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ABSTRACT
We study the methodology and potential theoretical systematics of measuring baryon acoustic
oscillations (BAO) using the angular correlation functions in tomographic bins. We calibrate
and optimize the pipeline for the Dark Energy Survey Year 1 data set using 1800 mocks.
We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood
Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The fit results from the
MLE are the least biased and their derived 1σ error bar are closest to the Gaussian distribution
value after removing the extreme mocks with non-detected BAO signal. We show that incorrect
assumptions in constructing the template, such as mismatches from the cosmology of the mocks
or the underlying photo-z errors, can lead to BAO angular shifts. We find that MLE is the
method that best traces this systematic biases, allowing to recover the true angular distance
values. In a real survey analysis, it may happen that the final data sample properties are slightly
different from those of the mock catalogue. We show that the effect on the mock covariance
due to the sample differences can be corrected with the help of the Gaussian covariance
matrix or more effectively using the eigenmode expansion of the mock covariance. In the
eigenmode expansion, the eigenmodes are provided by some proxy covariance matrix. The
eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the
direct measurements of the covariance matrix because of the number of free parameters is
substantially reduced.
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� E-mail: chan@ice.cat

1 IN T RO D U C T I O N

Baryon acoustic oscillations (BAO), generated in the early uni-
verse, leave their imprint in the distribution of galaxies (Peebles &
Yu 1970; Sunyaev & Zeldovich 1970). At early times (z � 1100),
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photons and baryons form a tightly coupled plasma, and sound
waves propagate in this plasma. After the recombination of hydro-
gen, photons can free stream in the universe. The acoustic wave
pattern remains frozen in the baryon distribution. The sound hori-
zon at the drag epoch is close to 150 Mpc. The formation of the
BAO in the early universe is governed by the well-understood linear
physics, see Bond & Efstathiou (1984), Bond & Efstathiou (1987),
Hu & Sugiyama (1996), Hu, Sugiyama & Silk (1997), and Dodelson
(2003) for the details of the cosmic microwave background physics.
Given that this scale is relatively large, it is less susceptible to astro-
physical contamination and other non-linear effects. Another rea-
son for its robustness is that it exhibits sharp features in two-point
correlations, while non-linearity tends to produce changes in the
broad-band power. The BAO can serve as a standard ruler (Eisen-
stein & Hu 1998; Meiksin, White & Peacock 1999; Eisenstein, Seo
& White 2007). Observations of the BAO feature in the distribution
of galaxies has been recognized as one of the most important cos-
mological probes that enables us to measure the Hubble parameter
and the equation of state of the dark energy [see e.g. Weinberg et al.
(2013); Aubourg et al. (2015)]. The potential distortions of BAO
due to non-linear evolution and galaxy bias are less than 0.5 per cent
(Crocce & Scoccimarro 2008; Padmanabhan & White 2009).

Using spectroscopic data, the BAO was first clearly detected in
Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2005) and 2dF
Galaxy Survey (2dFGS) (Cole et al. 2005), and subsequently in
numerous studies, e.g. Gaztanaga, Cabre & Hui (2009), Percival
et al. (2010), Beutler et al. (2011), Kazin et al. (2014), Ross et al.
(2015), Alam et al. (2017), Bautista et al. (2017), and Ata et al.
(2017). Spectroscopic data give precise redshift information, but
such surveys are relatively expensive, as they require spectroscopic
observations of galaxies targeted from existing imaging surveys.
On the other hand, multiband imaging surveys relying on the use
of photometric redshift (photo-z) for radial information (Koo 1985)
can cheaply survey large volumes. There are several (generally
weaker) detections of the BAO feature in the galaxy distribution us-
ing photometric data (Padmanabhan et al. 2007; Estrada, Sefusatti
& Frieman 2009; Hütsi 2010; Seo et al. 2012; Carnero et al. 2012;
de Simoni et al. 2013). The Dark Energy Survey (DES) and fu-
ture surveys such as The Large Synoptic Survey Telescope (LSST)
(LSST Science Collaboration et al. 2009) will deliver an enormous
amount of photometric data with well calibrated photo-z’s, thus
we expect that accurate BAO measurements will be achieved from
these surveys.

In this work, we investigate the BAO detection using the angular
correlation function of a galaxy sample optimally selected from the
first year of DES data (DES Y1, Crocce et al. 2017). DES is one
of the largest ongoing galaxy surveys, and its goal is to reveal the
nature of the dark energy. One of the routes to achieve this goal is
to accurately measure the BAO scale in the distribution of galaxies
as a function of redshift. As it is a photometric survey, its redshift
information is not so precise, but it can cover a large volume. This is
advantageous to the BAO measurement: the sound horizon scale is
large, it requires large survey volume to get good statistics. The BAO
sample (Crocce et al. 2017) derived from the first year DES data
(Drlica-Wagner et al. 2017) already consists of about 1.3 million
galaxies covering more than 1318 deg2. This is only 1 per cent of
the total number of galaxies identified in DES Y1, which can be
used for science analyses such as Abbott et al. (2017a).

A measurement of the BAO at the effective redshift (or mean
redshift) of the survey, zeff = 0.8 was presented in Abbott et al.
(2017b) using this sample. This effective redshift is less explored
by other existing surveys. In Abbott et al. (2017b), three statistics:

the angular correlation function w, the angular power spectrum C�,
and the 3D correlation function ξ were used. See Camacho et al.
(2018) and Ross et al. (2017b) for the details on the C� and ξ

analyses. These statistics are sensitive to different systematics and
they provide important cross checks for the analyses. By measuring
angular correlation w from the data divided into a number of redshift
bins (or tomography), no precise redshift information is required,
thus this statistics is well suited for extracting BAO information
from the photometric sample. In the current paper, we present the
details of the calibrations and optimization applied when using w

to measure the BAO. Although the fiducial setup is tailored to DES
Y1, the analysis and apparatus developed here will be useful for
upcoming DES data and other large-scale imaging surveys.

This paper is organized as follows. In Section 2, we introduce the
theory for the BAO modelling and for the Gaussian covariance ma-
trix. We also describe the mock catalogues used to test the pipeline.
In Section 3, we discuss the extraction of the angular diameter dis-
tance using BAO template-fitting methods, and we present three
different estimators for such procedure: Maximum Likelihood Es-
timator (MLE), Profile Likelihood (PL), and Markov Chain Monte
Carlo (MCMC). Potential systematics errors in the angular diameter
distance scale due to the assumed template used for BAO extrac-
tion are studied in Section 4, such as the BAO damping scale, the
assumed cosmological model or the propagation of photo-z errors.
In Section 5, we discuss various optimizations for the analysis. Sec-
tion 6 is devoted to issues related to the covariance; in particular we
present an eigenmode expansion that allows to adapt the covariance
to changes in the underlying template or sample assumptions. We
present our conclusions in Section 7. In Appendix A, we further
compare the results obtained with the three estimators.

2 TH E O RY A N D M O C K C ATA L O G U E S

To detect the BAO signal in the data, we employ a template-fitting
method. A template encodes the expected shape and amplitude of
the BAO feature. It is computed using the expected properties, e.g.
the survey and galaxy sample characteristics. A large set of mock
catalogues are constructed to mimic those detailed characteristics.
The template is then fitted to the correlation functions measured on
the mock catalogues to extract the BAO distance scale, and to study
different systematic and statistical effects.

In this section, we discuss how the template is constructed. We
also introduce a Gaussian theory covariance that is employed at
different moments in the paper. The mock catalogues used in this
study are briefly described in Section 2.3, with full details given in
Avila et al. (2017).

2.1 The BAO template

The angular correlation function w(θ ) measures the correlation be-
tween two points separated by an angle θ . We use linear theory
for the angular correlation function, except that we include the ef-
fect where non-linear structure growth smooths the BAO feature by
including one additional ‘BAO damping’ factor. This is sufficient
for the angular scales we consider, θ > 0.◦5$. For example, we have
checked that it can fit the mean result from the mocks well. See Sec-
tion 4.1 for more details. In this work, the template is computed in
configuration space directly as (Crocce, Cabré & Gaztañaga 2011)

w(θ ) =
∫

dz1

∫
dz2g(z1)g(z2)ξs

(
s(z1, z2, θ ), ŝ · l̂

)
, (1)
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with g(z) ≡ D(z)φ(z), φ(z) is the redshift distribution of the sample,
and D is the linear growth factor. The redshift space correlation
function ξ s depends on the separation vector s in redshift space and
the dot product between the line of sight direction l̂ and ŝ, which is
given by

ŝ · l̂ = r(z2) − r(z1)

s
cos

θ

2
, (2)

with r(z) being the comoving distance to redshift z. In the linear
regime, the redshift–space correlation function is related to the real
space power spectrum as (Kaiser 1987; Hamilton 1992; Cole, Fisher
& Weinberg 1994)

ξs(s) =
∑

�=0,2,4

i�A�P�(ŝ · l̂)
∫

dkk2

2π2
j�(ks)Pm(k), (3)

where P� is the Legendre polynomial of order � and j� the spherical
Bessel function. In our model, the power spectrum Pm(k) including
the BAO damping is parametrized as

Pm(k) = (Plin − Pnw)e−k2�2 + Pnw, (4)

where Plin is the linear matter power spectrum computed by CAMB

(Lewis, Challinor & Lasenby 2000) and Pnw is the linear one without
BAO wiggles given in Eisenstein & Hu (1998). The damping scale
should be anisotropic; but given the accuracy of our data we take the
isotropic average � = 5.2 Mpc h−1. In Section 4.1, we show how
this value is determined. The multipole coefficients A� are given by

A� =

⎧⎪⎪⎨
⎪⎪⎩

b2 + 2
3 bf + 1

5 f 2 for � = 0,

4
3 bf + 4

7 f 2 for � = 2,

8
35 f 2 for � = 4,

(5)

where b is the linear galaxy bias and f ≡ dln D/dln a with a being the
scale factor. We use f = 	0.55

m , where 	m is the density parameter
of matter (Peebles & Groth 1975; Linder 2005) evaluated at the
mean redshift of the photo-z distribution. The bias parameters b are
assumed to be constant in each redshift bin, which is sufficient given
the narrow bins used here, but they can vary from bin to bin. They
are determined by fitting, for each mock and redshift bin, the model
w to the mock correlation function measurement in the θ range
[0.◦5, 2.◦5]. We have checked that using a smaller range of [0.◦5, 1.◦5]
results in less than 0.001 fractional variation of the best-fitting α

(except a few extreme cases).
A template-fitting method is employed to detect the BAO feature

in the angular correlation function. Analogous to that in Seo et al.
(2012), we use the following template

Tα(θ ) = B w(αθ ) + A0 + A1

θ
+ A2

θ2
, (6)

where w(θ ) is the angular correlation function computed in some
cosmology (the fiducial setting is the Marenostrum Institut de Cien-
cias de l’Espai Simulations (MICE) cosmology, see below). The
parameter α gives the shift in the model BAO position relative to
the fiducial one. The parameter B allows for a shift in the overall
amplitude. Its value is expected to be close to 1 as we have deter-
mined the physical bias parameter b by fitting to the data first. The
polynomial in 1/θ gives a smooth contribution and is not expected
to lead to strong features in the BAO range. We will also test the
model with varying number of Ai: with A0 only (denoted as Np =
1), A0 and A1 (Np = 2), and A0, A1, and A2 (Np = 3). We fit the
template over a range of angles, from 0.◦5 to 5◦.

