the current mass term that generates a tadpole for #: this is
clearly seen as the gauge couplings are real, while the two
Yukawas y, and y;z can be made real"? by choosing the
phase of the elementary quark fields.

The situation is different in cases, such as partial
compositeness with tops in the antisymmetric or adjoint
representations, where more than one embedding is pos-
sible for the same SM elementary field: physical phases
may remain as not all couplings can be made real by a
phase shift of the fermion fields. We will first consider in
detail the case of the antisymmetric. As before, we para-
metrize the spurion for the right-handed top following
Eq. (34), allowing for a phase between the two coefficients.
The potential generated by the LO operator in Eq. (21)
gives, up to linear terms in the fields,

"Note that the phase appearing in the Cabibbo-Kobayashi-
Maskawa matrix does not play any role here, as we are dealing
with overall phases carried by the Yukawas.

Va =2Caf*(|B _A|2)H2RCE) + y?m%)
+4Caf(yi, — |B = A[*y7 )cosoh
+ 8Caf Im[AB* |y}, con + - - - (59)

From the equation above, we clearly see that a tadpole for
the singlet is present only if a relative phase between the
two coefficients A and B is present. As already commented
above, such a phase can be removed by the SU(4) rotation
U,. and in the absence of a current mass one can use this to
remove it from the Lagrangian. In other words, the vacuum
expectation value of the singlet # is not physical as it is
associated with an arbitrary phase that can be removed from
the theory (this point was missed in the discussion in
Ref. [79]). The only situation where a tadpole for 7 could be
physical is when both a current mass and a phase in the
right-handed top spurion are present. As a misalignment of
the vacuum along the singlet would imply the presence of a
CP violating phase in the vacuum, this result shows that the
only way to achieve this is to add a CP violating phase in
the underlying theory. Thus, no spontaneous CP violation
via the vacuum misalignment, or pPNGB vacuum expect-
ation value, is possible. We checked that the same con-
clusion can be drawn for the adjoint representation: the
tadpole reads

Vag = 4CtAdjf3Im[AQB*Q]yt2L coll + -3 (60)

thus it is again proportional to the only phase that can be
removed by U, A mass mixing is also present and
proportional to the same phase. Another related point is
the presence of a mixing between the Higgs boson, £, and
the singlet, 7, in the potential: we checked that the mixing is
also proportional to the same phase generating the tadpole.
This mixing, which is only physical in theories with
explicit CP violation, has been used in Ref. [89] to reduce
the fine-tuning in the Higgs mass.

Another case where a misalignment along the singlet
direction is needed is when the potential generates a
negative mass squared for 7 in the absence of a tadpole.
This situation can occur for real coefficients; however, it is
a diagnostics that the initial choice of the EW preserving
vacuum is not correct. As an example, we reconsider the
case of partial compositeness with the antisymmetric
representation. As mentioned in Ref. [88], if the right-
handed top is mostly aligned with the Sp(4) 5-plet, i.e.
B + A > B — A in our notation, the singlet may develop a
vacuum expectation value via a negative squared mass (for
real coefficients). However, this situation can be inverted by
changing the EW preserving vacuum from E_ to £, by use
of a U, transformation with @ = z/2 (plus an overall phase
shift). This shows that the vacuum expectation value of the
singlet (that generates ) is unphysical in this case too, as it
corresponds to an inappropriate choice of the vacuum.
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It is well known from QCD [57,90] that CP violation can
also occur spontaneously via a phase generated by the
strong dynamics, resulting in CP violating interactions of
the pNGBs [91]. This also applies to the models under
discussion. The presence of a physical effect depends,
however, on the number of nonvanishing spurions in the
theory: the phases of the pre-Yukawas can always be
removed by redefining the phases of the elementary spinors
if only one embedding for the left-handed and right-handed
top is present. Thus, as in QCD, the strong 6-phase can be
removed from the theory only if at least one underlying
fermion is massless, i.e. m; = 0 or m, = 0 in our case.

IV. CONCLUSION

To date, composite-Higgs models remain a valid alter-
native to the SM and to supersymmetric models in
describing the physics of the discovered Higgs boson.
One of the tools we have to explore the physics of
composite Higgses is the construction of effective theories.
In this work, we offer an exhaustive classification of
template operators that can be used to construct effective
Lagrangians, up to NLO in the chiral expansion, for models
based on the symmetry breaking patterns SU(Ng)/Sp(Ng)
(with Ng even) and SU(Ng)/SO(Ng). The main interest of
these two patterns is that they can be generated by simple
underlying theories based on gauge interactions and fer-
mionic matter. Such theories are being studied on the
lattice; thus the exercise we perform in this work is essential
for lattice studies to calculate the relevant low energy
constants that impact the physics of the composite Higgs.
This is, in our view, the constructive way to endow this
class of models with predictive power. Furthermore, the
templates we provide, together with a discussion of the
counting of each class of spurions, i.e. fermion mass terms,
gauge couplings, and top Yukawas, are the relevant build-
ing blocks for the extension of effective theories up to
NLO. The utility of this tool goes beyond composite-Higgs
models, but can be applied to any class of models based on
composite dynamics.

After a general discussion, we specialized our results to
the simplest case based on SU(4)/Sp(4). We discuss in
detail the issue of the vacuum misalignment, which is
generated by operators containing the spurions associated
with SM interactions. One of our main results has been to
find a general set of functions of the fields that allow us to
study in a model-independent way the vacuum alignment
together with the masses and couplings involving the Higgs
and the additional singlet. We also defined the most general
embedding of the elementary tops in representations of
SU(4) with up to two indices (as they are generated in
underlying theories). This allowed us to clarify misunder-
standings present in the literature about the properties of the
singlet 5. Our general results show that a vacuum expect-
ation value for the singlet is not physical, unless explicit
sources of CP violation are present in the theory. Any

apparent misalignment in the singlet direction can be
removed either by removing unphysical phases in the
underlying theory or by redefining the EW-preserving
vacuum around which the theory is constructed.
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APPENDIX A: SPURIONIC OPERATORS
INVOLVED IN THE COMPOSITE-HIGGS
POTENTIAL

In this appendix, we classify all the operators, up to
NLO, that contribute to the NGB potential at tree level."*
We specialize the classification of the generic spurionic
operators (see Sec. I B and Appendix C) to the three main
sources of explicit breaking relevant for composite-Higgs
models: a current mass for the underlying fermions, the
gauging of the EW symmetry and bilinear or linear
couplings (a la partial compositeness) generating the top
quark Yukawa coupling. As we only consider tree-level
contributions, we use all spurions in Table IV except those
containing the elementary SM fermions and gauge bosons
(the latter appearing only in covariant derivatives due to
gauge invariance). Finally, specializing to the minimal
SU(4)/Sp(4) coset discussed in Sec. III, we expand'’
these operators and extract the field-independent part
relevant to determine the vacuum alignment.

