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ABSTRACT

Context. In the past decade, sensitive, resolved Sunyaev-Zel’dovich (SZ) studies of galaxy clusters have become common. Whereas
many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide
insights into the thermodynamic state of the intracluster medium.
Aims. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as
inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales.
Methods. Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry
is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find
good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized
Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated
Compton Y parameter as determined by Planck.
Results. For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in
spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using mul-
tiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts:
0.05 R500 < r < 1.1 R500. This is a wider range of spatial scales than is typically recovered by SZ instruments. Similar analyses will
be possible with the new generation of SZ instruments such as NIKA2 and MUSTANG2.

Key words. galaxies: clusters: individual: CLJ 1226.9+3332

1. Introduction

In recent years, Sunyaev Zel’dovich (SZ, Sunyaev & Zel’dovich
1970; Sunyaev & Zel’dovich 1972) effect observations have
seen an increase in high resolution (θ <∼ 30′′) observations (e.g.,
Mason et al. 2010; Adam et al. 2014; Kitayama et al. 2016).

These observations come from MUSTANG on the Robert C.
Byrd Green Bank Telescope (GBT; Dicker et al. 2008), NIKA on
the IRAM 30-m telescope (Monfardini et al. 2010), and ALMA
(band 3). However, all of these high resolution instruments
have been limited in their ability to recover signal beyond their
field of view (∼45′′ for MUSTANG and ALMA, and ∼120′′
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for NIKA). As massive galaxy clusters at moderate redshift
(z ∼ 0.2−0.5) have characteristic radii, R500 >∼ 3′1, SZ obser-
vations made with these instruments have not been able to re-
cover the entire signal of the observed galaxy clusters. There-
fore, observations from complementary SZ instruments which
recover SZ at larger scales such as Bolocam Czakon et al. (2015)
or Planck (Planck Collaboration V 2013) have been used in join
analyses by Romero et al. (2015) and Adam et al. (2015, 2016)
respectively.

These joint analyses have shown the ability to constrain the
pressure profile of the intracluster medium (ICM) of individual
galaxy clusters over a large spatial range, often by assuming
some parameterized pressure profile (e.g., Romero et al. 2017;
Adam et al. 2014). In Romero et al. (2015), the differences in fit-
ted pressure profiles, especially in additional constraint of the
inner pressure profile slope, with the addition of MUSTANG
data were noted. In the case of Romero et al. (2017); Adam et al.
(2015, 2016), the pairs of instruments used had no overlap in
recovered spatial scales, thus limiting the ability to ascertain
systematic errors of instruments. However, as new SZ instru-
ments like NIKA2 (Monfardini et al. 2014; Calvo et al. 2016)
and MUSTANG2 (Dicker et al. 2014) with the ability to re-
cover a larger range of scales come online, there will be overlap.
Consequently, for clusters observed with multiple instruments
(operating at different frequency bands), studies of the kinetic
SZ effect, or relativistic corrections (Itoh et al. 1998) will be of
significant interest and stand to benefit from the additional fre-
quency coverage. The additional frequency coverage will help
with removal of contaminants (e.g., compact sources), as well
as offering additional leverage of the spectral distortion. To be
sure of the results of these analyses, it will be critical to under-
stand any systematics involved with individual instruments. Re-
cent results combining Bolocam and Planck data (Sayers et al.
2016), which overlap in spatial scales recovered, show non-
trivial changes (primarily of the outer slope of the pressure pro-
file) from previous Bolocam-only results (Sayers et al. 2013).

Over a decade ago, the beta model (Cavaliere &
Fusco-Femiano 1978) was favored; more recently other param-
eterizations such as a self-similar (Mroczkowski et al. 2009)
and analytic pressure profile based on a polytropic equation of
state (Bulbul et al. 2010) have been explored. Of the parame-
terizations of the ICM pressure profile, the generalized Navarro-
Frenk-and-White (gNFW Nagai et al. 2007) profile has garnered
the most traction, with a fairly canonical set of parameters com-
ing from Arnaud et al. (2010; hereafter, A10), which used a
sample of 33 local (z < 0.2) clusters. Recently, in several
SZ studies non-parametric pressure profiles have been recon-
structed either through a maximum-likelihood approach (e.g.,
Ruppin et al. 2017; Sayers et al. 2013) or through deprojection
of deconvolved data (e.g., Basu et al. 2010; Sayers et al. 2011).
The method employed in this paper maximized the marginalized
posterior distribution, where the principle difference is our em-
ployment of analytic integrals.