The MICE cosmology is the reference cosmology adopted in
the DES Y1 BAO analysis (Abbott et al. 2017b), and thus is in

this paper as well. It was chosen primarily because of the MICE
simulation set (Fosalba et al. 2015), a large high-resolution galaxy
light-cone simulation tailored in part to reproduce DES observables,
and accessible to us. In particular, MICE halo catalogues were
used to calibrate the Halogen mock catalogues used in DES Y1
BAO analysis (Abbott et al. 2017b) and all the supporting papers
including this one. In summary, the cosmological parameters in
MICE cosmology are 	m = 0.25, 	� = 0.75, 	b = 0.044, h = 0.7,
σ 8 = 0.8, and ns = 0.95. Such a low matter density is no longer
compatible with the current accepted value by Planck [	m = 0.31
(Ade et al. 2016)]. We investigate in Section 4.2 how the BAO fit is
affected when there is mismatch between the template cosmology
and the cosmology of the mocks.

2.2 Theory covariance matrix

We consider both the covariance derived from the mock catalogues
and an analytic Gaussian covariance model in this work. Here, we
derive an expression for the Gaussian covariance matrix for two
point function observables between different redshift bins, wij(θ ),
accounting for shot noise and angular binning. The cross-correlation
between bins i and j can be expressed in terms of angular power
spectra C� through a Legendre transform as follows (Peebles 1980)

wij (θ ) =
∑

�

(2� + 1)

4π
P�(cos θ )Cij

� . (7)

Note we do not include a term 1/n because it only contributes to the
zero separation limit (Ross et al. 2011). In this work, we used the
public code CAMB sources1 to compute the harmonic spectra C

ij

� .
The covariance matrix between two-point correlations at different
pairs of bins is then given by

Cov[wij (θ ), wmn(θ ′)] =
∑
�1,�2

(2�1 + 1)(2�2 + 1)

(4π)2
P�1 (cos θ )P�2

× (cos θ ′)Cov[Cij

�1
, Cmn

�2
], (8)

which under the assumptions that the covariance scales inversely
with the sky fraction in consideration (fsky) and that in the all-sky
limit the spectra band powers are diagonal, can be further written
as (Crocce et al. 2011)

Cov[wij (θ ), wmn(θ ′)] =
∑

�

(2� + 1)

fsky(4π)2
P�(cos θ )P�(cos θ ′)

×
[

(Cim
� + δim

K

n̄i

)(Cjn

� + δ
jn

K

n̄j

) + (Cin
� + δin

K

n̄i

)(Cjm

� + δ
jm

K

n̄j

)

]
, (9)

where δab
K is the Kronecker delta and n̄i is the projected galaxy

number density in bin i, and we have assumed Poisson shot noise.
The fact that w is measured over a finite angular binning can

be taken into account if we express the above summations in
terms of the bin-averaged Legendre polynomial defined as (Salazar-
Albornoz et al. 2017)

P̄� =
∫ θ+

θ− P�(cos θ ) sin θ dθ∫ θ+
θ− sin θ dθ

= P�+1(x+) − P�+1(x−) − P�−1(x+) + P�−1(x−)

(2� + 1)(x+ − x−)
, (10)

1http://camb.info/sources/
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where θ+ and θ− (x+ and x−) denote the upper and lower limits of
the bin (the cosine of the upper and lower limits), respectively. It
is important to use the bin-averaged P̄� in equation (9), otherwise
the error is overestimated [see similar arguments in Cohn (2006),
Smith, Scoccimarro & Sheth (2008), Sanchez, Baugh & Angulo
(2008), and Salazar-Albornoz et al. (2017)]. The bin-averaged P�

is substantially smaller than the unaveraged P� for high � � 1000
for the typical bin width we consider θ ∼ 0.◦1$. This is because
for high � multipoles, the variation of P� across the bin width is
not negligible. The effect of the bin averaging is small for the mean
[i.e. equation (7)] because although the high � part is inaccurate, it
is rapidly oscillatory, the net effect is small. For the diagonal of the
covariance, the terms are all positive, and so the effect is large.

In addition, care must be taken with the shot-noise terms, which
are scale independent and hence factor out in the infinite sum over
Legendre polynomials. One is left with a sum of the type

∑
�(2� +

1)P�(x)P�(x
′
) = 2δD(x − x

′
) which is formally infinite. The fact that

these are over averaged multipoles regularizes them to
∑

�(2� +
1)P̄�(x)P̄�(x ′) = 2/(x− − x+) for autocorrelations (same angular
bin) and zero otherwise. On the other hand, the cross terms of the
form C�/n̄ do converge when summed over because C� decays at
high �. Hence, we treat the pure noise terms separately and perform
the sum analytically. There are only two relevant cases

Cov[wij (θ ), wij (θ ′)] = δθθ ′
K

8π2fskyn̄i n̄j (x− − x+)
+

∑
�

2� + 1

(4π)2fsky

× P̄�(cos θ )P̄�(cos θ ′)
(

Cii
� C

jj

� + +C
ij

� C
ij

� + Cii
�

n̄j

+ C
jj

�

n̄i

)
(11)

for i �= j, and,

Cov[wii(θ ), wii(θ
′)] = δθθ ′

K

4π2fskyn̄
2
i (x− − x+)

+
∑

�

2� + 1

8π2fsky

× P̄�(cos θ )P̄�(cos θ ′)
(

Cii
� Cii

� + 2
Cii

�

n̄i

)
. (12)

The remaining combinations of the indices (i, j, m, n) in equation (9)
do not give rise to scale independent shot noise term, and can
therefore be obtained from equation (9) without the need to sum
them separately.

Finally, we note that the survey angular geometry mask does
not appear explicitly in the Gaussian covariance, only the survey
area through fsky. In configuration space, the effect of the mask
is less severe than in Fourier/harmonic space. None the less, the
geometry of the mask, including the fact that it has holes, makes
the number of random pairs as a function of separation not to
simply scale with the effective area of the survey. Hence, the shot
noise term will not exactly follow equation (9) but acquire a scale
dependence, see Krause et al. (2017). We have checked that this
effect is negligible for our BAO sample. Furthermore, Avila et al.
(2017) compared the covariance matrix obtained from mocks to
the Gaussian covariance matrix and found agreement to within
10 per cent. In Section 6, we study this issue in greater detail.
Another effect, the supersample covariance due to the coupling of
the small-scale modes inside the survey with the long mode when
the window function is present and is only important for small scales
(Hamilton, Rimes & Scoccimarro 2006; Takada & Hu 2013; Li, Hu
& Takada 2014; Chan, Moradinezhad Dizgah & Noreña 2018).

2.3 Mock catalogues

We calibrate our methodology using a sample of 1800 Halogen
mocks (Avila et al. 2017) that match the BAO sample of DES Y1.
We outline the basic information here, and refer the readers to Avila
et al. (2017), and Avila et al. (2015), for more details. For each
mock realization, the dark matter particle distribution is created
using second-order Lagrangian perturbation theory. Each mock run
uses 12803 particles in a box size of 3072 Mpc h−1. Haloes are then
placed in the dark matter density field based on the prescriptions
described in Avila et al. (2015). The halo abundance, bias as a
function of halo mass, and velocity distribution are matched to
those in the MICE simulation (Fosalba et al. 2015). Haloes are
arranged in the light-cone with the observer placed at one corner
of the simulation box. The light-cone is spanned by 12 snapshots
from z = 0.3 to 1.3. From this octant, the full sky mock is formed
by replicating it eight times with periodic boundary conditions.
Galaxies are placed in the haloes using a hybrid halo occupation
distribution–halo abundance matching prescription that allows for
galaxy bias and number density evolution.

The mocks match to the properties of the DES Y1 BAO sam-
ple. The angular mask and sample properties including the photo-z
distribution, the number density, and the galaxy bias are matched.
Redshift uncertainties are accurately modelled by fitting a double
skewed Gaussian curve to photo-z distribution measured from the
data, and this relation is then applied to the mocks. The final mock
catalogue covers an area of 1318 deg2 on the sky as in DES Y1. We
consider the mock data in the photo-z redshift range [0.6,1], and
there are close to 1.3 million galaxies per mock in this range. In
the fiducial setting, the sample is further divided into four redshift
bins of width z = 0.1. In total, we produce 1800 realizations, and
we use them to calibrate the pipeline and estimate the covariance
matrix. Unless otherwise stated, the mock covariance is used.

We measure the angular correlation function from the mocks with
the Landy–Szalay estimator (Landy & Szalay 1993)

w(θ ) = DD(θ ) − 2DR(θ ) + RR(θ )

RR(θ )
, (13)

where DD, DR, and RR are the pair counts between the data–
data, data–random, and random–random catalogues, respectively,
normalized based on the size of catalogue. The number of objects
in the random catalogue is 20 times those in the data. w is computed
using the public code CUTE (Alonso 2012).

3 BAO FI TTI NG METHODS

3.1 Methods overview

For high signal-to-noise BAO data, one expects to recover Gaussian
likelihoods e.g. in the case of Alam et al. (2017). For such data, many
methods for the BAO fitting would be expected to yield consistent
results. But this might not be our situation, as the expected signal
to noise is close to 2.

Here, we compare three methods to derive the BAO angular scale
from the data, testing them thoroughly with the mocks: MLE, PL,
and MCMC. We define each below. These methods differ in how
they define the probability distribution of the interested variables,
and how the best-fitting values and errors are computed. For a review
of these statistical methods, see e.g. Press et al. (2007), Hogg, Bovy
& Lang (2010), and Trotta (2017).

In the BAO fitting even though the full likelihood is multidimen-
sional (with all the parameters in the template) we are ultimately
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interested in only one, the BAO dilation parameter α. Here, we are
mostly interested in which estimator gives the most reliable result
for α.

Throughout, we use ᾱ and σα to denote the best fit and the error
obtained from the fitting method for an individual realization. We
will use angular brackets to represent the ensemble average over
the mocks: e.g. 〈ᾱ〉 is the mean of the best-fitting distribution, while
std(ᾱ) is the standard deviation of the ᾱ distribution.

3.1.1 Maximum Likelihood Estimator

MLE is a point estimator for some parameters λ, and it seeks the
best fit by maximizing the likelihood function L(D|λ), where D
denotes the data set and λ the parameters. If the data are Gaussian
distributed, and we can relate the likelihood to the χ2 as (Press et al.
2007)

L ∝ exp(−χ2/2), (14)

with the χ2 defined as

χ2(λ) =
∑
i,j

[Di − xi(λ)[C−1
ij [Dj − xj (λ)], (15)

where C is the covariance matrix and x is the model. The best fit can
be obtained by minimizing the χ2. MLE itself does not require the
likelihood to be Gaussian, and in that case χ2 minimization can still
be used to find the best fit although its connection to the probability
distribution is not direct.