Several points are worthwhile to remember at this point:

(i) Once the spurions are specified, their chiral counting
is fixed such that the general basis of nonderivative
operators involving up to four spurions contains
operators that appear beyond NLO. For instance all
of the operators involving three or four mass
spurions Z, = y are subleading and should not be
added to our NLO analysis.

(ii) The underlying fundamental theory (see Sec. 11 C)
dictates the properties of the spurions. For instance,
the gauge spurion Z\y; = gT1 (Eag = ¢'Ty) as well
as the linear spurions can appear only in pairs in
order to respect the EW gauge symmetry.

14Sticking to the spirit of our analysis, we do not consider
operators containing elementary SM fields that may contribute to
the NGB potential at one-loop level.

“For simplicity, we assume that no explicit CP violation is
present in the underlying theory (see Sec. IIID), i.e. that all
couplings are real.
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(ili) Some operators contain traces made only with
spurionic fields (no NGB matrix, X). We will neglect
in general these subleading effects as we focus in
this analysis on the general form of the couplings.
A simple example is provided by the two following
operators associated with the bilinear spurion:

fZ
1672

J’tf4
1672

2tL__HC [ past|Tr[ZP]),

Tr[P*!|Tr[ZP]| Tr [P P}, (A1)

where A%/(167%) ~ f2. Thus, despite the large
number of operators present in the general classi-
fication of Appendix C, only a smaller set that
depends on the spurions under consideration is
relevant in practice. On the other hand, several
spurions may transform in the same representation
of flavor increasing the number of operators com-
pared to the ones listed in Appendix C.

1. Current mass and gauge spurions

Let us start with the operators containing only the mass
and gauge spurions. These operators are already well
known in QCD and can then be used to check the
completeness of our classification.

a. Current mass

We first consider the operators containing only the mass
spurion, 25 = y. The latter enters in the chiral expansion at
O(p?), resulting in the three following classes of operators
up to NLO:

(i) Only one spurion Z, or :A (Class x)-

(i) Two spurions uzA, _22, or :A_ 5 (class y 2).

(iii) One spurion E, or :I'A and two derivatives
(class yD?).

The corresponding operators are displayed in Tables V
and VI. Note that the derivative operators (see Appendix C)
as well as the contact terms (with traces made of spurions
only) have been included in order to check the complete-
ness of our basis with Eq. (8).

TABLE V. Nonderivative operators up to NLO that contain the mass spurion E, = y and/or the gauge spurions E,y; = ng, g Ty in
the pseudoreal case. The operators can be grouped according to different classes depending on whether they contain only the mass
spurion, only the gauge spurions, or both kinds of spurions. The gauging of U(1), can be taken into account through the replacements
g — ¢ and TA — Ty in the third column. Similarly, the same replacements hold in the last column with an additional factor of 3 less for

each factor ¢’ (operators of class ¢*, ¢>¢”

, and ¢?y). When several orderings of the spurions lead to different operators, only one is

shown for each general form of operators as the others can easily be inferred from the table.

Class General form Operator Associated LEC SuU(4)/Sp(4)
X Tr[EAZT] + H.c. Try =" + =y By 8By(m; + my) cos@ + - - -
Ve Tr[EAE Trlyy'] H,
Tr[E 2,2 + Hec. Ty =ty =t + Ty 2y Lg 8B2[(m; — m,)?
+(my +my)* cos(20) + - -]
TI‘[EAEWTI'[ZEL] Trb(ET]Tr[Z)(T] L6,7 16B(2)(m1 + m2)2 COS2 94+
Tr[EAZ)? + Hec. Tr[y=t)? + Tr[Zy1)? L7 32B3(m; + my)?cos?> O+ - - -
7, g* TrEag ZEL 4 Z] FTr[TAE(THTET K} -3 cos? O+ -
7 g%, 7g? Tr[EAdeE,{deT]Z GTITAS(TA) T2 %gzt cos* O+ - - -
Tr[E} 4 ZEA4Z] G Tr[TATLTES(TE) ST —2g*cos? O+ -
Tr(E24Z(Ehq) Z'] G Te[TATEE(TE) (TF)TEF) ggtcos? O+ -
Tr(Eaq 84T BaqiZ8AZ ] ' Tr[TEX(TE) E TPE(TE) 2] 2gtcost O+ -
Fx. 9% Tr[EAX] Tr[23,] + Hec. Py =" + Sy | Te[T{ T K 12Bog*(m; +m,) cos @ + - - -
TrEAX | Tr[Epg T8R4 + Hee. ¢ TrlyEf + Xy f|Te[TEE(TT) T E] K 12Byg*(m, +m,)cos@sin> O+ - --
Tr(EAZ'ERy) + Hee. FPTr[( =t + T K} 6Byg*m; cos O + - - -
GPTr[(ZF + STy Ty KY 2Byg*m, cos @ + - - -
Tr[EAEL ;= Eaq] + Hec. FTrf(THTETE] + Hee. K1 —6Byg*m; cos O + - -
g*Tr[yTTE Ty] + Hee. K%. 0 —2Byg*mycos @+ - -
TT[EAETEAdjEEdeET] +H.c. T = TEE(TE) Z] + Hee. LSTRY =3By cos O[(m; —ms)

+(my + my) cos(20) + - -]
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TABLE VL

Same as in Table V but for the derivative operators. The covariant derivatives involve the gauge spurions :AdJ

gTp WA + ¢ TyB, such that mixed operators belong to the class D”y.

Class General form Operator Associated LEC
D? Tr[E,ZTr[D,=(D*2)t] + Hc TrlyZt + 2y Tr(D,Z(DFE)"] Ly
Tr[E,XD,E(D*E)"] + H.c. Tr[(y=" + =)D, Z(D*%)7] Ls
Tr[E4(D?Z)'] + H.c. Trly(D*T)" + (D*L)yf] + Hec. equations of motion
¢*D? Tr[(D,X)" (D*E)|Tr[E] 4] { 6g Tr[(D,X)" (D*E)|Tr[T{T{] K{
Tr[(D,Z)" (D'E)| Tr[Eg 28 4 2] {692 Tr[(D,X)! (DME)| Tr[TAZ(TE)T 2] K3
Tr[Epqi (D, Z)Z ] Tr[Epqi (D*Z) 2] 16—2T T[T (D,Z)F | Te[T¢ (DFE) =] K34
= g
Tr[E3;(D,2) (D'Z)T] ELTH[T{TH(D,2) (D)) K5
Tr[Eaq(D'Z)(D,Z) T8} ;Z'] + H.c. EETe[T{(D*E)(D,Z) X(TE)E7] + Hee. Kg
Tr[(D,Eag) (D'Z)EL4ET] + Hee. {;f Tr[(D,T{)(DFE)(T{)TET] + Hee. K
Tr[(D,Enq) Z(D*Eng)) =] PO Tr|(D, TH)=(DMT{)E) Ki;
Tr[(D,Eag) (D'Epg)] PO Tr((D,TE)(DFT})] K1,

b. Gauge spurion

We now include both the mass and gauge spurions,
Eagj = 971 and Exg = ¢Ty. The latter enter in the
chiral expansion at order O(p), and the resulting
four classes (including the mixed operators involving
both mass and gauge spurions) of operators corre-
spond to

(i) Two spurions Eidj (classes ¢> and ¢?).