Galaxy cluster formation is understood currently in
the framework of hierarchical structure formation (e.g.,
Press & Schechter 1974). While remarkable that a simple self-
similar treatment of clusters (Kaiser 1986) should describe the
broad population of galaxy clusters, non-linear physical pro-
cesses in cluster formation (see Kravtsov & Borgani 2012 for a
review) likely account for much of the scatter in scaling rela-
tions (e.g., Battaglia et al. 2012). In this context, investigating

1 R500 is the radius within which the mean matter density is 500 times
the critical density, ρcr(z), of the universe, at the redshift, z, of the cluster.

cluster pressure profiles non parametrically can reveal devia-
tions from a smooth pressure profile, which may correspond
to departures from self-similarity (Basu et al. 2010). Moreover,
these non-parametric fits do not rely on any physical model, and
thus provide a less biased avenue to constraining the thermo-
dynamic state of the ICM. The combination of non-parametric
SZ pressure profiles with complementary non-parametric X-
ray products, especially electron density, has (e.g. Basu et al.
2010; Planck Collaboration V 2013; Ruppin et al. 2017) and
will provide insights into the thermodynamic state of the ICM
in clusters and likely be fundamental for improving cosmologi-
cal constraints via scaling relations. In fact, this is a significant
motivation behind the NIKA2 tSZ large program (Comis et al.
2016), a 300 h program, using guaranteed time, to observe 50 ho-
mogeneously selected clusters at z >∼ 0.5.

Counts of galaxy clusters by mass and redshift serve to con-
strain cosmological parameters, notably the dark energy den-
sity (ΩΛ), matter density (Ωm), the amplitude of matter fluc-
tuations (σ8), and the equation of state of dark energy (w)
(Planck Collaboration XXIV 2016). Constraints on these param-
eters derived from galaxy cluster samples are generally lim-
ited by the accuracy of mass estimation of galaxy clusters (e.g.,
Hasselfield et al. 2013; de Haan et al. 2016). Scaling relations
which relate global (integrated) observables to the cluster mass
are often employed. Currently, scaling relations as applied to
observables over an intermediate radial region (R2500 <∼ r <∼
R500) of galaxy clusters is preferred as this range shows min-
imal scatter in the scaling relations (e.g., Kravtsov & Borgani
2012). This is due to the generally low cluster-to-cluster scat-
ter in pressure profiles, found observationally and in sim-
ulations, within this radial range (e.g., Borgani et al. 2004;
Nagai et al. 2007; Arnaud et al. 2010; Bonamente et al. 2012;
Planck Collaboration V 2013; Sayers et al. 2013). While the rel-
ative homogeneity of pressure profiles in the intermediate region
is well evidenced, it remains important to develop methods to
derive non-parametric pressure profiles of clusters so that physi-
cal deviations are not artificially smoothed by the adoption of a
parametric profile.

The use of observables quantities determined at intermedi-
ate radii motivates the inclusion of instruments which are able
to recover the SZ signal out to these radii, while the need to
recover deviations from a smooth profile favor higher resolu-
tion instruments. In order to then cover a wide range of angu-
lar scales (0.05 R500 < r < 1.1 R500), we have performed fits
on MUSTANG, NIKA and Bolocam data, with the addition of
a prior from Planck data. This paper is organized as follows. In
Sect. 2 we review the NIKA, MUSTANG, and Bolocam obser-
vations and reduction. In Sect. 3 we address the method used to
non-parametrically fit pressure profiles to each of the data sets.
We present results from our non-parametric fits in Sect. 4 and
parametric fits in Sect. 5. Throughout this paper we assume a
ΛCDM cosmology with Ωm = 0.31, Ωλ = 0.69, and H0 =
68 km s−1 Mpc−1, consistent with the cosmological parameters
derived from the full Planck mission (Planck Collaboration XIII
2016). For this cosmology, at z = 0.89, we have a scale of
7.945 kpc/′′.

2. Observations and data reduction

2.1. CLJ1226.9+3332

At a high redshift of z = 0.89, CLJ1226.9+3332, hereafter
CLJ1227, is a massive cluster which was first discovered in
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Table 1. Overview of instrument parameters influencing the constrain-
ing power of pressure profiles for CLJ1227 relevant for this analysis.