For the model equation (6), although there are large number of
nuisance parameters B and Ai, they appear linearly and can be fit
analytically using the least-squares fit method. Suppose that the
model is given by

xi =
∑

ρ

Aiρλρ, (16)

where A is called the design matrix, then the best-fitting model
parameters λ obtained by minimizing the χ2 reads (Cowan 1998)

λ = (AT C−1A)−1AT C−1 D. (17)

Thus in principle, we can end up with only one parameter α and
its best fit can be found by a grid search. In practice, we find
that sometimes we get the unphysical result B < 0. To avoid this
unsavory situation, we impose the prior that B > 0. To do so, the
χ2(α,Bi, Ai) is first analytically minimized with respect to the
parameters Ai using equation (17) to get the best-fitting Abf

i . We
then numerically search for the best-fitting Bbf

i with the prior that
Bi > 0 such that χ2(α, Bi, Abf

i ) is minimized with respect to Bi.
Finally, we are left with a one-parameter function χ2(α,Bbf

i , Abf
i ).

MLE has been adopted as a convenient choice for BAO fits in
numerous recent studies [e.g. Anderson et al. (2014)].

For MLE, we use the 1σ error bar derived from the deviation
from the minimum χ2

min by χ2 = 1 (Lampton, Margon & Bowyer
1976; Press et al. 2007). This does assume that the likelihood of λ

is Gaussian distributed [or χ2(λ) is a quadratic function of λ] and
there is only one parameter λ. It also applies to our case when the
other parameters are maximized, see Press et al. (2007). This rule
can be obtained as follows. We can expand the log of the likelihood
ln L about α = α0 where the maximum of the likelihood is attained
as

lnL(α) ≈ lnL0 + 1

2

∂2 lnL
∂α2

∣∣∣
α0

(α − α0)2. (18)

When the Cramér–Rao bound [see Heavens (2009) for a review] is
saturated, the variance of α, σ 2

α is given by

1

σ 2
α

= −∂2 lnL
∂α2

∣∣∣
α0

. (19)

I.e. the curvature of ln L encodes the error bar on the parameter.
Hence, at 1σ from α0, α0 ± σα

lnL(α ± σα) = lnL0 − 1

2
. (20)

From equation (14), this is equivalent to χ2 = 1 rule for the 1σ

error bar in MLE.
We will further take the symmetric error bar by averaging over

the lower and upper bars. In the frequentist’s interpretation, because
α is a parameter, we can interpret the error bars only when the
experiments are repeated. Suppose N independent measurements
are repeated, we expect to have 68 per cent of the time the 1σ bars
enclosing the true value (α = 1 for the unbiased case) for a Gaussian
distribution.

We will consider the likelihood in the range of α ∈ [0.8,1.2], and
BAO is regarded as being detected only if the 1σ interval can be
constructed within the interval [0.8,1.2].

3.1.2 Profile Likelihood

Instead of only using the information at the maximum of the likeli-
hood, we can compute the weighted mean and the standard deviation
using the weight W

W (α) = L(D|α)∫
dα′ L(D|α′)

. (21)

Here, the partial likelihood L(D|α) is obtained by partially maximiz-
ing the likelihood with respect to all the other nuisance parameters
except α following the procedures outlined in Section 3.1.1. The
mean and variance are given by

ᾱ =
∫

dα W (α)α, (22)

σ 2
α =

∫
dα W (α)(α − ᾱ)2. (23)

This method sits between the MLE and MCMC in concept: it adopts
MLE for parameters other than α, but performs a full marginaliza-
tion for α as in the MCMC approach. The integration range is taken
to be [0.8,1.2]. For PL, ᾱ and σ 2

α can always be defined, and it does
not require a minimum in χ2 to be found in the α range.

3.1.3 Markov Chain Monte Carlo

The MCMC has been widely used in cosmological parameter fitting
in last couple of decades, e.g. Hinshaw et al. (2013), Ade et al.
(2016), and Abbott et al. (2017a), mainly because it can efficiently
sample large number of parameters. MCMC is based on the Bayes
theorem

P (λ|D) = P (λ)L(D|λ)

P (D)
, (24)

where P (λ) is the prior distribution, and P(D) is the probability of
the data (often called the evidence).

In the Bayesian approach, α is a random variable, we can talk
about the chance that the α value lies in the 1σ interval. Strict
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Bayesians will stop at the posterior distributions as their final prod-
uct, but to compare with other methods, we will deviate from the
strict Bayesianism and use the posterior distributions to compute the
summary statistics (Hogg et al. 2010). If the distribution is Gaus-
sian, we expect 68 per cent of chance. We use the median of the
MCMC chain for ᾱ, and σα is derived from 16 and 84 percentiles
of the chain. Again to facilitate the comparison with other methods,
we average over the left and right error bars to get a symmetric
one. Alternatively, we can use the mean and the standard deviation
for the best fit and its error bar. We opt for the median and the
percentiles because we find that the results encloses 〈ᾱ〉 closer to
the Gaussian expectation. The prior on α is taken to be [0.6,1.4].
Similar to PL, ᾱ and σα can always be defined.

We use the MCMC implementation EMCEE (Foreman-Mackey
et al. 2013), in which multiple walkers are employed and the cor-
relation among the walkers are reduced by using the information
among them. We use 100 walkers, 3000 burn-in steps, and 2000
steps for the run. In this setting, the MCMC fitting code takes about
50 times longer than the MLE code does. We have conducted some
convergence test on the number of steps required. We took a sample
of steps in the range from 1500 to 50 000 and find that fluctuations
of ᾱ are within 0.1 per cent from the convergent value (assuming
convergence attained with 50 000 steps) and those of σα within
2 per cent. Thus, 2000 steps are sufficient to make sure that it does
not impact the results later on. We note that the usage of the per-
centiles of the distribution is much less susceptible to statistical
fluctuations than using the mean and the variance.

3.1.4 Comparison criteria

We will test these methods against the mock catalogues. We will
check how stable the fit results are, especially how small a bias (in
comparison to the known true value) that each method yields.

The full information is in the likelihood/posterior. The best fit
and its error matter because we want to effectively represent the
distribution by these two numbers. Here are some features that
the desirable summary statistics should have. First, we want the
estimator to yield an unbiased mean result. Second, in order to
have the proper probabilistic interpretation of the error bar, it is
desirable that the error bar encloses the true answer close to the
Gaussian expectation, which is 68 per cent for 1σ . Hence, we will
check the fraction of times that the error bar derived encloses the
true answer. Another useful metric is that the standard deviation of
the distribution, std(ᾱ) agrees with the mean of the error derived
〈σα〉. One way to compare the deviation of ᾱ from the expected true
answer (the spread of the ᾱ distribution) and the error derived σα is
to consider the normalized variable

dnorm = ᾱ − 〈ᾱ〉
σα

. (25)

The distribution of this variable can be compared to a unit normal
distribution as a test of the Gaussianity of the recovered results.

Note that we do not enforce the error distribution to be Gaus-
sian, indeed they are not (see Fig. 3). We only want the 1σ error
bar to enclose the true answer close to the Gaussian expectation.
In principle, for MLE, we can adjust the value of χ2 so that it
encloses the true value (e.g. α = 1) 68 per cent of the time. Similar
adjustments can be done for other estimators. By doing so, the de-
rived error bar yields the desired Gaussian probability expectation.
However, the χ2 = 1 rule works well for us, and no adjustment is
needed.

Figure 1. The likelihood distribution of w at the bin θ = 2◦ (histogram).
The standard normal variable is used. The Gaussian distribution with zero
mean and unity variance (solid line) is plotted for comparison.

3.2 Comparison of the BAO fit results by MLE, PL, and
MCMC

Following Abbott et al. (2017b), we consider those fits with their 1σ

intervals of α falling outside the range [0.8,1.2] as non-detections.
These non-detections are poorly fit by our template, and they cause
the distribution of ᾱ to be highly non-Gaussian. Thus, we will
remove the non-detection mocks first. We will comment more on
this at the end of the section.

Before proceeding to the comparison, we first verify the Gaussian
likelihood assumption equation (14) using the mock catalogues. The
likelihood tends to be Gaussian distributed thanks to the central limit
theorem. Because the Gaussian likelihood assumption is central to
the analysis, we need to check it [e.g. Scoccimarro (2000); Hahn
et al. (2018)]. In Fig. 1, we show the likelihood distribution of the
values of w measured from the mocks. We have shown the results
for the bin θ = 2◦. We have used the standard normal variable (w −
w̄)/σw, where w̄ and σ w are the mean and the standard deviation of
the distribution of w. We find that the likelihood indeed follows the
Gaussian distribution well.

In Table 1, we show the fit with MLE, PL, and MCMC for two
detection criteria. First, for MLE with error derived from χ2 =
1, there are 91 per cent of the mocks with their 1σ error bars fall
within the interval of [0.8,1.2], while for MCMC the fraction is
84 per cent. For PL, it is also almost 100 per cent.

In Fig. 2, we show the distribution of the best-fitting α obtained
with these three methods after pruning the non-detection mocks. As
a comparison we have also plotted the Gaussian distribution with
the same mean and variance, we find that ᾱ follows the Gaussian
distribution well. The mean of the best fit from MLE is the least
biased among the three methods. The distributions of ᾱ from PL
and MCMC are quite similar. They tend to be more skewed towards
ᾱ > 1, and this can be seen from their corresponding Gaussian
distribution and the 〈ᾱ〉 shown in Table 1. In particular for MCMC,
〈ᾱ〉, it is larger than 1 by 0.007. In Table 1, the fraction of mocks with
the 1σ error bar enclosing the 〈ᾱ〉 is also shown. We find that MLE
with χ2 = 1 prescription encloses 〈ᾱ〉 0.69 of the time, which is
very close to the Gaussian expectation, while PL and MCMC are
higher than the Gaussian expectation by 9 per cent and 6 per cent,
respectively.

In order to see the error derived more clearly, in Fig. 3, the dis-
tribution of the errors derived from these three methods are shown.
As a comparison, we also show the std(ᾱ). In the caption of Fig. 3
we have given the numbers for the 〈σα〉 and std(ᾱ) for MLE, PL,
and MCMC. The 〈σα〉 obtained from the MLE method coincides
with std(ᾱ) well, while MCMC gives slightly larger error σα . PL
tends to give the largest error with 〈σα〉/std(ᾱ) = 1.27.

MNRAS 480, 3031–3051 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/480/3/3031/5061648 by guest on 09 N
ovem

ber 2024



BAO from angular correlation function 3037

Table 1. The BAO fit with MLE, PL, and MCMC obtained with two sets of detection criteria (left and right). For Detection Criterion 1, we only consider those
mocks whose 1σ interval ᾱ ± σα fall within the interval [0.8,1.2]. For Detection Criterion 2, we use the same set of mocks for all three methods, those having
1σ interval falling within [0.8,1.2] using the MLE estimate of ᾱ and σα . For each criterion, the first fraction is normalized with respect to the total number of
mocks (1800), while the second fraction is normalized with respect to the number of mocks satisfying the selection criterion.