(ii) Four spurions :4Ad- (classes ¢*, ¢, and ¢*¢?).

(iii) Two spurions = Adj and two derivatives (classes g>D?

and ¢”D?).

(iv) One spurlon Ea or :L

(classes g’y and ¢y).

As already mentioned, in order to check the consistency
of our classification, the derivative operators as well as
contact terms (see Refs. [68,69]) have also been
included. All of the operators corresponding to the
above classes are reported in Tables V and VI, while
those associated with the gauging of U(1), can be
obtained from g — ¢ and T{ — Ty. Furthermore, the
expansion of the operator gives the same result as for
the SU(2) spurion but with an additional factor of 1/3,
except when explicitly listed in the tables.

=2
and two spurions Ej;

2. Top quark spurions

We now discuss the spurions generating the top mass:
in the following, we consider a bilinear coupling as well
as linear couplings a la partial compositeness. For the
linear top coupling cases with antisymmetric and adjoint
spurions there are more than one possible spurion
embedding, and we use the general linear combinations
defined in Eqs (34) and (36).

a. Bilinear coupling

The four classes of nonderivative operators involving the
top bilinear spurion Ey' = y,P“ correspond to
(i) Two top spunons (EAE ) (class y?).
(ii) Four top spurions (EAE )% (class y}).
(iii) Two top spurions (E,=/ ) and one mass spurion =,
or 2 (class yZy).
(iv) Two top spurlons (EAE}) and two gauge spurions
uAdj (classes y?¢* and y?¢'?),
where the two last classes involved mixed operators with
two different spurions. All of the operators, up to NLO, that
contribute to the NGB potential at tree level and involve the
top bilinear spurion are listed in Table VII.

b. Linear coupling in the fundamental
representation
The three classes of operators involving the linear
spurions in the fundamental representation Eg =y, Pg
and Eg =y, P, correspond to
(i) Four top spurions (ZpE])? (classes y7 y7, and y,[ R)
(i) Two top spurions (_F_F) and one mass spurion E,
or EL (classes y,LR)().
(iii) Two top spurions (EFE;) and two gauge spurions
EXg (classes y7, g* and y7  g?).
The operators, belonging to the three preceding classes are
listed in Table VIII.

c. Linear coupling in the adjoint representation

The four classes of operators involving the linear
spurions in the adjoint representation B3, =y, P§ and

Eadj = Y1, P; correspond to
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TABLE VII. Nonderivative operators up to NLO involving the top bilinear spurion = A = y,P* and contributing to the scalar
potential. Also shown are the mixed operators involving the top bilinear spurion and the gauge or the mass spurion. When not explicitly
written, the U(1), contributions are obtained by the following replacements g — ¢ and 74 — Ty in the third column and similarly in the
last column with a factor of 3 less. When several orderings of the spurions lead to different operators, only one is shown for each general
form of operators as the others can easily be inferred from the table.

Class General form Operator Su(4)/Sp(4)
N Tr[EA 2| Tr[ZE]] y2Tr[P*E|Tr[2P)) y2sin26 + - --
i (Tr[EA 2 Tr[ZEL])? yH(Tr[PeE Tr[ZP]])? yisin*6 + - -
Tr[EAZ7PTr[ZE, 281 ] + H.c. YiTr[ P! | Te[PPEF|Tr[EPIEP]] + Hic. yisin*0+ -
Tr[EA 2| Tr[EAELZE] ] + H.c. yiTr[P“S | Tr[PP PiZP)] + H.c. 2yfsin? 0+ -
Tr[E T EL | Tr[ZE] 25| yiTr [Pt PPET|Tr[ZPLEP])] Lytsinto + -
Tr[EAZ ELEL 28] ] yiTr[P*X PPPLEP]] — 1yt cos(20) +
yix Tr[E,, ZTEAZHA | +H.c. y2Tr[y= P*P}] + H.c. 2y?Bo(my + m,) cos @ + - - -
Tr[E,, Z]Tr[E,, T Tr[EE] | + Hc. VITr[y = Tr[P*=HTr[ZP]] + H.c. 8y?By(m; + my) cos@sin® 0 + - - -
Tr[2,, X Tr[EE] EE] | + Hec. y2Tr[P*ETr[Zy " 2P)) + H.c. 4y By(my 4 m,) cos @sin® 6 + - - -
g Tr[EA X Tr{ZE] | Tr[Epq ZEL 4 Z'] V2@ Te[PeEH | Tr[ZP Tr[T{E(T4) T2 —3y7g*sin’(20) +
Tr[EAZ Epg] Tr{EE} Enq] Vi@ Te[ PO TR Te[SPLT] 16 VI sin? 0+ -
Tr[EAXf|Tr[ZE 53] + H.c. V2@ Tr[PeSH | Tr[ZPLTTE] + Hec. 3y2g7sin? 0 + - - -
Tr[EAZ | Tr[E{Epg EELy] + Hec. V2@ Te[ PO | Te[PLTLE(TH)T] 4+ Hee. 0
Tr[EAXf| TrEE 28] (X B g + He.  y2@Tr[POSfTrEPIZ(TY) S T + He.  —gyig’sin®(20) +
Tr[EAEL 4 EAEg] V2GR Te[PH(TH) T PLTY 0
Tr[EAELEaqZERZ] + Hee. V:@PTr[P*PLTIE(TTET] + Hec. —3yigPcos? O+ - -
TrEAZ Epg ZE) Eagy) V2@ Tr[ PO TASPITY 0
Tr[E\ 218 4 2] V2@ Tr[PUS TATASP]] g+
Tr[EAZ Epy ZEL 28 2] Vi@ Tr[PAI TAEPLE (T2 -3 yig*sin®(20) +

TABLE VIII.  Same as in Table VII but for linear spurions in the fundamental representation, namely Z¢ = y, P{, and Ep =y, P,.