Instrument Freq. Tobs Noise FWHM FOV
(GHz) (h) (Compton Y) (′′) (′)

MUSTANG 90 4.9 34.2 × 10−6 9 0.7
NIKA 150 7.2 12.5 × 10−6 18 1.9
Bolocam 140 11.8 8.48 × 10−6 58 8

Notes. Noise is determined on maps smoothed by a Gaussian kernel
with FWHM of 10′′, 10′′, and 60′′ for MUSTANG, NIKA, and Bolo-
cam, respectively.

the Wide Angle ROSAT Pointed Survey (WARPS Ebeling et al.
2001). It has successively been well studied in the X-ray
(XMM, Chandra, and XMM/Chandra Maughan et al. 2004;
Bonamente et al. 2006; Maughan et al. 2007, respectively) and
SZ (Joy et al. 2001; Muchovej et al. 2007; Mroczkowski et al.
2009; Mroczkowski 2011; Bulbul et al. 2010; Korngut et al.
2011; Adam et al. 2015). In Maughan et al. (2007), the identi-
fication of hot southwestern component gave the first indications
of disturbance in this cluster. This interpretation was further bol-
stered by HST observations (Jee & Tyson 2009), in which the
lensing analysis revealed two distinct peaks, one of which was
coincident with the hot X-ray temperature region.

From the first SZ measurements of CLJ1227 with BIMA
(Joy et al. 2001) has generally appeared azimuthally symmet-
ric and relaxed. Later studies with SZA (Muchovej et al. 2007;
Mroczkowski et al. 2009; Mroczkowski 2011) all appear to re-
affirm this symmetry, while the evidence in SZ observations
for a potential disturbance in the core region begins to grow.
Korngut et al. (2011) find a ridge of significant substructure in
MUSTANG data, which when compared with X-ray profiles, is
consistent with a merger scenario within CLJ1227. However in
the current processing of MUSTANG data (Romero et al. 2017),
this substructure is not evident. Combining the SZ pressure pro-
file with X-ray electron density profile, Adam et al. (2015) find
relatively large entropy values in the core as support for dis-
turbance on small scales. A similar conclusion is reached by
Rumsey et al. (2016), who find that the core of CLJ1227 exhibits
signs of merger activity, while the outskirts appear relaxed.

Given the relative circular symmetry of CLJ1227, it provides
a suitable test for determining a non-parametric pressure pro-
file of the cluster, while maintaining the assumption of spherical
symmetry. For the centroid, we adopt the X-ray centroid from
ACCEPT (Cavagnolo et al. 2009) is at [RA, Dec] = [12:26:57.9,
+33:32:49] (J2000). From X-ray data, Mantz et al. (2010) deter-
mined a scale radius R500 = 1000 ± 50 kpc (126′′ ± 8′′), which
corresponds to M500 = (7.8 ± 1.1) × 1014 M�. In the following,
we summarize how the data, which are used in this study, were
produced in previous studies. In Table 1, we summarize the an-
gular scales probed by the instruments and the overall depth of
observations.

2.2. Overview of MUSTANG data products

The MUSTANG camera (Dicker et al. 2008), while on the 100 m
Robert C. Byrd GBT (Jewell & Prestage 2004), had angular res-
olution of 9′′ (full-width, half-maximum FWHM) and was one
of only a few SZ effect instruments with sub-arcminute reso-
lution. With a pixel spacing of 0.63 fλ, MUSTANG’s instanta-
neous field of view (FOV) is 42′′, and is limited in its ability
to recover scales larger than ∼45′′. MUSTANG is a 64 pixel

array of Transition Edge Sensor (TES) bolometers arranged in
an 8 × 8 array and had been located at the Gregorian focus of
the 100 m GBT. Operating at 90 GHz (81–99 GHz), The conver-
sion factor from Jy/beam to Compton parameter used is −2.50,
including relativistic corrections using an isothermal electron
temperature from X-ray data kBTx = 12 keV (Sayers et al.
2013). The calibration and pointing uncertainties are 10% and
2′′ respectively (Romero et al. 2017). More detailed information
about the instrument can be found in Dicker et al. (2008).