Detection Criterion 1 Detection Criterion 2
ᾱ ± σα in [0.8,1.2] 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα ᾱ ± σα in [0.8,1.2] 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα

(Fraction selected) enclosing 〈ᾱ〉 MLE (Fraction selected) enclosing 〈ᾱ〉
MLE 0.91 1.001 ± 0.052 0.69 0.91 1.001 ± 0.052 0.69
PL 0.99 1.004 ± 0.049 0.77 0.91 1.003 ± 0.046 0.78
MCMC 0.84 1.007 ± 0.049 0.74 0.91 1.007 ± 0.059 0.74

Figure 2. The histograms show the distribution of the best-fitting ᾱ obtained
using MLE (blue), PL (red), and MCMC (yellow). The solid lines (blue for
MLE, red for PL, and yellow for MCMC) are the Gaussian distributions
with the same mean and variance as the corresponding histograms.

Figure 3. The distribution of the error derived from each individual mock
(blue for MLE, red for PL, and yellow for MCMC). The vertical dashed lines
are the standard deviations of the best-fitting ᾱ shown in Fig. 2. The 〈σα〉
and std(ᾱ) for MLE, PL, and MCMC are (0.053, 0.052), (0.062, 0.0492),
and (0.057, 0.049) respectively. While for MLE 〈σα〉 and std(ᾱ) coincide,
PL and MCMC yield larger 〈σα〉.

We plot the distributions of the normalized variable for these
methods in Fig. 4. By comparing with the Gaussian distribution
with zero mean and unity variance, we find that MLE with χ2 =
1, dnorm is more Gaussian, while MCMC is slightly worse, and PL
is the least Gaussian.

Figure 4. The distribution of the normalized variable dnorm. The results
obtained with MLE (blue), PL (red), and MCMC (yellow) are shown. The
Gaussian distribution with zero mean and unity variance (solid, black) are
shown for reference.

In the detection criterion we have applied, the non-detections
are different for each of the methods. We therefore wish to check
if the differences we have found in the results are simply due to
that. We now apply the same selection criterion that the 1σ interval
obtained from MLE falls within [0.8,1.2] to all the three methods.
The results are shown in Table 1 as Detection Criterion 2. We find
that the results are essentially the same as the previous one, ruling
out that the differences are due to the selection criterion. Note that
for MCMC, the std(ᾱ) has increased quite appreciably because using
the MLE detection criterion, a large fraction of extreme mocks are
retained and they cause a big increase in the std(ᾱ). In the rest of
the analysis, we will stick to the original pruning criterion.

The choice of the interval [0.8,1.2] is somewhat arbitrary, but
based on past results [e.g. Anderson et al. (2014); Ross et al.
(2017a)] that suggest it is a reasonable choice (though, admittedly,
more a rule of thumb than anything else). To further justify this
choice, in the Appendix A, we show the comparison of results ob-
tained with a larger interval [0.6,1.4]. We find that by including the
extreme mocks, the distribution of the best-fitting ᾱ exhibits strong
tails, and it does not agree with the Gaussian distribution with the
same mean and variance. These extreme mocks not only enlarge
the mean of the error bars 〈σα〉, they also cause bias in 〈ᾱ〉. In par-
ticular for MLE, |〈ᾱ〉 − 1| changes from 0.001 (Table 1) to 0.029
(Table A1). For MCMC, it only changes mildly from 0.007 to 0.010.
Overall, we find that when the wider interval [0.6,1.4] is adopted,
the MCMC is superior to the other two methods because it gets less
biased results, and the derived 1σ intervals which enclose 〈ᾱ〉 is

MNRAS 480, 3031–3051 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/480/3/3031/5061648 by guest on 09 N
ovem

ber 2024



3038 K. C. Chan et al.

71 per cent of the mocks, the closest to the Gaussian expectation.
Moreover, 〈σα〉/std(ᾱ) = 0.92 is close to 1.

Because the small fraction of the mocks without a BAO detection
highly bias the distributions of the best-fitting parameters, and since
it would be difficult to extract useful BAO information from them,
we adopt a smaller interval to get rid of them. In practice, if the
best fit with its 1σ interval is outside the range [0.8,1.2] in our
actual data, the data would be poorly fitted (or the error bar poorly
estimated) by our existing methodology and we can hardly claim
to detect the BAO signals in the data. In this case, we may need to
change the fiducial cosmological model or wait for additional data.

Thus, overall we find that after pruning the non-detections, MLE
yields the estimate with the least bias and the error bar using χ2

= 1 results in the 1σ error closest to the Gaussian expectation.
Therefore, if we prune the data, MLE furnishes an effective BAO
fitting method. For the rest of the analysis, we always use the pruned
data.

4 TEMPLATE SYSTEMATICS

In this section, we study the potential systematics associated with
the template and investigate how they can affect the BAO fit results.
We will first determine the physical damping scale � in the template
by fitting to the mock catalogue. Although the damping scale does
not bias the mean for the BAO fit, it can strongly affect the error
bar that is derived. We then examine how the BAO fit is affected
when the template does not coincide precisely with the data, i.e. the
BAO scale in the template is different from that in the data. The
parameter α is introduced to allow the shift in the BAO scale, it is
crucial to check how successful it deals with the mismatch.

The BAO angular scale θBAO can be estimated as

θBAO = rs

DA
, (26)

where rs is the comoving sound horizon at the drag epoch and DA

denotes the comoving angular diameter distance [as in Weinberg
et al. (2013)] and in a flat cosmology it is given by

DA =
∫ z

0

c dz′

H (z′)
, (27)

where H is the Hubble parameter and c is the speed of light. Here,
we consider two ways that the template mismatches the data.
First, the cosmology for the data could be different from that of
the fiducial cosmology. Another possibility is that there could
be photo-z error causing φ(z) to be systematically biased. Both
possibilities can cause shifts in θBAO. Using a wrong cosmology
changes both rs and DA.

4.1 The BAO damping scale

To determine the correct physical damping scale, we fit the templates
with only one fitting parameter � to the mean w of the mocks (i.e.
α = 1, B = 1, and Ai = 0). We have considered four redshift bins
and fitted to each redshift bin separately. The minimum of the χ2

obtained with MLE is plotted against the damping scale in Fig. 5.
The best-fitting damping scale is in between 5 and 6 Mpc h−1 across
the redshift bins. However, we note that the highest redshift bin, bin
4, requires the largest damping. This is contrary to the expectation
that the damping scale should decrease as redshift increases because
the non-linearity becomes weaker. This is not due to the photo-z
distribution because of the following reason. Although bin 4 has the
largest photo-z uncertainty, which can blur the BAO, it is taken into

Figure 5. The minimum of the χ2 against the BAO damping scale � for
the four redshift bins used.

Figure 6. The χ2 as a function of α when the template without damping
(dashed, blue) and with the damping scale � = 5.2 Mpc h−1 (solid, green)
are used. The fit with a no-BAO template (dotted, red) is also shown.

account in φ(z) already and does not affect the more fundamental 3D
damping scale. Throughout this work, we simply take the mean of
the best fit of the four redshift bins, which is � = 5.2 Mpc h−1. We
have checked that the differences between using the mean damping
scales and the individual best fit results in no detectable change in α.

It is instructive to see how the fit is affected when the tem-
plate without damping is used. To check this, we compare the
fits with � = 5.2 Mpc h−1 against the one without damping i.e.
� = 0 Mpc h−1. We jointly fit to the mean of the four bins and the
results are shown in Fig. 6. The linear case yields a larger overall
value of χ2 than the damped one. As a comparison, we also show
the fit using a template without BAO, and it is clearly disfavoured
compared to the BAO model. We also see that the χ2 bound is nar-
rower for the linear template, and hence using it we would get an
artificially tighter bound on α. On the other hand, the extreme case
of no BAO, there is no bound on α at all.

In Eisenstein et al. (2007) [see also Seo & Eisenstein (2007)],
the BAO damping is modelled using the differential Lagrangian
displacement field between two points at a separation of the sound
horizon. Under the Zel’dovich approximation (Zel’dovich 1970), at
zeff = 0.8 the spherically averaged damping scale is 5.35 Mpc h−1,
which is close to our recovered value. Note that the damping
scale is obtained by integrating over the linear power spectrum
[eq. (9) in Eisenstein et al. (2007)], and in Planck cosmology, we
get 4.96 Mpc h−1 instead. Thus in principle, we can allow the damp-
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ing scale to be a free parameter. In Abbott et al. (2017b), we have
tested the results obtained using different damping scales (2.6 and
7.8 Mpc h−1), consistent with the trend shown in Fig. 6, the damp-
ing scale has only small effect on the best fit, but a smaller damping
scale results in a smaller error bar. Given the quality of the current
data, we fix the BAO damping scale to be 5.2 Mpc h−1.

4.2 Incorrect fiducial cosmology

The mock catalogues were created using the MICE cosmology. To
test the cosmology dependence, we fit a template computed using
the Planck cosmology (Ade et al. 2016). The Planck cosmology
should be closer to the current cosmology and it is used in the
other analyses, such as the Baryon Oscillation Spectroscopic Survey
(BOSS) DR12 (Ross et al. 2017a). For the Planck cosmology, we
use 	m = 0.309, σ 8 = 0.83, ns = 0.97, and h = 0.676. From CAMB

(Lewis et al. 2000), in the MICE cosmology, the sound horizon
at the drag epoch is 153.4 Mpc, while in the Planck cosmology it
is 147.8 Mpc. For the effective redshift zeff = 0.8, DA in MICE
cosmology is larger than that in the Planck one by 3.1 per cent.
Thus, we expect the BAO in the Planck cosmology to be smaller
than that in the MICE by 4.1 per cent in angular scale.

In Fig. 7, we plot the matter angular correlation function obtained
using the MICE and Planck cosmology. To check how well the
rescaling parameter α works, we rescale the angular correlation by
w(αθ ) and then match the amplitude at the BAO scale with that of
the MICE one. We find that the rescaling results in a good match
with the MICE one around the BAO scale. However, away from the
BAO scale, the disagreement with the MICE template increases.
Since we use the angular scale in the range of [0.◦5, 5◦] in the fitting,
it is not clear if we can recover the true cosmology.

In Table 2, we compare the fit obtained using the MICE template
with that from the Planck cosmology one. We have displayed the
fits using the mean of the mocks and the individual mocks. As
the mean result is obtained by averaging over 1800 realizations,
the covariance is reduced by a factor of 1800. We have shown four
decimal places as the error bars are small for the mean fit. In this very
high signal-to-noise setting, there is still ᾱ − 1 ∼ 0.004 bias in the
best fit for all these estimators. It is much larger than the estimated
error bar σα ∼ 0.0013, thus the bias is systematic. This can arise
from the non-linear effects such as the dark matter non-linearity and
galaxy bias (Crocce & Scoccimarro 2008; Padmanabhan & White
2009). When the Planck template is used, the best-fitting α is about
0.9674. Thus, the ratio of the dilation parameter is ᾱPlanck/ᾱMICE =
0.9634 and it is still smaller than the expectation 0.959 by ∼3σα . Of
course this high signal-to-noise case occurs if we have 1800 times
the DES Y1 volume. For the present DES volume, it is still statistical
error dominated as can be seen below.

