Karl Osen

Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates

A closed form algorithm for the exact transformation of Earth-Centered Earth-Fixed (ECEF) coordinates to geodetic coordinates is presented that is computationally fast, safe and accurate. Boosting the computational robustness of Jijie Zhu's algorithm, it reduces the worst case transformation error by up to 500 million times.

Zhu's Algorithm

In 1993 Jijie Zhu published [START_REF] Zhu | Exact Conversion of Earth-Centered Earth-Fixed Coordinates to Geodetic Coordinates[END_REF] the following closed form algorithm for the exact transformation of Earth-Centered Earth-Fixed (ECEF) coordinates to geodetic coordinates :

= (1) (2) (3) (4)
(5)

(6) (7) (8) (9) (10) (11)
(12)

(13) (14) (15)
Special case when w = 0:

(16) (17)
In 1994 Zhu showed [START_REF] Zhu | Conversion of Earth-Centered Earth-Fixed Coordinates to Geodetic Coordinates[END_REF] that equation (9) can be rewritten to have only one cube root operation, thereby speeding up the transformation:

(18) Where:

(19)

Operating Range

Zhu states [START_REF] Zhu | Exact Conversion of Earth-Centered Earth-Fixed Coordinates to Geodetic Coordinates[END_REF] that the transformation of Earth-Centered Earth-Fixed (ECEF) coordinates to geodetic coordinates is feasible provided the point does not fall within 43 km of the Earth's center, and that this minimum distance warrants that the following condition is met: (20) Provided condition (20) is met we find in (7) that since . Consequently the radicand in (8) is always positive. We may furthermore show that which implies that we won't take the roots of negative numbers in (9) nor divide by zero in (18).

The feasibility analysis of Zhu's algorithm is essentially a two-dimensional problem, and we therefore introduce the two-dimensional coordinate notations and .

Replacing m and n in (20) we find:

(21) Where:

(22)

Inequality (21) implies that the point should be outside the ellipsoid with equatorial radius A and polar radius B. Hence, Zhu's 43 km rule has a safety margin of 158.7 meters. The ellipsoid equation is:

(24) Ellipsoid (24) has the same eccentricity as the WGS84 ellipsoid, but the polar radius is the larger radius. Whereas Zhu's 43 km rule can be used for most applications, the fundamental operating range of Zhu's algorithm is related to the radius of curvature in the meridian [START_REF] Clynch | Radius of the Earth -Radii used in Geodesy[END_REF]. This radius is the curvature in the north-south direction of the surface of the WGS84 ellipsoid at , and is given by: (25)

RM has its minimum at equator and its maximum at the poles:

(26) (27)
The center of the circle corresponding to RM has the following coordinates:

(28) (29)
We have and .

The line L starts in and ends in . The length of L is RM. L is orthogonal to the surface of the WGS84 ellipsoid in and its slope relative to the equatorial plane is . The points and are located on opposite sides of the equatorial plane (unless). Consider a superellipsoid with the same equatorial and polar radii as ellipsoid (24):

If

(30)

Any point satisfy equation (30), which implies that the starting point of any L is located on the surface of this superellipsoid.

From the derivatives of (28) and (29) we find:

(31) Equation (31) shows that L is tangent to the surface of the superellipsoid in . The line L consequently passes through the superellipsoid (unless).

Zhu's algorithm transforms ECEF coordinates to geodetic coordinates so that and are located on the same side of the equatorial plane. Zhu's algorithm does not work if is located on two lines L (i.e. one in the northern hemisphere and one in the southern hemisphere), which is the case for all points inside the superellipsoid.

The points and are on the surface of the superellipsoid, but generate divide-by-zero operations in equations (12) and (18). A point should therefore be outside the superellipsoid for successful conversion:

(32) Equation (8) has a component that tells us directly if the transformation of a point is feasible:

(33)
Inequality (32) is linked to equation (33) as follows:

(34)

Replacing and q in (33) we find:

Replacing m and n in (35) gives:

(36)

The derivatives of H with respect to w and z are:

(37) (38)
Combining (30) and (36) shows that for all points on the superellipsoid. Equations (37) and (38) show that and for . For we have except for and when . For we have except for and when . This implies that equation (34) holds.

The following test can therefore be used to check if an ECEF point mathematically can be converted to geodetic coordinates using Zhu's algorithm:

(39)

Unfortunately condition (39) is insufficient to ensure proper computational behavior of Zhu's algorithm close to the singularities at and . To stay sufficiently far away from these singularities we can advantageously introduce an exclusion volume fully containing the superellipsoid (30). Tests show that any point outside a volume V defined by , having equatorial radius meters and polar radius meters, avoids all numerical problems and accuracy degradations related to the proximity of the superellipsoid (30).