The observations and data reduction are described in detail in
Romero et al. (2015), and were applied to the MUSTANG data
of CLJ1227 as presented in Romero et al. (2017). The MUS-
TANG data map, with a point source subtracted (see Sect. 3.1)
is shown in the left panel in Fig. 1.

For this analysis, we refine the transfer function found
in Romero et al. (2017) by filtering a cluster model us-
ing a strictly A10 profile (a gNFW profile with parameters
[α, β, γ,C500, P0] = [1.05, 5.49, 0.31, 1.18, 8.42P500]) through
the standard MUSTANG pipeline. The resultant transfer func-
tion is then merged with the prior transfer function (on white
noise Romero et al. 2017). The principle difference between
this new transfer function and the former one occurs at scales
larger than the FOV (angular frequencies smaller than ∼0.025 in-
verse arcseconds). We check the robustness of the transfer func-
tions to the standard pipeline across a range of cluster models
(gNFW profiles with varying parameters) and find agreement,
principally of the peak amplitude, within 10%.

Moreover, we verify the fidelity of the new transfer function
by reproducing the analysis performed in Romero et al. (2017)
for CLJ1227, with the use of the new transfer function in place
of the standard MUSTANG filtering procedure. We find good
agreement with the previous results, where the best fit profile
shape parameters (C500, P0, and γ – see Sect. 5) are within ∼10%
agreement of the values reported in Romero et al. (2017).

2.3. Overview of NIKA data products

NIKA (Monfardini et al. 2010, 2014) was a dual band cam-
era working at 150 and 260 GHz, and consisted of 253 Ki-
netic Inductance Detectors (KIDs) operating at 100 mK by us-
ing a closed cycle 3He-4He dilution fridge. Furthermore, with
a sensitivity of 14 (35) mJy/beam.s1/2, a circular field-of-view
(FOV) of 1.9′ (1.8′), and a resolution of 18.2′′ (12.0′′) at
150 (260) GHz NIKA was particularly well adapted to map the
thermal Sunyaev-Zel’dovich effect in such a high redshift cluster.
Including calibration (7% and 12%) and bandpass uncertainties,
the NIKA conversion factors from Jy/beam to Compton parame-
ter are −10.9±0.8 and 3.5±0.5 at 150 and 260 GHz, respectively.
The pointing RMS achieved during CLJ1227 observations was
below 3′′. A detailed description of the general performances of
the camera can be found in Catalano et al. (2014); Adam et al.
(2014).

In this analysis, we employ NIKA camera data of the clus-
ter CLJ1227, which were obtained at the IRAM 30 m telescope
(Pico Veleta) in February 2014, processed with the NIKA pro-
cessing pipeline described in Adam et al. (2014), and presented
in Adam et al. (2015). CLJ1227 was mapped using on-the-fly
raster scans with an on-cluster time of 7.8 h. The transfer func-
tion of the processing procedure, which is used in this analysis,
was computed using signal plus noise simulations as described
in Adam et al. (2015). Overall the transfer function is consistent
with a constant value of 0.95 for angular scales smaller than the
NIKA FOV and larger than the size of the NIKA beam. Using
the 260 GHz NIKA map, Adam et al. (2015) identified a point
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Fig. 1. Left: MUSTANG map, smoothed by a 9′′ FWHM kernel; middle: NIKA (2 mm) map smoothed by a 18′′ FWHM kernel; right: Bolocam
map smoothed by a 58′′ FWHM kernel. In all three panels, the red contours are those of MUSTANG, magenta contours of those of NIKA, and
white contours are those of Bolocam. For MUSTANG and Bolocam, the contours start at (−)2σ, with 1σ increments. For NIKA, the contours start
at (−)3σ with 2σ increments. The point source identified in Adam et al. (2015) is subtracted in the MUSTANG and NIKA maps.

source located 30′′ southeast of the center of the cluster. The
150 GHz NIKA map, with the point source subtracted (Sect. 3.1)
is shown in the middle panel in Fig. 1.

2.4. Overview of Bolocam data products

To probe a wider range of scales we complement the MUSTANG
and NIKA data with SZ data from Bolocam (Glenn et al. 1998).
Bolocam is a 144-element bolometer array on the Caltech Sub-
millimeter Observatory (CSO) with a beam FWHM of 58′′ at
140 GHz and circular FOV with 8′ diameter (Glenn et al. 1998;
Haig et al. 2004), which is well matched to the angular size of
R500 (∼2′) of CLJ1227. Bolocam’s conversion factor to Comp-
ton Y from µKCMB is reported as −3.69×10−7, with the relativis-
tic corrections (kBT = 12 keV) taken into account.