Now we turn to the distribution of ᾱ. Since the expected ᾱ ≈
0.96 is not symmetric about the interval [0.8,1.2] for the case of
Planck cosmology. This asymmetry can bias the distribution of ᾱ.
To prevent this bias, we use the detection criterion that the 1σ error
bounds fall within the boundary [0.76, 1.16] for the case of Planck
cosmology. For MCMC, the prior on α is changed to [0.56,1.36],
although this results in no detectable significance compared to the
fiducial choice [0.6,1.4]. 〈ᾱ〉 shows larger variations than the mean
fit case because the covariance is larger by a factor of 1800. The
ratio of the dilation parameter 〈ᾱPlanck〉/〈ᾱMICE〉 are 0.964, 0.965,
and 0.967 for MLE, PL, and MCMC, respectively. The ratio is close
to what we get for the mean fit. Note that if we keep the boundary
of α to be [0.8,1.2] for the Planck case, we get 〈ᾱ〉 = 0.970, 0.976,
and 0.979, resulting in larger difference from the mean fit results. It

is worth mentioning that this adjustment of the interval only affects
the mocks with more extreme values of the best fit.

The small difference between the fit results and the estimation
from equation (26) could be because we have used the information
not just about the BAO scale, but also the shape of the correlation
around it. This is related to the polynomial Ai used to absorb the
broad-band power dependence. We have checked that the bias in
the fit reduces with the order of polynomial in Ai. For example,
for the case of mean fit, for Np = 1, 2, and 3, ᾱ − 1 are −0.095,
−0.054, and −0.034, respectively. For large range in the angles, the
polynomial cannot perfectly remove the dependence. However for
Np = 3, the bias in the best-fitting ᾱ is reduced to a basically neg-
ligible level given the signal-to-noise ratio of our data, suggesting
our results should be robust at least for true cosmologies between
MICE and Planck. Of course one can use a template that is closer
to the currently accepted cosmology, although at the risk of the
confirmation bias.

4.3 Photo- z error

Suppose that the true photo-z distribution is φ0, but because of
some photo-z error δφ, which can arise from systematic errors in
the photo-z calibration, the photo-z distribution φ = φ0 + δφ is
used. In this section, we test how the photo-z error affects the BAO
fit.

We will investigate two types of photo-z errors in the templates:
in one case, the means of the photo-z distributions are systematically
shifted by 3 per cent in each of the four tomographic redshift bins, for
the second case, the standard deviations of the photo-z distributions
are increased by 20 per cent. While the typical relative error in the
mean of the redshift distributions for the DES Y1 BAO sample is
about 1 per cent (Gaztañaga et al. 2018), 3 per cent is used to increase
the signal-to-noise ratio of our systematic test. The 20 per cent error
in the spread is the upper bound of the relative error in the width of
those redshift distributions (Gaztañaga et al. 2018).

As we can see from Fig. 8, the photo-z distribution is approxi-
mately Gaussian. If φ0 is Gaussian, we parametrize δφ as variations
in the mean μ and variance σ 2 by an amount of δμ and δσ 2 as

δφ(z) = φ0(z)

[
z − μ

σ 2
δμ +

(
(z − μ)2

σ 2
− 1

)
δσ

σ

]
. (28)

Note that
∫

dz δφ(z) = 0, thus φ0 + δφ is properly normalized.
However, φ0 + δφ is not always positive in the whole range of z,
so it is not really a legitimate probability distribution. None the
less, since the variations we consider are small, the negative part
is small. Furthermore, the δμ term, which is odd about μ, causes
skewness about the mean in φ + δφ. All these suggest that φ0 +
δφ may not be close to Gaussian any more. If so the parameter
δμ (δσ ) may not be the variation of the mean (standard deviation)
of φ0 + δφ relative to that of φ0. Indeed, we find that the out-
put variation (by direct computation) from equation (28) does not
match that from the input (δμ and δσ ). Thus, for the case of mean
shift, we will simply translate the distribution by certain amount
instead of using equation (28). For the variation of the standard de-
viation, we adjust the value of δσ in equation (28) to get the desired
variation.

Because the photo-z error causes variation in the mean redshift
of the slice and hence DA, from equation (26), we can get a simple
estimate for the shift of θBAO due to a shift in z by an amount of δμ

δθBAO

θBAO
= − c δμ

H (z)DA(z)
. (29)
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3040 K. C. Chan et al.

Figure 7. The angular correlation obtained using the MICE (solid, blue)
and Planck (dashed, green) cosmologies. The Planck correlation rescaled
by α = 0.96 (red) and shifted in amplitude to match the MICE one.

At the effective redshift zeff = 0.8, when δμ increases by 3 per cent,
δθBAO/θBAO changes by −2.4 per cent. This simple argument sug-
gests that the leading effect comes from the systematic shift in the
mean, while the variation in the standard deviation is symmetric
about the mean to the lowest order and does not shift the BAO.

In Table 3, we compare the fit results obtained using the fiducial
template, the template with 3 per cent increase in the mean of φ(z),
and the one with 20 per cent increase in σ . For the fit to the mean,
there is a shift of −0.0254, −0.0251, and −0.0239 for MLE, PL, and
MCMC, respectively, when the mean of φ is systematically shifted
by 3 per cent. When φ is systematically shifted by 3 per cent, we
use the interval [0.776, 1.176] for α instead. The shift for 〈ᾱ〉 are
−0.024 relative to the fiducial case for all the estimators. On the
other hand, when the standard deviation of the distributions are
increased by 20 per cent, there is no significant systematic trend
for the best fits. Although not shown explicitly here, there is about
2 per cent increase in 〈σα〉 for all the estimators, signalling that the
error indeed increases.

Good agreement between the full fit results and the estimation by
equation (29) validates the simple argument. This is useful because
it provides a convenient estimate for the accuracy of the photo-z
required for the BAO fit. For example, from the redshift validation
(Gaztañaga et al. 2018), the mean of the photo-z error after sample
variance correction is about 1 per cent, thus the shift in the BAO
position is about 0.8 per cent. This is still marginal compared to
other potential systematic shifts and is less than 20 per cent of the
statistical uncertainty. For DES Y3, the amount of data is expected
to increase roughly by a factor of 3, and so the error on α is expected
to reduce by almost a factor of

√
3. Hence, the photo-z uncertainty

is still expected to be subdominant for Year 3. The shift in the mean
of the photo-z distribution has similar effects as the parameter α,

and hence they would be degenerate with each other. It is important
that the photo-z distribution is calibrated in an independent means
e.g. using the external spectroscopic data.

5 O PTI MI ZI NG THE ANALYSI S

To derive the fit, an accurate precision matrix, i.e. the inverse of
the covariance matrix, is necessary. In Abbott et al. (2017b), the
workhorse covariance is derived from the mock catalogues. To get
an accurate precision matrix from the mocks, we want the dimension
of the covariance matrix to be small relative to the number of mocks
(Anderson 2003; Hartlap, Simon & Schneider 2007). Hence, it
is desirable to reduce the number of data bins while preserving
the information content. To this end, we consider optimizing of
the number of angular bins, the number of redshift bins, and the
inclusion of cross redshift bins.

5.1 The angular bin width

We use the following method to check the dependence of the BAO
fit results on the angular bin size. We generate a theory template with
fine angular bin width (0.◦01 here). A mock data vector with coarser
bin width is created by bin averaging the theory template over the bin
width. The mock data vector is then fitted using the fine template. In
the analysis, we use the Gaussian covariance equation (12). As we
see in equation (20), for the error analysis, the magnitude of the χ2

does not matter, and only the deviation from the best fit does. This
method enables us to explore the likelihood about its maximum, and
hence derive the strength of the constraint. It is similar to the often
used Fisher forecast (Tegmark, Taylor & Heavens 1997; Dodelson
2003).

In Fig. 9, we show the distribution of χ2 as a function of the
dilation parameter α for a number of angular bin widths. In this
ideal noiseless setting, the best fit can fit the mock data extremely
well, as manifested with χ2 ≈ 0 at α = 1. The χ2 = 1 rule can
give the 1σ constraint on α. For the angular bin width θ = 0.◦05,
0.◦1, 0.◦15, 0.◦25, 0.◦3, and 0.◦4, the 1σ error bars are 0.0522, 0.0521,
0.0520, 0.0514, 0.0509, and 0.0503, respectively. The mock data
with coarser bin width yields slightly smaller 1σ error bar because
they give a slightly less precise representation of the underlying
model. This is often the case when a poor model is used, it gives
larger χ2 (the definition of a poor model) and an artificially stringent
constraint.

For BAO fitting, it is preferable to have the bin width to be fine
enough so that there are a few data points in the BAO dip-peak
range to delineate the BAO feature. Thus for the rest of the study,
we shall stick to θ = 0.◦15. In Abbott et al. (2017b), the covariance
is derived from the mock catalogues. As we find that the differences
between different bin widths results are negligible, to reduce the
size of the data vector, θ = 0.◦3 was adopted in Abbott et al.
(2017b).

Table 2. The BAO fit obtained with MLE, PL, and MCMC for the MICE and Planck cosmologies. The fits to the mean of the mocks and the individual mocks
are shown.

MICE Planck
Best fit to 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα Best fit to 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα

mean of mocks (all mocks) enclosing 〈ᾱ〉 mean of mocks (all mocks) enclosing 〈ᾱ〉
MLE 1.0043 ± 0.0013 1.001 ± 0.052 0.69 0.9675 ± 0.0014 0.965 ± 0.050 0.70
PL 1.0043 ± 0.0013 1.004 ± 0.049 0.77 0.9673 ± 0.0014 0.969 ± 0.048 0.78
MCMC 1.0030 ± 0.0012 1.007 ± 0.049 0.74 0.9674 ± 0.0014 0.974 ± 0.047 0.75
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BAO from angular correlation function 3041

Figure 8. The photo-z distribution from the mock catalogue as a function of the true redshift z for a number of redshift bins Nz = 2, 4, and 8 bins, respectively.
The solid black lines show the Gaussian distribution with the same mean and variance as the photo-z distribution.

Table 3. The BAO fit using the fiducial photo-z distribution, the distribution with mean shift by 3 per cent, and the distribution with standard deviation
increased by 20 per cent. The fits to the mean of the mocks and the individual mocks are shown.

Fiducial φ(z) 3 per cent increase in the mean of φ(z) 20 per cent increase in the std of φ(z)
Best fit to 〈ᾱ〉 ± std(ᾱ) Best fit to 〈ᾱ〉 ± std(ᾱ) Best fit to 〈ᾱ〉 ± std(ᾱ)

mean of mocks (all mocks) mean of mocks (all mocks) mean of mocks (all mocks)

MLE 1.0043 ± 0.0013 1.001 ± 0.052 0.9789 ± 0.0014 0.977 ± 0.051 1.0043 ± 0.0012 1.001 ± 0.051
LP 1.0043 ± 0.0013 1.004 ± 0.049 0.9792 ± 0.0013 0.980 ± 0.049 1.0043 ± 0.0013 1.004 ± 0.049
MCMC 1.0030 ± 0.0012 1.007 ± 0.049 0.9791 ± 0.0013 0.983 ± 0.049 1.0042 ± 0.0013 1.007 ± 0.049

Figure 9. χ2 as a function of α for different angular bin widths. The models
with different bin width θ yield similar results.