Class General form Operator SuU(4)/Sp(4)

Vi Vi Vi Tr[Eg - ELETTr(SE; - B iy Ti[P - PTETTHZPY, - P]] —y3, )3, sin? 0 4 - -
yi Te[Pg - PG ENTH[EP, - P, 2y} cos? @+ -
yi Tr[P, - PTENTr[ZP; - P]] 0

Vi X Tr[EAX'E; - Ef] + Hec. y2 Tr[y=fPg - Pl ] + He. 8y? miBycos@+ - -
v} Tr[yZfP, - P]] + Hec. 4y? myBycosO + -+ -

Vind Tr[ZEL Ehy = Er - B yi. ¢ Te[2(TE) (TE) TP - PTQOJ 3V gcos’ O+
y%Lg’zTr[ET;ngTP‘é ’ P-Jéa} %yfzuglz sin® 6 + - --
Ve P TE(TH) (TSP, - P]] g sin? 0+ -
Vg Tr[ET TSP, - P]] 197 cos? O+

Tr[EaqZERZ B - Ef] + Hec. y2 PTR[TAE(TH)TEF P - Pl + Hec. —3y? ¢ cos? O+ - -

3 PTe[TySTYSPY - P}, ] + Hee. 0
v PTe[TPE(T4) P, - P]] + Hec. 0
v} §*Te[TyET}EIP, - Pi] + He. —1vig*cos? O+ - -
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TABLE X. Same as in Table VII but for linear spurions in the symmetric representation, namely Zg =y, P and

=g = thPt'

Class

General form

Operator

SU(4)/Sp(4)

4 2,2
Vi, g2 Vi Vig

Vi, X

2 2 2 /2
Y, 297 Yi, 29

Tr[E2 B Tr[2El 2E]

Tr[Es = 22 2] + H.c.

Tr[EsE{Eag ZEL 4 Z] + Hoe.

— — ==
TI'[:.SzT.:.Adj E:‘S:‘Adj}

Tr[Es /83 ZEL]

vt Te[Pg ST P EYTr[EP),, 2P ]
yh Tr[P, =P, =F|Tr[ZP]ZP]]

y2 y2 Tr[P4 X P 7| Te[EP), 2P
yi Te[PyE PP} P | + Hee.

i Te[PyE PP} P, | + Hee.

yi Te[P,EfP,P{EP]] + H.c.

2 y2 Te[P4Z PP}, SP]] + H.c.
2y, Tr[P4Et P, PIZP], ] + Hee.
¥ Tr[y=t PP} ] + Hee.

y2 Tr[y=P,P]] + H.c.

Vi ¢ Tr[ P T Tr[EPy, T4

V2@ Tr[PZ T} Tt[EP] T}

v} g2 Te[P,Z Ty | Tr[ZP] Ty]

2 ¢ Tr[P4 P, TAETITE 4+ Hee.

v} @Te[P,PIT{=T{TE] + Hec.
v} ¢>Tr[P,P{TyXT}E"] + Hee.
2 PTe[PE T EP), T

v, Tr[P,Z TAEP] T

v} §*Tr[P, X TyZP] Ty

2 @ Tr[PO TATIEP),]

v} P Te[P I T) T} P]]

v} .¢>Te[P, Ty Ty ZP]]

y?L sin* @+ - -

yi costO+ -

yi yi, sin* @ cos? 6 + - - -
—y? cos(20) + - -
yE(1+45sin20) 4 - -
y‘,‘RCOSZH—i—---
_%ysznyR sin?@ + - - -
Vi Vi o

4y? Bo(my + my) cos 6 + - - -
4y? Bom, cosf + - - -
2y P sin? 0+ - -

0

Iyt g?cos? O+ -
—%y%ngcoszé’—i-m
0

-1yt g*cos? 0+ - -
0

0

Iyl g?cos? O+ -
VG

%y%ﬂg2 sin @ + - -
Vi g*rcos? O+ - -

R

(i) Two top spurions =3 ;i (classes y7, ).

2

(iii) Two top spurions (

) and two gauge spurions

(ii) Four top spurions =}, (classes y7 y7, and yj ).
(iii)) Two top spurions Eﬁdj and one mass spurion E, or
21 (classes Vi, )
(iv) Two top spurions Eidj and two gauge spurions
EXg (classes y7 g° and y7  ¢?).
The operators, belonging to the preceding classes are listed
in Table IX.

d. Linear coupling in the symmetric
representation

The three classes of operators involving the linear
spurions in the symmetric representation E§ =y, Pg and
Eg =y, P; correspond to

; . = =2 2.2 4

(i) Four top spurions (_.SH?) (classes y;, y7, and y; ).

S

(ii) Two top spurions (EgES) and one mass spurion Ey

or E} (classes y? ).

EXg (classes y; g* and y;  g?).
The operators, belonging to the three preceding classes, are
listed in Table X.

e. Linear coupling in the antisymmetric
representation

Finally, the four classes of operators involving the linear
spurions in the antisymmetric representation EX =y, Pg
and E, =y, P, correspond to

(i) Two top spurions (EAEL) (classes y,ZLR).

(ii) Four top spurions (E4E})? (classes y7 y?, and Vi o)-

(iii) Two top spurions (EAEL) and one mass spurion E,
or B} (classes y; x).
(iv) Two top spurions’ (EAE}) and two gauge spurions
EXg (classes y; g* and y;  ¢?).
The operators, belonging to the preceding classes, are listed
in Table XI.
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TABLE XII.

Nonderivative operators up to NLO involving the top bilinear spurions EL = y,P%(Q,t°)" and possibly Ef =y,P*and

contributing to the tree-level top mass. Also shown are the mixed operators involving the top bilinear spurion and the gauge spurions or
the mass spurion. The U(1), contributions are obtained by the following replacements g — ¢ and T{ — Ty in the third column.

Class General form Operator

Vi Tr[E,27] + Hec. v, Tr[PE7](Q,1¢)" 4+ H.c.

v Tr[EAZ'EAEL] + Hoc. yiTr[P*E PPP}](Q,1)" + H.c.
Tr[EA X1 PTr[ZE]] + H.c. Vi Tr[P/S | Tr[PPEFTr[ZP)](Q,1¢)" + H.c.
Tr[ZETr[EAZEAZ] + Hec. YiTr[ZP)|Tr[PPET PUEY](Q4t°)" + Hec.

X Tr[EAzZWTr[}:E ] v, Tr[PeENTr[Zy1(Q,t¢)" + Hec.
Tr[E,, 27| Tr[E,, ZT] +H.c. v/ Tr[y | Tr[P*1](Q,2¢)" + Hec.
Tr[E,, 2784, 2] + Hee. v Tr[y T P21 (Q,1)" + H.c.

V:9%, Vg2 Tr[EAX'E34] + He Vi@ TP TATL(Qq1°)T + Hee.
Tr[EAEL 4 Z Eaqj] + H.c. v Tr[PH(THTEITA(Qqt¢) + Hec.
TrEAZ | Tr[EaqZEL4Z'] + Hec. v, @ Tr[POETe[TL (T TE)(Qut¢)" + Hec.
TrEAZ EpqZEL4Z ] + Hee. VP Tr[PPEITAS(THTET](Q01¢)" + Hee.

APPENDIX B: SPURIONIC OPERATORS
GENERATING THE TOP-QUARK MASS

In this appendix we list the operators up to NLO that
contribute to the top mass at tree level. We consider a
bilinear top coupling as well as linear couplings in the
fundamental, adjoint, symmetric, or antisymmetric repre-
sentations. These operators also generate the top quark
couplings to the pPNGBs and in particular, the #¢f coupling
as discussed in Sec. III D for the SU(4)/Sp(4) case. Let
us remind the reader that our classification corresponds to
a pseudoreal coset while the real case can easily be
obtained in a similar way as explained in Sec. II. In order
to isolate the contributions to the top mass, we use all
spurions in Table IV except those involving SM gauge
bosons. Indeed, the latter can only appear in covariant
derivatives.