(40)

Consequently the following test can be used in to check if an ECEF point can accurately be converted to geodetic coordinates using Zhu's algorithm:

(41)

V looks like a deformed ellipsoid squeezed in at mid-latitudes, having its smallest distance from the center of the Earth of meters at

. The volume of V is of an ellipsoid with equatorial radius and polar radius . The maximum negative convertible altitude due to the exclusion volume V is meters at degrees.

Avoiding Negative Radicands

Numerical noise in implementations of Zhu's algorithm may result in (extremely small) negative radicands. Taking the root of a negative number will cause a computer program to fail or abort. To avoid such failures one may consider using absolute value functions before a root operations.

In equation (8) noise induced negative radicands may occur at very small latitudes, and the equation should therefore be modified as follows:

(42)

In equation (10) noise induced negative radicands may occur at latitudes close to ±45.3 degrees, and the equation should therefore be modified as follows:

(43)

Fixing the Accuracy Problem

The accuracy of Zhu's equation is generally quite good, but degrades considerably at latitudes close to ±45.3 degrees [START_REF] Zhu | Conversion of Earth-Centered Earth-Fixed Coordinates to Geodetic Coordinates[END_REF]. This accuracy degradation occurs when m is close to n. Combining equations (3) and (4) we find: The intersections between the cones and the surface of the WGS84 ellipsoid occurs at , which corresponds to degrees.

The intersections between the cones and Zhu's 43 km operating limit sphere occurs at , which corresponds to degrees.

By combining equation (44) with the superellipsoid (30) we find that the intersections between the cones and the superellipsoid (30) occurs at , which corresponds to degrees.

The loss of accuracy is due to the accumulation of errors when calculating , which is the real root of this 4 th degree equation:

(45)
If is computed with unlimited accuracy then is obviously zero, but unfortunately this is rarely the case. However, since both and its derivative can be calculated one may use Newton-Raphson's method to find a correction that can be added to :

(46) (47)
The value of is well positive and varies very slowly provided condition (41) is met, thereby ensuring risk free division in equation (47) and excellent error reduction (the overall conversion error may in some cases be reduced more than 100 million times).

To fix the accuracy problem of Zhu's algorithm we may now rewrite equations (11) and (12) as follows:

(48) (49)

WGS84 Constants

To obtain optimal accuracy for coordinate conversions using 32-bit, 64-bit or 80-bit floating point arithmetic, the following constants can advantageously be used:

Enhanced Algorithm

The following closed form algorithm for the exact transformation of Earth-Centered Earth-Fixed (ECEF) coordinates to geodetic coordinates is computationally faster, safer and more accurate than Zhu's original algorithm [START_REF] Zhu | Exact Conversion of Earth-Centered Earth-Fixed Coordinates to Geodetic Coordinates[END_REF]: 1. For optimal performance pre-computed constants should be used, replacing divisions by multiplications whenever possible (e.g. divide-by-6 should be replaced by multiply-by-0.166666666…). 2. Feasibility test (73) can be reached using only multiplications, additions and subtractions.

Feasibility test (73) uses

. This value is required for accurate 32-bit floating point operation.

can be smaller for 64-bit and 80-bit floating point arithmetic.

4. The particular formulation in (74) ensures that C > 0 if H > 0 .

5. The arctan operators in (86) and (90) take two parameters to avoid divide-by-zero situations.

Test Results

This chapter presents the numerical performance of Zhu's algorithm and the Enhanced algorithm, and compares accuracies for different floating point formats.

Conversion accuracy is measured by transforming Earth-Centered Earth-Fixed (ECEF) coordinates to geodetic coordinates and back to ECEF coordinates . The conversion error is given by .

Measurements were made on an Intel Core i5-4200U CPU, with all coordinate transformation calculations done on the x87 FPU. Trigonometric operations used FSINCOS and FPATAN instructions, whereas root operations were handled with FSQRT, FYL2X and F2XM1 instructions. The same transformation code featuring the sequence (66) to (90) was used for 32-bit, 64-bit and 80-bit floating point formats, but with different FPU configurations. The performance of Zhu's algorithm was measured by setting in (83) and (84). The inverse transformation function used is described by the sequence (61) to (65).

Measurements were made with 10 billion randomly generated positions for the different altitude ranges and floating point formats, with latitudes up to ±90 degrees and longitudes up to ±180 degrees. Conversion errors are due to accumulation of computational errors during transformations, but also of rounding errors when storing into floating point destination variables. Each number must be rounded to the nearest representation offered by the floating point format. The worst case rounding error is half of the floating point resolution for a given number. The floating point resolution of a number is the absolute value change caused by flipping the least significant bit of the number's floating point significand.