5.2 Number of photo- z bins

For a sample that relies on photo-zs, there can be large overlaps
among the photo-z distributions from different redshift bins, and
thus substantial covariance between different redshift bins. Here,
we test how the constraints depend on the number of redshift bins.

Based on the assigned photo-z in the mock, we divide the sam-
ples in the redshift range [0.6,1] into Nz redshift bins, with equal
width in z. For example, we have shown the photo-z distribution
φ(z) ≡ P(z|zphoto) for Nz = 2, 4, and 8. We see that there is indeed
large overlap in the photo-z distribution. We also plotted the Gaus-
sian distribution with the same mean and variance as the photo-z
distribution. The photo-z distribution is moderately Gaussian and
the deviation from Gaussianity increases with z. In fact, Avila

Figure 10. The χ2 as a function of α for different number of redshift bins
Nz = 2, 4, 5, 6, and 8, respectively. The black dash line indicates the χ2

= 1 threshold.

et al. (2017) find that a double Gaussian distribution offers a better
fit to φ.

Similar to that in Section 5.1, using the photo-z distribution shown
in Fig. 8, we generate templates with fine bin width (θ = 0.◦01),
data vectors with coarser bin width (θ = 0.◦15), and the Gaussian
covariances. The template needs to smoothly represent the theory,
and θ = 0.◦01 is sufficient. The χ2 as a function of α for different
Nz are displayed in Fig. 10. We see that for Nz = 2, the data are
undersampled and the 1σ error bar on α is weak (at χ2 = 1, it is
0.07). When Nz is increased to 4, the error bar is tightened to 0.05
at χ2 = 1. Further increasing the number of redshift bins, there is
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3042 K. C. Chan et al.

little gain, and the change in 1σ error bar is less than 0.005 for Nz

= 8. To strike a balance between retaining as much information as
possible and keeping the size of the data vector small, we use Nz =
4 for the rest of the work and in Abbott et al. (2017b).

In Abbott et al. (2017b), different combinations of redshift bins of
width 0.1 in the range [0.6–1] are used to do the BAO fit. In Table 4,
we examine how the results vary with the number of redshift bins
used. We consider the fit using four redshift bins (bins 1, 2, 3, and
4), three redshift bins (bins 2, 3, and 4), and two redshift bins (bins
3 and 4). Recall that the redshift bins are in ascending order, e.g.
bin 1 refers to [0.6,0.7], etc. When the number of redshift bins is
reduced, the constraining power of the data is expected to decrease.
The fraction of mocks with 1σ error bar in the range [0.8,1.2] is
expected to decrease with the number of redshift bins. The trends for
both the MLE and MCMC are consistent with this expectation. PL
does not show any clear changes mainly because the mean and error
of PL can be defined within any range, which is taken to be [0.8,1.2]
here. The mean of the best-fitting 〈ᾱ〉 is essentially unchanged, but
the spread std(ᾱ) increases mildly by 12 per cent, 6 per cent, and
10 per cent for MLE, PL, and MCMC, respectively. On the other
hand, the error derived from the each realization show much larger
increase. We find that 〈σα〉 increases by 21 per cent, 35 per cent,
and 33 per cent for MLE, PL, and MCMC, respectively. We also
note that 〈σα〉/std(ᾱ) is closest to 1 among these fitting methods.

5.3 Adding cross-correlations

So far we considered only the autocorrelation in redshift bin wii.
Here, we test the gain on the constraint in α when the cross-
correlations among different redshift bins are included.

In Fig. 11, the auto and cross-correlation functions are plotted. We
see that only the cross-correlation between the adjacent redshift bins
show any BAO signal, while the redshift bins that are further apart
have little signal in their cross-correlation. Thus, the BAO constraint
improvement if any, can only come from the cross-correlation of
adjacent redshift bins.

In Fig. 12, the χ2 fit using only the auto correlation and when the
cross-correlations are included are compared. In the fit, for each of
the wij, a new set of parameters B and Aa are introduced. Hence for
our case, there are altogether 10 × 4 + 1 = 41 free parameters. We
find that the gain in the BAO constraint when the cross redshift bin
correlations are included is very limited. In this estimate, Gaussian
covariance is used. As it is noiseless, there is no problem of covari-
ance matrix inversion. In practice, when the covariance is estimated
from the mocks, we need to reduce the dimension of the covariance
matrix. Of course, almost all the improvement on the α constraint is
expect to come from the adjacent redshift bins (although this is not
shown explicitly here), so in any real analysis, we should include
only the nearest redshift bins. Still the dimension of the covariance
matrix is increased from 4Nθ to 7Nθ , where Nθ is the number of
angular bin for each redshift, when the cross-correlations between
adjacent redshift bins are included. Thus, we recommend that only
the autocorrelations be used.

5.4 Testing the order of the polynomial

As we mentioned after equation (6), we test the number of free
parameters Ai in the template. In Table 5, we show the fit results
for Np = 1, 2, and 3 in equation (6). From the limited data set, it is
hard to draw a solid conclusion. Overall, there is no clear systematic
trend with Np for these three methods, thus it shows that the fiducial
order of polynomial adopted although somewhat arbitrary, it does

not lead to systematics bias in the analysis. Assuringly, MLE with
Np = 3, which is the workhorse model adopted in Abbott et al.
(2017b), is the method that performs best in terms of being largely
unbiased and recovering close to 68 per cent of the true answer (i.e.
the Gaussian expectation).

6 C OVA R I A N C E

In this section, we consider the issues of covariance in more detail.
We first study how the Gaussian covariance impacts the BAO fit,
and then investigate how to improve the covariance derived from
a set of mock catalogues. One of the potential issues that arises
in the survey analysis pipeline is that sample properties such as
the n(z) and galaxy bias could be different from those used to
create the mocks. We show that the correction due to these property
changes can be mitigated with the help of the Gaussian covariance.
We also investigate expanding the covariance matrix and precision
matrix using the eigenmodes from some proxy covariance matrix.
We demonstrate that this approach can substantially reduce the
influence of the noise because the number of free parameters are
significantly reduced, and that it can effectively mimic the effect of
small changes in the sample properties.

6.1 BAO fit with the Gaussian covariance

In Fig. 13, we show the covariance matrix obtained from the mock
catalogue and the Gaussian theory. We arrange the data vector in
ascending order in redshift. To see the difference more clearly, we
plot four different rows of the covariance matrix in Fig. 14. We have
shown the results for two samples (proxy and target, see below).
The symbols and lines show the mock and the Gaussian covariances,
respectively. From Figs 13 and 14, it is clear that the Gaussian co-
variance captures most of the features well. However, the Gaussian
covariance exhibits only correlation between the neighbouring red-
shift bins, while the mock covariances show correlation beyond the
neighbouring redshift bins.

We summarize the BAO fit results using the mock and the Gaus-
sian covariance in Table 6. The distribution of ᾱ is similar to that
from the mock and std(ᾱ) is only systematically larger than that
from the mock by a couple of percent. However, 〈σα〉 from the
Gaussian covariance is only about 80 per cent of 〈σα〉 derived from
the mock.

In Fig. 15, we plot the χ2
min per degree of freedom for the BAO fit

using different prescriptions for the covariance. The histograms are
obtained by fitting to 1800 mock data vectors, and they only differ in
the covariance used in the fit. The mock covariance by construction
gives the χ2

min per degree of freedom ∼1, while we find that the
Gaussian covariance (with the correct sample properties) gives a
higher value, ∼1.4. We will use the χ2

min per degree of freedom as
the metric to decide which prescription of the covariance gives a
better approximation to the correct mock covariance.

6.2 Correcting sample variation using Gaussian covariance

As mocks take time to produce, they are often created using some
expected data properties. If these differ from the actual data proper-
ties, the mocks do not perfectly match the data. Here, we investigate
correcting these changes in the mock covariance matrix using the
Gaussian covariance. These sample changes can result from varia-
tion in the bias parameter and number density of the samples. To
be concrete, let us call the mock that we created using the expected
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BAO from angular correlation function 3043

Table 4. The BAO fit obtained using varying number of redshift bins: four, three, and only two bins. The results from MLE, PL and MCMC are shown.

Bins 1–4 Bins 2–4 Bins 3 and 4
〈ᾱ〉 ± std(ᾱ) Fraction ᾱ ± σα 〈σα〉 〈ᾱ〉 ± std(ᾱ) Fraction ᾱ ± σα 〈σα〉 〈ᾱ〉 ± std(ᾱ) Fraction ᾱ ± σα 〈σα〉

in [0.8,1.2] /std(ᾱ) in [0.8,1.2] /std(ᾱ) in [0.8,1.2] /std(ᾱ)

MLE 1.001 ± 0.052 0.91 1.02 1.001 ± 0.053 0.87 1.06 0.998 ± 0.058 0.79 1.11
PL 1.004 ± 0.049 0.99 1.27 1.005 ± 0.051 0.99 1.32 1.003 ± 0.052 0.99 1.51
MCMC 1.007 ± 0.049 0.84 1.17 1.006 ± 0.051 0.75 1.22 1.004 ± 0.054 0.63 1.41

Figure 11. The auto (solid, circles, blue) and cross-correlation (dashed,
triangles, other colours) between different redshift bins.

Figure 12. The χ2 for the constraint on α for only using the autocorrelation
(blue) and including also the cross-correlations (red).

properties the ‘proxy mocks’, and the ones with the final correct
properties the ‘target mocks’.

As the Gaussian covariance works reasonably well, here we con-
sider correcting the changes in the mock covariance using the Gaus-
sian one as

CCorrected = CProxy + CTargetGauss − CProxyGauss. (30)

i.e. we only correct the Gaussian part in the mock covariance, as-
suming that the non-Gaussian part is a small correction.

In Fig. 14, we have plotted the CCorrected and we find that the
long-range correlation beyond the neighbouring bins are preserved.
In Fig. 15, we have also plotted the χ2

min per degree of freedom for
the BAO fit using the proxy mock covariance with the Gaussian
correction. It results in values smaller than those obtained using
the proxy mock covariance or the target Gaussian covariance, and

hence it signals that the corrected covariance is closer to the true
one.

Overall, by combining the proxy mock covariance with the Gaus-
sian correction, we get better agreement with the target mock co-
variance than using solely the proxy or the Gaussian covariance.
This composite approach is expected to work when the variation
of the sample is small, e.g. the variation in n(z) is small, and the
non-Gaussian contribution is weak because we have not corrected
the part due to the non-Gaussian covariance. It offers a means to
correct the property changes in covariance matrix without having
to re-run the mocks.