In addition to the points outlined in Appendix A, it is
worthwhile to notice that

(i) The top quark spurions containing elementary fer-

mions generate corrections to their kinetic term. For
instance, the generic operator Tr[2,X!|Tr[ZE]]
cannot contribute to the top mass. However, in
the case of a bilinear coupling it leads to the two
following operators:

Ar TP )

f2

HC

Tr[P"ZT}Tr[ZP |(7rD1R). (B1)

We do not include these kinds of operators in our
analysis.

(ii)) In the same way, four-fermion operators are in
general generated. Using the same generic operator

as before, we obtain in the bilinear case the follow-
ing operator:

f2

HC

L= Tr[PUE | TH{EP)] (GLatr) (7raf)- (B2)
Again, we do not include these kinds of operators in
our analysis.

The number of operators is again drastically reduced
compared to those present in the generic classification of

Appendix C.

1. Bilinear coupling

For a bilinear top spurion, we get four different classes of
operators that contribute at tree level to the top mass:
(i) Only one top spurion E, (class y,).
(i) Three top spun'ons EA(EAEL) (class y?). .
(iii) One top spurion Z, and one mass spurion E, or &)
(class yy).
(iv) One top spurlon E, and two gauge spurions _idj
(classes y,g%, y/g).
The operators belonging to the preceding classes are
displayed in Table XII.

2. Linear coupling in the fundamental representation

For a linear top coupling transforming in the fundamen-
tal representation, the operators contributing at tree level to
the top mass organize as follows:

(i) Two top spurions 22 (class y, y;.).

(ii) Four top spurions ._F(_.F._F) (classes ytLth’ er)’?R)

(iii) Two top spurions Ef and one mass spurion =, or &,
(class )’rLYtR)()
(iv) Two top spunons Ef and two gauge spurions _idj

(classes y;, v, 9%, Vi, V1,9°)-
They are listed in Table XIII.
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TABLE XIII. ~ Same as in Table XII but for the linear spurions in the fundamental representation, namely Eg =y, Pg, QZ and By =

Vie P, and possibly the spurions Ef = v, P§ andlor Eg =y, P,

Class General form Operator
Vi, Via Tr[Zg - ELZT] + Hec. Vi, Vi Tt[Pg - PTET](Q,1°)" + Hoc.
3 3 = . ate .5 T pa ¥ ¢
Vi, Viws Vi, Vi Tr[S - ELEp - EL2] + Hec. y?Ly,RTr[P/é “PyyPy - PTET)(Qq1)" + Hec.
Yo Y3 Tr[P, - P{P% - PTXT](Q,1°)" + H.c.
Vi, YipX Tr ytLthTrb(ZTP(é : PtTZT](QatC)T +H.c.

F - EEZ|Tr[Eag 284 2] + Hec.

[
[
[
y,Ly,Rgz, erthglz Tr[EgdjoEAdj—*F ‘—‘F] +H.c.
[EX
[
[EAqgZEAGZ Er - ELZ] + H.c.

[1 [ [1

Vi i T ETr[PG - PTET](Qut)" + Hee.
Vi, Vi Te[Z TTe[PG - PIET](Qu1)" + Hec.

Vi Y g TH{(TY) ST PG - PLY(Qu1¢)' + Hee.

VoY & THTETEPG - PIET](Qut) + Hee.

Vi,V Tr[PG - P Tr[TEE(TE) 7)(Qyt%)" + Hc.
Vi PTHTAZ(TETE PY - PTET(0,)! + Hc.

3. Linear coupling in the adjoint representation 4. Linear coupling in the symmetric representation

For a linear top coupling transforming in the adjoint

For a linear top coupling transforming in the symmetric

representation, the operators contributing at tree level to the ~ representation, the operators contributing at tree level to the

top mass organize as follows top mass organize as follows:
(i) Two top spurions E _.Ad (class y,, th) (i) Two top spurions Z3 (class Vi, Vig)-
(ii) Four top spurions =} ;i (classes y; yy,, nyth) (ii) Four top spurions E3(EsE{) (classes y; Yig: Vi y,3R)
(iii) Two top spurions Hf\d and one mass spurion E, or (iii) Two top spurions & :2 and one mass spurion 2, or 2,

_‘A (class ytLYtR)()

(class y, y;.x)-

. - =2 =
(iv) Two top spunons EXq and two gauge spurions 23 (iv) Two top spurlons Hg and two gauge spurions Zj;

(classes y;, ¥, % Y1, V1, 9°)-

(classes v, v, 4% ytLth 9%

They are listed in Table XIV. They are listed in Table XV.

TABLE XIV. Same as in Table XII but for the linear spurions in the adjoint representation, namely Zxqi = y;, P‘éQl and E,g =

Vi P,t" and possibly the spurions EZdj =y, Pg and/or Bxg = v, Py

Class General form Operator
Vi Vg Tr[EAdeE‘./TdeEW ytL.Yt,;,Tr[PLézpz-z‘ﬁ](Qoztc)T +H.c.
Vi, Vs Vi, Vi Tr[Eaq T84y V21, T PLEPT S TH [P EP Y, 51(Q,1) + Hee.

Tr [E‘?&dj EE/Txdj 2]
Tr[EA 4 ZER g EAg ]

— =T e =T T
Tr[.:Ade.:.Ade :Ade:Ade }

Vi VX Tr[EAX'E3,] + Hee.
Tr[EAEL4Z Eaq] + Hoc.
Tr[EA | Tr[Eaq 84 2] + Hec.
Tr[EAZ g T8R4 Z ] + Hee.

Vi, VeI Tr{Eaq 285, =1
Tr[EideEdef]
Tr[E‘ideE‘/{dj E,{dj 2]
Tr[EagZE R Eaqi ZERG 2]

i, Vi, Tt[PHEP] Z | Tr[P,ZP;E](Q,1°)" + Hoc.
V3 ¥, TP P PP ST (Q,1¢)T + Hee.

Vi, Vi Tr[PEH PP EPET|(Q,1°)" + Hec.

¥, TP P EPY P ET](00)t + Hee.

Vi, i, TIPGPZPT PiET](Q,01)" + Hec.

V3 v, THPEEPI S PSP, 57)(0,1) + Hee.

Vi, Vi Tt[PHEP]ZT P EP;ET|(Q01)" + Hec.

Vi, Vi I Z PGP | (Qqt)" + Hec.
y,Ly,RTrb{P’éTZTP,KQa[() + H.c.

Vi, Vi TEWE | Te[PGEPTET](Q,1)" + Hee.

Vi, Vi, e E PHEPTE)(Qq1)" + Hec.