The expected error at is the combined worst case rounding errors for latitude, longitude and altitude, expressed as a geometric distance. Suppose the resolution at is and transforms to and transforms to , then the expected error is given by . The expected maximum error permits distinguishing the performance of the transformation algorithms from the limitations of floating point resolution. The expected maximum error is found at latitude zero, longitude ±180 degrees, and at the highest applicable altitude. The most commonly used floating point format for applications featuring ECEF and geodetic coordinates is the 64-bit format. Even when using 64-bit floating point numbers for coordinate representation it is nevertheless advantageous to use 80-bit floating point numbers during coordinate transformation to maximize accuracy. This puts the maximum error of the Enhanced algorithm just above the expected maximum error at .

 the point is located on the line L. If the point is located on the outwards extension of L. The distance from to is .

 represents two cones originating in the Earth's center. One cone extends northwards and the other southwards, and they are symmetric around the z axis. The angle between the cone surfaces and the equatorial plane is degrees. Points that are very far from the Earth have m = n for degrees.

 constants are useful for transforming geodetic coordinates to ECEF coordinates:

100km 2000km 1.07308e-09 6.54519e-09 3.216 175.110 3.37770e+05 2000km 35000km 2.07138e-09 2.51457e-08 11.375 -153.468 3.47446e+07 35000km 37000km 3.65036e-09 2.56071e-08 -16.869 -153.367 3.60552e+07 350000km 410000km 3.14502e-08 2.16964e-07 43.478 -80.559 4.02887e+08 146000000km 153000000km 1.31535e-05 9.94751e-05 -8.960 113.231 1.51844e+11 Floating point bits: 80 Tests per altitude range: 10000000000 alt.min: alt.max: avg.err: max.err: lat: lon: alt: -6378km -1km 4.49966e-13 3.18313e-12 -1.091 -17.575 -6.27794e+06 -1km 15km 5.20708e-13 3.19134e-12 -31.764 -156.767 1.23675e+04 15km 100km 5.79222e-13 3.38063e-12 -1.112 -125.856 5.10078e+04 100km 2000km 5.83478e-13 3.15958e-12 1.689 161.752 1.37304e+06 2000km 35000km 1.55298e-12 1.31248e-11 -9.203 57.473 3.41968e+07 35000km 37000km 2.70145e-12 1.36121e-11 19.423 31.678 3.66195e+07 350000km 410000km 2.30795e-11 1.23490e-10 -3.595 -45.037 3.88163e+08 146000000km 153000000km 1.00831e-08 5.38559e-08 11.873 160.439 1.51738e+11 #define WGS84_A +6.37813700000000000000e+0006 /* a */ #define WGS84_INVF +2.98257223563000000000e+0002 /* 1/f */ #define WGS84_F +3.35281066474748071998e-0003 /* f */ #define WGS84_INVA +1.56785594288739799723e-0007 /* 1/a */ #define WGS84_INVAA +2.45817225764733181057e-0014 /* 1/(a^2) */ #define WGS84_B +6.35675231424517949745e+0006 /* b */ #define WGS84_C +5.21854008423385332406e+0005 /* c */ #define WGS84_E +8.18191908426214947083e-0002 /* e */ #define WGS84_EE +6.69437999014131705734e-0003 /* e^2 */ #define WGS84_EED2 +3.34718999507065852867e-0003 /* (e^2)/2 */ #define WGS84_EEEE +4.48147234524044602618e-0005 /* e^4 */ #define WGS84_EEEED4 +1.12036808631011150655e-0005 /* (e^4)/4 */ #define WGS84_AADC +7.79540464078689228919e+0007 /* (a^2)/c */ #define WGS84_BBDCC +1.48379031586596594555e+0002 /* (b^2)/(c^2) */ #define WGS84_P1MEE +9.93305620009858682943e-0001 /* 1-(e^2) */ #define WGS84_P1MEEDAA +2.44171631847341700642e-0014 /* (1-(e^2))/(a^2) */ #define WGS84_P1MEEDB +1.56259921876129741211e-0007 /* (1-(e^2))/b */ #define WGS84_HMIN +2.25010182030430273673e-0014 /* (e^12)/4 */ #define WGS84_INVCBRT2 +7.93700525984099737380e-0001 /* 1/(2^(1/3)) */ #define WGS84_INV3 +3.33333333333333333333e-0001 /* 1/3 */ #define WGS84_INV6 +1.66666666666666666667e-0001 /* 1/6 */ #define WGS84_D2R +1.74532925199432957691e-0002 /* pi/180 */ #define WGS84_R2D +5.72957795130823208766e+0001 /* 180/pi */

Appendix A: Proof Related to Equations (30) and (36)

This appendix proves the following statement: Combining (30) and (36) shows that for all points on the superellipsoid.

We have:

We define:

We now have:

From (A3) we find:

Inserting (A6) and (A7) in (A4):

(A8)

Simplifying:

(A9) (A10)

Result:

(A11)

Appendix B: Zhu Algorithm Measurements

This appendix contains measurements of Zhu's algorithm.