6.3 Eigenmode expansion of the covariance matrix

The covariance determined from mocks is susceptible to statistical
noise. In reality, we are often not interested in the covariance per se,
but its inverse, the precision matrix. For example, in the likelihood,
what we really need is the precision matrix. In this case, the problem
is even more acute. The noise causes bias in the precision matrix
(Anderson 2003; Hartlap et al. 2007; Dodelson & Schneider 2013;
Percival et al. 2014). Given a covariance matrix of size p × p
determined from Nmock mock catalogues, for it to be invertible, we
must have Nmock > p. Even if it is invertible, the precision matrix
so determined �mock is biased relative to the true precision matrix
�unbiased as (Anderson 2003; Hartlap et al. 2007)

�unbiased = Nmock − p − 2

Nmock − 1
�mock. (31)

The correction factor has been checked to work very well for the
case of power spectrum (Blot et al. 2016) and bispectrum (Chan &
Blot 2017). None the less, although the bias can be modelled and
removed, the fluctuations due to noise is unavoidable (Sellentin &
Heavens 2016). Thus, it is highly desirable to reduce the number of
free parameters to be determined in the covariance matrix.

There are methods that have been proposed to combine mocks
with theory covariance to reduce the impact of the noise fluctuations
(Pope & Szapudi 2008; Taylor & Joachimi 2014; Paz & Sánchez
2015; Pearson & Samushia 2016; Friedrich & Eifler 2017). Here,
we consider the expansion of the covariance and precision matrices
using the eigenmodes or the principal components of a given co-
variance matrix. The effects due to noise can be mitigated because
the number of free parameters is substantially reduced when the
eigenmodes are given. The study of the eigenmode of the covari-
ance matrix is known as principal component analysis (PCA) and
it is widely used in many different fields. PCA identifies the most
rapidly varying direction in the data space with many variables,
and hence find a more effective way to describe the data. In the
cosomological covariance context, it has been used in Scoccimarro
(2000), Harnois-Déraps & Pen (2012), and Mohammed, Seljak &
Vlah (2017).
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3044 K. C. Chan et al.

Table 5. The BAO fit with different number Np (=1, 2, 3) in the template equation (6). The results for MLE, PL, and MCMC are compared.

Np = 1 Np = 2 Np = 3
〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα 〈ᾱ〉 ± std(ᾱ) Fraction with ᾱ ± σα

enclosing 〈ᾱ〉 enclosing 〈ᾱ〉 enclosing 〈ᾱ〉
MLE 0.996 ± 0.047 0.72 0.995 ± 0.051 0.68 1.001 ± 0.052 0.69
PL 0.993 ± 0.046 0.77 1.000 ± 0.050 0.79 1.004 ± 0.049 0.77
MCMC 1.005 ± 0.046 0.75 0.994 ± 0.050 0.71 1.007 ± 0.049 0.74

Figure 13. The Gaussian covariance (left-hand panel) and the mock covariance (right-hand panel).

Figure 14. Four rows of the covariance matrix (the row number corresponds to the peak position) are shown. The results for Gaussian covariance (blue curve
for the proxy and orange one for the target) and the mock covariance (green circles for the proxy and red triangles for the target) are compared. The composite
covariance (violet stars) obtained by combining the proxy mock results with the Gaussian correction is also displayed.
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Table 6. The BAO fit results obtained using the mock and the Gaussian covariance. The results for MLE, PL, and MCMC are shown.

Mock covariance Gaussian covariance
〈ᾱ〉 ± std(ᾱ) 〈σα〉/std(ᾱ) Fraction with 1σ 〈ᾱ〉 ± std(ᾱ) 〈σα〉/std(ᾱ) Fraction with 1σ

enclosing 〈ᾱ〉 enclosing 〈ᾱ〉
MLE 1.001 ± 0.052 1.02 0.69 1.002 ± 0.054 0.84 0.60
PL 1.004 ± 0.049 1.27 0.77 1.004 ± 0.052 1.04 0.68
MCMC 1.007 ± 0.049 1.17 0.74 1.007 ± 0.051 0.96 0.64

Figure 15. The distributions of the χ2
min per degree of freedom for the

BAO fit using various covariances. The results obtained using the target
mock covariance (blue, dashed), Gaussian covariance (red, dotted), proxy
mock covariance (green, dotted–dashed), the proxy mock corrected with the
Gaussian covariance (cyan, solid), the direct eigenmode expansion on the
proxy mocks (magenta, solid), and the eigenmode expansion combining the
Gaussian covariance eigenmodes with the proxy mock ones (yellow, solid).
The covariance yielding the best approximation to the mock covariance is
expected to give χ2

min per degree of freedom closest to that obtained using
the mock results.

Suppose that the eigenmodes v(i) and the eigenvalues λ(i) of a
covariance matrix Cproxy are given by

Cproxyv(i) = λ(i)v(i). (32)

We can express the matrix Cproxy in terms of its eigenmodes and
eigenvalues as

C
proxy
ab =

p∑
i=1

λ(i)v(i)
a v

(i)
b . (33)

The precision matrix �proxy can be written as

�
proxy
ab =

p∑
i=1

1

λ(i)
v(i)

a v
(i)
b . (34)

We can expand a covariance matrix Ctarget in terms of these eigen-
modes v(i), treating λ(i) as the fitting parameters. The mode param-
eters can be extracted as

C targetv(i) ≈ κ (i)v(i). (35)

Here, we assume that the eigenmode v(i) approximates that of Ctarget

well. Then we can express Ctarget as

C
target
ab ≈

m∑
i=1

κ (i)v(i)
a v

(i)
b . (36)

Note that we use the first m eigenmodes with λ(i) ranked in descend-
ing order to approximate the covariance matrix. For the precision

Figure 16. The eigenvalues of the covariance matrix measured from the
mocks (red triangles) and the Gaussian covariance (blue circles).

matrix, we have

�
target
ab ≈

m∑
i=1

1

κ (i)
v(i)

a v
(i)
b . (37)

For the covariance matrix, it is clear that we can safely ignore the
modes with small eignevalues. However, for the inverse, the modes
with small eigenvalues in fact contribute more.

The full covariance matrix of dimension p has p(p + 1)/2 inde-
pendent elements, while fitting using a given basis of eigenmodes
has only p free parameters. Thus, this basis cannot allow for all
variations in the covariance and they cannot fit a general symmetric
matrix. The success of this method hinges on how well the given
eigenmodes approximate those of the target covariance matrix. We
can obtain these eigenmodes using theory or approximate methods,
e.g. Second-order Lagrangian Perturbation Theory (2LPT) mock in
Scoccimarro (2000) . In the following, we use both the Gaussian the-
ory covariance and the covariance derived from mocks with slightly
different sample properties. We consider two samples (proxy and
target) which differ slightly in the n(z) and bias. The bias of these
two samples differ by between a few per cent to 10 per cent, while
the mean of the two photo-z distributions differs by up to 7 per cent.
There are 1800 realizations for both samples.

In Fig. 16, we first compare the eigenvalues measured from the
mock and Gaussian covariances (for the target sample). We find that
for the largest eigenvalues the results from the Gaussian covariance
agree with those from the mocks well, while the mock ones are
larger than the Gaussian ones for the relatively small ones (λ �
2 × 10−6). We can also study the overlap between the eigenmodes
from the mock covariance with those from the Gaussian one. In
Fig. 17, we show the dot product between the jth eigenmode from
the mock covariance vmock

j and the ith eigenmode from the Gaus-
sian covariance, vGauss

i . In this plot, for each curve j is fixed, while i
runs over all the modes. When the overlap is perfect, the dot prod-
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Figure 17. The dot product between the eigenmodes from the mock covari-
ance and those from the Gaussian covariance. The eigenmodes are arranged
in the same order as the eigenvalues shown in Fig. 16. For each curve, the
eigenmode from the mock covariance vmock

j is fixed, while all the modes
from the Gaussian covariance are run over.

uct is 1 (or −1). When eigenvalue is large, the overlap between
the eigenmodes are large and well peaked. For relatively smaller
eigenvalue modes, they do not match each other well. This shows
that the eigenmode from the Gaussian covariance is a good approx-
imation to that of the mock covariance only for the ones with large
eigenvalues. Since the modes with the largest eigenvalues are close
to Gaussian covariance prediction, we can call them the Gaussian
modes. The fact that eigenvalues of the non-Gaussian modes from
the Gaussian covariance are smaller than those from the mock co-
variance suggests that the Gaussian covariance underestimates the
importance of the non-Gaussian modes.

We now check how important the non-Gaussian modes are for the
covariance matrix and the precision matrix. In Fig. 18, we compare
the covariance matrix and the precision matrix obtained using the
eigenmode expansion by keeping terms with eigenvalues larger
than the cut-off values 10−6, 10−7, and 2 × 10−8, respectively.
They corresponding to the largest 19, 53, and 112 eigenvalues.
Here and for the rest of the analysis, it is useful to note that the
size of the covariance matrix is 156 × 156. In this exercise, we
have used the Gaussian covariance. It is clear that by keeping only
the terms with large eigenvalues, e.g. larger than 10−6, we get a
reasonably good approximation to the original covariance matrix
already. This is evident from equation (36). On the other hand, we
find that keeping only terms with large eigenvalues results in a poor
approximation to the precision matrix. This is not surprising because
as we mentioned, the small eigenvalue modes in fact contribute
more to the inverse, thus ignoring them yields an unsatisfactory
approximation. Henceforth, we will keep all the modes.

Because the eigenmode expansion with given basis modes has far
fewer free parameters than the direct measurement, we now test how
effective the eigenmode expansion is in reducing the impact of noise
on the measurement of the covariance and the precision matrix. In
Fig. 19, we show two rows of the covariance matrices obtained
using different prescriptions. The results from the mocks and the
Gaussian theory are displayed. The eigenmodes are obtained from
the 1800 proxy mocks. Using these proxy eigenmodes, we fit the
‘eigenvalue’ parameters from the target mock covariance estimated
with Nmock target mocks. We have shown the results using Nmock =
200, 400, and 1800 (all the mocks) realizations. As expected, the
direct measurement results slowly become less noisy as the number

of realizations used increases. On the other hand, the eigenmode
expansion results are far less noisy than the direct measurement
ones. In fact, there are no marked variations among the different
number of realizations shown. However, even for Nmock = 1800,
there are small deviations between the eigenmode expansion result
and the direct measurement one with Nmock = 1800. The systematic
bias in the eigenmode expansion comes from the fact that the basis
modes used are not the exact ones.

We present the corresponding results for the precision matrix in
Fig. 20. For � from direct measurement, we have applied the bias
correction factor equation (31). Similar to the case shown in Fig. 19,
the eigenmodes are estimated from 1800 proxy mocks, and the fit-
ting parameters are extracted using the covariance estimated from
Nmock target mocks. While there are some improvements in the noise
suppression using the eigenmode expansion for the covariance, the
gain for the precision matrix is impressive. This is especially true
when Nmock is not substantially larger than p. For example, for the
case of Nmock = 200, the precision matrix from direct measurement
is very noisy, while the results obtained from the eigenmode expan-
sion is already close to the asymptotic results (the Nmock = 1800
direct measurement is taken to be the asymptotic one). However,
similar to the case of the covariance matrix, although the results
converge quickly, they are slightly biased compared to the direct
measurement with Nmock = 1800. This is again attributed to the
proxy basis modes used being not exact. In Fig. 15, we have plotted
the results obtained using the eigenmode expansion. We have used
the results determined using Nmock = 200. The resultant χ2

min per
degree of freedom is one of the closest to the true mock covariance
results among all the prescriptions shown. The other one is also
eigenmode expansion based, to be commented on shortly.