Vi, Y, P Tr[PHEPT I Tr[THE(T3)TEY(Qu1¢)" + Hee,
Vi, Ve PTr[PE P THE(THTE(Q,1)T + Hee.
Vi Y Tt [PGPE(TE)T (T E](Qar)" + Hee.
Vi Vird 2Tr[Pa SPISITAS(THTE(Qut¢)t + Hc.
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TABLE XV. Same as in Table XII but for the linear spurions in the symmetric representation, namely Hg = y,, P‘éQZ and By =
y,RP,tC"' and possibly the spurions E§ = y, P, and/or Eg =y, P..

Class General form Operator

Vi, Via Tr[EgZf 2] + H.c. y,Ly,RTr[P" 2P, 2 (Qut)" + Hec.

Vi Vi Tr[Es S Eg X EgEL] + Hee. V2 ¥ TH[PEE P ETPL P ](Q,1¢)T + Hee.

Vi Vi Y, i Tr[P P S PE PT)(0,1¢)" + Hec.

Yo Yk Tr[EsX'EsE} ] + H.c. Vi, Ve THPEETPx](Qqt)" + Hec.
Tr[EA X Tr[Es =22 + Hec. Vi, Vi, TrlZTr[PE TP, E1](Q,1)T + Hec.
Tr[ZE] | Tr[EsZ 2= + H.c. Yo, Vi THE | Te[PHET P, ET](Q,1°)" + Heoc.
Tr[EsXf 22 E, 2] + Hec. Y Y THPEE P Z ¥ 27](Q,1°)" + Hec.

YoVt Yo Vi 9> Tr[EsZ Eaqj]® + Hoe Vi,V O TrPOE T Te [P T7}](Qat)" + Hec.
Tr[Es S Es 2| Tr[Epg 28R4 1] + Hec. Yo Vi P TrPHE P | Tr [T ETTE7) Q)" + Hec.
Tr[Es 2 EpgEsZ Bag] + Hec. Yo Vi P TI[POE TP EIT](Q,1°)" + Hec.
Tr[Es 2 Epg EsER 4 =] + Hec. Yo Y P TIPEEI TP THTET(Q,19)" + Hec.
TrEs 2 EsEL ;X' Eag] + Hec. Yo Vi P TIPHE P TETETTH](Q,1€)" + Hec.
Tr[Eg ZTESZ':idJ] +H.c. Yo Vi S TI[PRE P ETTTE](Q,1°)" + Hec.
Tr[EsZ Es X 8, 28R 2] + Hec. Yo Vi O TI[PRE P ETTIETI S (Q01)T + Hec.

TABLE XVI. Same as in Table XII but for the linear spurions in the antisymmetric representation, namely E, = y,LPQQa and
BEx =V, Py 1" and possibly the spurions E% = v, P andlor Ep =y, P,

Class General form Operator
Vi, Vi Tr[EA27]? + H.c. Vi, Ve TIPHET|Tr[P,Z7](Q,1°)" + Hec.
Tr[EAZTEA 2] + Hec. Yo, Vi TIPGE P ET](Qq1)" + Hec.
Vi Vigs Vi, Vi Tr[EAZ PTr[ZE]] + H.c. V2, Vi, Tr[ PG E e [P, Te [P S Tr [P, ] (Q,1) " + Hic.
Y1, Y3, Tr[PE Y Tr[P, ] Tr [P, Tr[ZP]) (Q,1)" + H.c.
Tr[EA X Tr[ZE] | Tr[EAZfEAZ] + Hec. V3 ¥4, Tr[P4 T Te[ZP), | Te [P ST P ET](Q, 1)t + Hec.
¥, 3 Tr[PS I Tr[ZP]]Tr[P, £ P, 27](Q,1¢)" + H.c.
Tr[EAZTr[EAZ EAE]] + H.c. Vi Vi Tr[PLE TR [PLE PPy ) (Q,1) + Hic.
Y1, 33, Tr[PEEY TP, 7P P])(Q, 1) + H.c.
Vi, VX Tr[EAXE,E]] + Hec. Vi Y TIPSE P ](Q,1¢)F + Hee.
Tr[EAZ7)® + Hec. Vi, Vi TH[PHETTr [P Z | Tr [y 2] (Q01)T + Hec.
Tr[EAZ T[22 ] + H.c. Y, y[RTr[P‘éZ ATr[P,Z ] Tr[Zy 7] (Qqt¢)" + H.c.
Tr[EAZY|Tr[EAZ 2o 2] + Hec. Vi, Ve Tr [ 2T Te[PEETPET](Q,1°)" + Hec.
Tr[ZE} | Tr[EAZfEA 2] + Hec. Vi, Ve Tr[Zx | Te[PHET P ET](Q,1°)T + Hec.
Tr[EAZEAZTELZ] + Heoc. Vi, Vi TH[PHE P E Ty E7](Q01)" + Hec.
Vi, Vi T Vi, V1o 9 Tr[EAZ PP Tr[Exg 28], 2] + Hec. y,Ly,Rngr[P‘éZT]Tr[P,Z*}Tr[T/L*ZT/zTZ*](Qatc)f +H.c.
Tr[EAZE )] + Hoc. Vi, Yo T PRE T Te [P ZTTE](Qut)" + Hec.
TrEAZTr[E 275 4] + Hec. Vi, Vi P Tr[PLEN TP Z TATE](Q01)' + Hec.
Tr[EAZ | Tr[EAEL 4= Eaqj] + Hoc. Vi, Vi P Tr[PGEN TP, TETE T (Q01)" + Hec.
Tr[EA X EA XY Tr[Exq 28R4 27| + Hec. Vi, Vi Tr[PRE P I Te [T ETTET](Q,1°)" + Hec.
Tr[EA X Tr[E X Ep 28R ZT] + Hec. Vi, Yo S TH[PHETTe [P E T ETTET](Q,1)" + Hec.
Tr[EAS EpgiBaZ Bag] + Hec. Yo Vo P TIPHET TP ETT1](Q,1)" + Hee.
Tr[EAZ BagBaZAg '] + Hee. Yo Y P THPEEI TP TETET|(Q,1¢)" + Hec.
TrEAZ EAEL 4 Eaq] + Hoc, Vi, Vo S TH[PHETPTITE T (Q01°)" + Hec.
TrEAZ EAZ Epg 28R4 2] + Hec. Yo, Vo P TrPHE P ET T ETTE7)(Q,1°)" + Hec.
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TABLE XVII. Nonderivative operators involving three two-index spurions. As explained in the text, the operators divide into the three

following classes: Tr[X]Tr[X;|Tr[X3], Tr[X,]Tr[X,X3], and Tr[X;X,X3].

No X Linear in X Quadratic in Three X

Tr[Zs/AEL 2] Tr[EAZ | Tr[Es/aBL ) + He.  THEAZTr{Es A Epg] + He.  Tr[EAZP + He.

Tr[EsE Epg) + He.  Tr[EAXYTr[ER,) + Hee. Tr[EAZYTr[ZE, , Eaq] + Hec. Tr[EAZ P Tr[Z=] ] + H.c.

Tr[Z 4] Tr[EsZ By a2} 5] +He. Tr[Es/aZ Es/aZ Bagi] + H.c. Tr[BAZ!|Tr[Es /X Es A 2] + Hec.
Tr[EAZ Eg/aE ,] + Hee. Tr[Es/aZ Ea /s 2 Epqj] + Hec. Tr[EAZNTr(ZE], , ZE] ] + Hec.
Tr[Es/aZ 23] + Hec. Tr[Es/aZ BaqZES 4] + Hec. Tr[EAZ | Tr[Eaq 2844 21 + H.c.
Tr(Es/aEAy = Eaq] + Hec. Tr[EsZ'Exg 22} ] + Hee. Tr(Es/aZ s a2 EAX'] + Hec.

Tr[E3 4 ZEL ;2] Tr[Es/a 2 BaqZEL, 2] + Hec.

TABLE XVIIIL
Tr[X, | Tr[X,] Tr[X3] Tr[X4] or Tr[X;]|Tr[X,] Tr[X3X,).

Same as in Table XVII but for the operators involving four spurions and belonging to the classes

=
-

[1]

AZ P Tr(Eag 8L Z ] + Hee.

Quadratic in X Three X Four X
Tr[EAszTr[—'S/AE;/A] +He. Tr[EAZ ] Tr[Es, a2 Eag] + H.c. Tr[EAZ]* + H.c.
Tr[EAZ‘]Tr[Z_A]Tr[HS/AHS/A} Tr[EA21]? Tr[Z_S/A_AdJ] +H.c. Tr[EAZ P Tr[ZEL ] + H.c.
Tr[EAZPTr[ER ] + Hec. Tr[Ep X Tr[ZE} Tr[Es/a = Eaqi] + H.c. Tr[EAZ P Tr[ZE] ]2
Tr[E, X1 Tr[ZE] | Tr[E3 Tr[EaAZ )’ Tr[Es,a = Es/a 7] + Hoc.
Tr[EAZfPTr[ZE,  ZE] ,] + H.c.
Tr[Ep X Tr[ZE] | Tr[Es/ s ZTEs 4 =] + H.c.
[EAZ]
[EAZ]

=
o

[1]

AZ I TH[EE]  Tr[Eaq 285 4 2]

5. Linear coupling in the antisymmetric representation

Finally, for a linear top coupling transforming in the
antisymmetric representation, the operators contributing at
tree level to the top mass organize as follows:

(i) Two top spurions 23 (class y,, y,,).

(ii) Four top spurions _i(HA_A) (classes y,Lth, Vi, Vio)-

(iii) Two top spurions Z3 and one mass spurion Z, or -—‘Jx
(class y;, vy x)-
(iv) Two top spurlons =2 anci two gauge spurions Hidj
(classes y;, v, V1, V1,9°)-
They are listed in Table XVI.

APPENDIX C: GENERIC CLASSIFICATION OF
SPURIONIC OPERATORS

The purpose of this appendix is to provide details about
the general classification discussed in Sec. I B. We derive a
complete set of nonderivative operators involving up to
four spurions in a two-index representation (Eg, 4 and Ey ;)
of the flavor symmetry. At the end of the appendix, we
outline how the discussion can be extended to derivative
operators.

This general set of operators can then be used, once the
explicit breaking sources are specified, to construct all the
operators up to NLO that explicitly break Gg. Since only
the transformation properties under the global symmetry,
G, are fixed, while the chiral counting as well as the
properties dictated by the UV theory are not yet imposed,
the classification below is completely general and can be
applied to a wide range of theories where spurions trans-
form in two-index representations.

A concrete application to composite-Higgs models is
presented in Sec. IIC, and the details are reported in
Appendix A. The restriction to four spurions in the same
operator is justified by the chiral counting associated with
the composite-Higgs spurions. Indeed, in this specific
example, all spurions appear at least at order O( p).16

To simplify the classification, instead of considering the
two-index spurions that transform differently under Gg, we

16Except for the partial-compositeness spurions with no
elementary fields where y, Pg and y, P, appear at O(\/p).
However, as discussed in Sec. II C 3, one can still restrict to four
spurions.
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TABLE XIX. Same as in Table XVII but for the operators involving four spurions and belonging to the classes Tr[X;

Tr[XIXZ]Tr[X3X4] .

]TI‘[X2X3X4} or

No X Linear in Quadratic in X
Tr[Es/a5,4) Tr[Es/ A28, 4] Tr[Es/aZ Eag] + Hee. Tr[EaqZ | Tr[Es/aZ Es/aEL ] + Hee.
Tr[EagEhg I TrEaqEhq] Tr[Es/ A58, 4] Tr[Ea/s ' Eng] + Hee. Tr[Es/aZ B a 21| Tr[Es/a S 4] + Hee.

Tr(Es/aE A Tr[ER 4]
Tr[E‘idj]z Tr

EAdeﬂTr[Es/AEg/AEAdj] + H.c.
EagZITr[Es/aE} s8ag] + H.e.

[
[
Tr[Es/a 2 Eag| Tr[E3] + Hee.
[
[
[EaqZ'Tr[E}] + Hee.

Tr[Es/A ' Bg a2V Tr[E, 52} 5] + Hec.
Tr[us/AETES/AZT]Tr[EAdJ} +H.c.
Tr[Es/aZS | Tr[Eag T84 ;2]
Tr[ES/AETEAdj]Tr[EEQ/AEAdJ]
Tr[EAdjYEA(JJ]TT[EAdjETEAdJ} +He.
Tr[EpgiZ Eag] TrEELEag] + He.
Tr[Es/A X Epg)* + Hoc.

Tr[E3 4] Tr[Eag ZEAGE']

Tr[EaqZ |Tr[Es/aE) g ZasZ'] + Hee.
Tr[EaqZ'|Tr [—‘S/A-‘AdJZHA/S] + H.c.
Tr[_‘AdJ Tr[_‘s/A._.AdJZ._.S/A] + H.c.

]
]
]
Tr[Eag =" Tr[Eg/aZ 83 4] + Hec,
]
]
]
]

Tr[EaqZ Tr[HS/A_AdJZ Eaqj] +H.c.
Tr[EpgZ Tr[Z_S/AZ_S/A_AdJ] +H.c.
Tr[EagZ Tr[Z“S/A“‘Adl] +H.ec.
Tr[EaqZ Tr[HS/A_AdJZ_AdJ] +H.c.

I Tr[EpgZ BagZ'] + Hec.
s/aZ Eg/a Tl Tr[Exq ZE] 4 Z7] 4 Hec.
AdJZT]TI‘[Es/AZf.Es/AZTEAdjZT] —+ H.c.

]
ITr[Es/aZ Baqi T8R4 '] + Hec.
A= TH[EE] \ZEL T8, y] + Hee.