We have tried even lower of number of realizations, e.g. 30. In this
case, the covariance from the direct measurement is not invertible,
but the eigenmode expansion still gives a valid result with a small
amount of noise only. Thus, the eigenmode expansion is much more
robust to noise than the direct measurement.

If the basis modes are given by the Gaussian theory, then the
convergent result (i.e. when sufficient number of Nmock are used)
gets close to the Gaussian one, and so it does not yield a good
approximation to the true covariance. Alternatively, we can com-
bine the eigenmodes from the Gaussian covariance with those from
the proxy mocks to form a composite covariance. The idea is that
because the large eigenvalue modes are close to the Gaussian covari-
ance results, we can use the Gaussian theory eigenmodes for them,
and this has the advantage that the sample properties can be taken
into account in theory easily. For the non-Gaussian modes (with
small eigenvalues), we use the basis modes determined from the
proxy mock covariance. Using the composite basis, the eigenvalue
parameters are fitted to a covariance estimated from a relatively
small set of target mocks as in the previous method. This composite
approach performs similar to the one using only the basis modes
from the proxy mocks, as can be seen from Fig. 15. If the number
of proxy mocks available is not large, this hybrid approach is pre-
ferred because the influence of noise on the estimate of the proxy
eigenmodes is reduced.

In summary, we find that using the eigenmode expansion, the
impact of the noise on the measurement of the covariance and
especially the precision matrix is significantly reduced. Thus, this
method enables us to substantially reduce the number of mock
catalogues required. The success of the methods relies on how well
the given proxy basis modes approximate the true ones. We find that
although the expansion converges quickly, the results are slightly
biased. This is due to the basis modes being not exact. One of
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BAO from angular correlation function 3047

Figure 18. The covariance matrix (upper panels) and the precision matrix (lower panels) are shown. The leftmost ones show the original ones, and the rest are
obtained using the eigenmode expansion by keeping the modes with eigenvalue larger than cutoff values 10−6, 10−7, and 2 × 10−8, respectively.

Figure 19. Two rows of the covariance matrix (left and right) obtained from the mock (direct measurement with Nmock = 1800, circles, in the upper panels
coincide with the yellow stars), Gaussian covariance (solid black lines) are shown. In the upper panels, we show the results from direct measurement (stars)
using Nmock = 200 (blue), 400 (red), and 1800 (yellow). We display the corresponding results from the eigenmode expansion in the lower panels.

the applications is to correct for sample changes. In this case, as
we have demonstrated, the original mock samples can provide the
required proxy eigenmodes. We have demonstrated that this method
performs even better than the correction using Gaussian covariance
proposed in Section 6.2.

7 C O N C L U S I O N S

Measurement of the BAO scale in the distribution of galaxies has
been recognized as one of the most important current cosmologi-
cal probes. DES already delivered encouraging BAO measurement
using photometric data and future DES data, or surveys such as
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Figure 20. Two rows of the precision matrix obtained by inverting the covariance matrix shown in Fig. 19 are displayed. The symbols are the same as those
in Fig. 19. The upper panels are obtained from direct measurements and the lower ones are from eigenmode expansion.

LSST, are expected to yield more exciting results. To meet the big
improvements in the data, the analysis pipeline must be optimized
and theoretical systematics must be under control. In this paper,
we study the theoretical systematics and optimization of the BAO
detection using the angular correlation function. Although the fidu-
cial setup is for DES Y1 in this paper, the techniques developed
here are useful for other large-scale structure survey analysis as
well.

To extract the BAO from the data, some estimators are required
to produce the best fit and the error bar. We have compared three
common fitting methods: MLE, PL, and MCMC. Among these
methods, MLE yields the least bias and the error bar derived using
χ2 = 1 is closest to the Gaussian distribution (Table 1). For MLE,
we also find that the std(ᾱ) agrees with 〈σα〉 well (〈σα〉/std(ᾱ)
columns in Table 4). An advantage of MLE (and PL) is that it takes
far less time than MCMC.

Because MLE is completely determined by the likelihood, it is
more efficient in picking up small features such as those arising
from mismatch between the template and the data. We regarded the
mock catalogues whose 1σ interval of the best-fitting α fall outside
the interval [0.8,1.2] as non-detections. Those extreme mocks are
poorly fitted by our existing methodology and we have demonstrated
that they cause bias in distribution of the best-fitting parameter in
Appendix A.

We studied when there is mismatch between the template and
the data either due to incorrect fiducial cosmology (Table 2) or the
photo-z error (Table 3) whether the fitting pipeline can recover the
mismatch correctly. This is especially relevant for DES Y1 as the
mocks are matched to the MICE cosmology, which is quite dif-
ferent from the currently accepted Planck cosmology. Differences
in cosmology lead to variation in both the sound horizon and the
angular diameter distance, while photo-z error shifts the angular
diameter distance only. We find that only the photo-z error leading
to shift in the mean of the photo-z distribution causes bias in the

BAO fit, while reasonable variation in the width of the distribution
does not produce any significant effect. The shift in BAO obtained
from direct fitting is consistent with the estimate based on its effects
on the sound horizon and/or the angular diameter distance.

A number of optimizations in the context of the DES Y1 BAO
measurement were investigated: the angular bin width, the number
of redshift bins, and the effect of the cross-correlation. We find that
the optimal binning is θ = 0.◦15$ (to 0.◦3), and four redshift bins
are sufficient. Adding the cross-correlation does not enhance the
BAO constraint substantially.

Sometimes the mocks are created with certain sample proper-
ties, but the finalized samples end up slightly different from those
envisioned at the beginning. We proposed to correct these sample
changes in the covariance matrix using the Gaussian covariance
and the eigenmode expansion method. We show that the covariance
with Gaussian covariance correction outperforms the pure Gaussian
covariance or the proxy mock covariance; however, the eigenmode
expansion works even better in incorporating the changes (Fig. 15).
The success of the eigenmode expansion relies on how well the
proxy eigenvectors approximate those of the target covariance. With
the basis vectors given, as the number of free parameters to be de-
termined is significantly reduced [p parameters versus p(p + 1)/2
for direct measurement] and we demonstrate that the effect of noise
is substantially mitigated relative to the direct measurements. In
this case, it does not rely on the Gaussian covariance, but a small
number of target mocks are required. Thus we expect this method
to work even when the covariance is highly non-Gaussian.

As this work was finished, the DES Y3 data became available
and science ready. Although the depth of the Y3 data is similar to
that of Y1, its area is roughly three times larger. Hence, we expect
that the constraint on the BAO angular scale will be tightened by
a factor of ∼ 1/

√
3. The analysis pipeline developed here, and the

lessons learned, can be easily extended to the Y3 data. Hence, we
look forward to that analysis.
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of Edinburgh, the Eidgenössische Technische Hochschule (ETH)
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A P P E N D I X A : C O M PA R I S O N O F TH E
E S T I M ATO R S (A L M O S T ) W I T H O U T PRU N I N G

In the main text, we presented the results with the pruning criterion
that the best-fitting ᾱ with its 1σ error bar must fall within the
interval [0.8,1.2]. Although the interval [0.8,1.2] seems reasonable,
this choice is to some degree arbitrary. In this appendix, we show
the results when a much more generous interval [0.6,1.4] is used.
I.e. for MLE and MCMC, we require that the best fit with its 1σ

interval falls within [0.6,1.4]. For PL, it is computed in this interval.

In Table A1, we show the results obtained with these three esti-
mators. The results should be compared to Table 1. For MLE and
MCMC, the fraction of mocks satisfying this criterion has increased
relative to the cases shown in Table 1, and it is almost 100 per cent
for MCMC. For PL, it does not change significantly. The extreme
mocks not only increase std(ᾱ), they also result in appreciable bias
in the mean of the MLE and PL estimators. However, the bias of
the MCMC estimator is more mild, and |〈ᾱ〉 − 1| = 0.001 only.
The fractions of time that the 1σ interval enclosing 〈ᾱ〉 are only
3 per cent from the Gaussian expectation for both MLE and MCMC.
Furthermore, 〈σα〉/std(ᾱ) = 0.92 for MCMC. From these statistics,
we find that when the pruning is weak, the MCMC is the most
desirable estimator based on the criteria outlined in Section 3.1.4.

In Fig. A1, we plot the distributions of the best-fitting ᾱ. The

Table A1. The BAO fit using MLE, PL, and MCMC. Only those mocks
whose 1σ interval ᾱ ± σα fall within the interval [0.6,1.8] are considered.

ᾱ ± σα in
[0.6,1.4] 〈ᾱ〉 ± std(ᾱ)

Fraction with
ᾱ ± σα 〈σα〉/std(ᾱ)

(Fraction selected) enclosing 〈ᾱ〉
MLE 0.96 0.971 ± 0.074 0.65 0.75
PL 0.98 0.975 ± 0.069 0.83 1.34
MCMC 1.00 0.990 ± 0.078 0.71 0.92

Figure A1. Similar to Fig. 2, except the interval of α is limited to [0.6,1.4]
instead of [0.8,1.2].

Figure A2. Similar to Fig. 3, except the interval of α is limited to [0.6,1.4]
instead of [0.8,1.2].

Gaussian distributions with the same mean and variance as the his-
tograms are also shown. Because of the strong tail in the histogram,
the variance is not a good proxy for its width, a Gaussian distribu-
tion with the same variance as the histogram does not agree with
the histogram. From the Gaussian distribution, we also see that
only the MCMC one is close to be unbiased. In contrast the dis-
tributions in Fig. 2 are much closer to the Gaussian distributions.
The distributions of the error are shown in Fig. A2. In compari-
son with Fig. A2, the derived errors have much stronger tails when
the interval [0.6,1.4] is adopted. In particular, PL and MCMC show
appreciable increase in the tail of the distribution. We plot the distri-
butions of dnorm in Fig. A3. Besides thicker tails than those in Fig. 4,
we also note that the distribution for MCMC is skewed aside and the
PL case shows large deviation from the unit Gaussian distribution.

When the allowed interval is enlarged, the mocks with ᾱ far from
α = 1 are included. They are often badly fitted by our model and
cause strong tails in the distribution of the best-fitting parameters.
We show that these strong tails cause significant deviation from
the Gaussian distribution. They not only enlarge the derived error
bars but also cause bias in the mean although it is relatively mild
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Figure A3. Similar to Fig. 4, except the interval of α is limited to [0.6,1.4]
instead of [0.8,1.2].

for the MCMC. Those extreme mocks are poorly handled by our
existing methodology, and little BAO information can be extracted
from them. Therefore, we choose a smaller interval in the main text
to get rid of those cases.
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