Three £ Four £
Tr[Es/aZ Es a2 |Tr[Es/aZ Epg] + He.  Tr[EgAZ 8y o/ Tr[EE] 28] ]
Tr(Es/a X Es/aZ | Tr[ZE] s Eag] + H.c. Tr[BagiZ Bag

Tr[Es/aZ Es/aZ | Tr[EnsT Epq] + Hee.  Tr[Eag T EaqZf|TrZE]ZE] ] + H.c.
Tr[Zs/aZ Es/aZ | TrZE} Eag) + H.c. Tr[E

Tr[Es/a X Eag| TrEag ZER 4 E'] + H.c. Tr[Eaq 285, 1

Tr(Eag =] Tr[Es/aZ Eg/a X! Epg] + He.  Tr[E

Tr[EagZ | Tr[Es/aZ Ba/sTiBag] + Hee.  Tr[EagZf|Tr[ZE] 28] \ZE],] + He.
Tr[Eq | Tr[Es/aZ Eag 55 ] + Hec, Tr[EpgZ"

Tr[Epgi 27| Tr[Eg /0 uAdeuA/S] +H.c. Tr[Epg X’

Tr[Eaq /| Tr[EE] A 25}, sEag] + Hee. Tr[Es/a X Eg/aZf]? + H.c.

Tr[Epg = Tr([EL  ZER4Z'] + Hec.

construct objects (see Table II) transforming in the same way
as X;—gX.g" where X; = {2g/aZ!, 28] ,, Epg, ZEL,Z).
As explained in Sec. II B, we restrict to the pseudoreal case
[coset SU(Ng)/Sp(Ng)] since the real case [coset
SU(Ng)/SO(NE)] is easily recovered via Eg <> E,. The
general procedure is as follows: we first divide the operators
according to the number of spurions and flavor traces.
Then, we construct all the possible combinations involving

the objects X;. Using the cyclic properties of the traces
as well as the symmetry properties of the spurions (trans-
positions, traceless), we remove some redundant operators.
As an example in the case of two spurions we have
Tr([Es/aX XEL 7] =F Tr[Es/aXExg). The operators
involving one and two spurions are listed in Table III, the
ones with three spurions in Table XVII, and the ones with
four spurions in Tables X VIII, XIX, XX, and XXI.
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TABLE XX. Same as in Table XVII but for the operators involving four spurions and belonging to the class Tr[X X, X3X,].

No X Linear in X Quadratic in X

Tr[Zs/aZE 4 Zs/AES Al Tr[Zs/aZ Es/aEL A Baq] + Hoe. Tr[Zs/aZ Es/aZ Es/aE{ 4] + Hee.

Tr[=4] Tr[Es/aZ{, A Es/aZ Eag] + H.e, Tr[Es/a X Es/aBL 228 4] + Hee.

Tr(Zs/aEf 4 524] Tr(Es A X8} 4] + Hec. Tr[E) 4 28R4 Z]

Tr[ES/AE/Txdng/AEAdj] Tr[ES/AE‘deZTE‘zAdj] + H.c. Tr [EideE/T\dngdjo]

LR CICINCINIINN Tr[Zs/aZ Es/aE} jsEaq] + Hee. Tr[Zs/AZS A EaqZERG E'] + Hec.

TrEagEaqZaqEag] + He. Tr(Es/aZ'En/sE8/aBaq] + Hee. Tr[Es/AZ ErqiZs/aZ Eag] + Hoe,

Tr[EaqErgEag] + Hee. Tr[Es/aZ Ep/sE) sEaq] + Hoe. Tr[Es/aZ EpgZs/aBhy =] + Hee.

Tr[EagELg EagEag] + He. Tr[Es/aZ} sZs/aZ Eag] + Hee, Tr[Es/aZ Eaq 2L 2B

Tr[Zs/aE} /sBa/sZ Baq) + Hee. Tr[Zs/aZ B34 )
Tr[Zs/aZ BaqBassEh 5] + Hee. Tr[Es/aZ Eg/aBhy Z Eag] + Hoe.

Tr[Es/aZ Es/aZ 23] + Hec.
Tr[Es/aZ Es/aZ Ea/sEL s + Hee.
Tr[Es/aZ Es A} sEa/sZ'] + He.
Tr[EaqE Bs/aZ) s ZE ] + Hec.
Tr[Es/aZ8 A28} 5EassZ']
Tr[Zs/aZ Ea/sE Es/aE) 5] + Hee.
Tr[Es/aZ Ep/sZ ] ] + Hec.
Tr[EagE EaqiEhgE Eaq] + Hee.
Tr[Es/aE} s EaqZEAg 2] + Hee.
Tr[Eag Z EagiZag 2  Eag] + Hee.
Tr[Es/aZ EagZa/sEag '] + Hee.
Tr[EagZ BagZE g Eag] + Hee.
Tr[EaqZ B34 Z8hq] + Hee.

Three £ Four £

Tr[Es/a X Eg/a X! Es/a X Eaqi] + H.oc. Tr[Es/a X! Es/aZ B /a2 Es/aZ1] + H.c.

Tr[Es/a X Es/a T s/ a X Eaqi] + H.c. Tr[Eag EEL 4 Z Bag 2B R4 2]

Tr[Es/aZ Es/aZ Epg 28] 4] + Hee. Tr[Zs/aZ Baq ZEL 2 2844 Z']

Tr[Es/A X B3y ZEL4E] + Hee. Tr[Es/a X Es/a X Eag ZER 4 Z'] + Hec.

Tr[Es/aZ Eag EEL G Eag) + Hoc. Tr[EaqiZ  Es/aZ Ba /s Z Eaq 2] + Hec.

Tr[Eg/a X Eg/a Xt Ep s Z Epq] + Heoc. Tr[EaqZ BagZ Eag 28R, Z] + Hee.

Tr[Es/a X Eg/a X EpgiZa/sZ'] + Hee. Tr[EagE Baqi T8} ZERGE] + Hee.

Tr[ES/AZTES/AETEAdjEEL/S] + H.c.

Tr[Es/aZ Ep/sE 85 /A X Epqj] + Hoc.

Tr(Es/aZiBa /s B ZE] 4] + Hec.

Tr([Es/a X Ep s Z EAqZE] 5] + Hoc.

Finally, let us discuss how we can extend the above basis of desired properties of transformations. From these objects, one
nonderivative operators to derivative ones. As by definition ~ can follow the procedure described previously. In general, we
the covariant derivatives transform like the fields themselves, get a large number of oper ators and some of them are
it is trivial to construct objects such as D, X; or D2X; with the ~ redundant. They can be eliminated [92] using
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Tr[(DuAl)AZ o 'An +oe +A1A2 T (DﬂAn)}

= 6ﬂTr[A1A2 . An] = 0, (Cl)

where A, ---A, = gA,---A,g'. Note that it is enough to
restrict to two derivatives in order to get all the NLO operators
in composite-Higgs models.
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