Bolocam was a facility instrument on the CSO from 2003
until 2012. CLJ1227 was observed with a Lissajous pattern that
results in a tapered coverage dropping to 50% of the peak value
at a radius of roughly 5′, and to 0 at a radius of 10′. The Bolocam
maps used in this analysis are 14′ × 14′. The Bolocam data are
the same as those used in Czakon et al. (2015) and Sayers et al.
(2013); the details of the reduction are given therein, along with
Sayers et al. (2011). The Bolocam map is shown in the right
panel of Fig. 1. The reduction and calibration is similar to that
used for MUSTANG, and Bolocam achieves a 5% calibration
accuracy and 5′′ pointing accuracy.

2.5. Planck integrated Compton parameter

As in Adam et al. (2015), we wish to include constraints on still
larger scales than reached with the aforementioned instruments,
and therefore we include in this analysis the integrated Compton
parameter of the cluster as measured using Planck data. We use
the Planck frequency maps from 143 to 857 GHz to produce a
Compton parameter map as described in Hurier et al. (2013) and
Planck Collaboration XXI (2014); Planck Collaboration XXII
(2016). These maps take into account known spectral depen-
dencies and are able to mitigate non-SZ signal from the higher
frequencies. The impact of the observed point source would
be greatest at 353 GHz, where the flux density, extrapolated
from NIKA2 bands, is significantly below the uncertainty in
the Planck integrated Compton Y parameter. The resolution
of this map is 7.5′, limited by the lowest frequency Planck
channel map used in the reconstruction. Using this map we
compute the integrated Compton parameter up to a radial dis-
tance of 15′ Uncertainties in the integrated Compton param-

eter are computed by integrating at random positions around
the cluster. The uncertainties obtained have been also crossed-
checked using Planck half-ring half difference Compton pa-
rameter map obtained as described in Planck Collaboration XXI
(2014); Planck Collaboration XXII (2016). We find YCyl,(15′) =

(0.94 ± 0.36) × 10−3 arcmin2.

3. Non-parametric pressure profile reconstruction
via a maximum posterior distribution analysis

We perform non-parametric fits of the pressure profile of
CLJ1227 on MUSTANG, NIKA, and Bolocam data maps in-
dependently. The filtering effects incurred from data processing
of these instruments favors forward modeling pressure profiles
and performing fits over trying to do a geometric deprojection,
for example with Abel transforms (e.g., Basu et al. 2010). How-
ever, the deconvolution method employed in Basu et al. (2010)
was reported to have systematic flux loss of up to 40% at R200.
Our use of priors, especially of the integrated Compton parame-
ter (Sect. 3.3) allows us to better constrain the pressure profile at
larger radii. While the Abel transform and the “onion-skin” de-
projection method (e.g., Kriss et al. 1983) may be computation-
ally efficient, the calculation of errors from many deconvolved
map realizations (e.g., 100 as in David et al. 2001; Basu et al.
2010) reduces the computational advantage over the approach
employed in this work. Additionally, the onion-skin deprojection
method typically suffers from large anti-correlations in adjacent
bins and is heavily dependent on the choice of the outermost bin;
these drawbacks can be significantly mitigated with regulariza-
tion (e.g., Croston et al. 2006). Yet the choice of regularization
parameters are non-trivial and requires cross-validation to ensure
accuracy.

Before fitting the pressure profiles (Sect. 3.1), we remove
a point source from the MUSTANG and NIKA maps based on
previous works (Adam et al. 2015; Romero et al. 2017). Addi-
tionally, we ensure that a mean level has been removed in the
MUSTANG and BOLOCAM maps. The construction of our
non-parametric galaxy cluster model is described in Sect. 3.2,
the fitting procedure is described in Sect. 3.3, and we review the
performed validity checks in Sect. 3.4.

3.1. Preprocessing

A point source at 4.6σ significance (∼0.5 mJy) in MUSTANG
was reported in Korngut et al. (2011), but is not evident in the
MUSTANG data as reprocessed in Romero et al. (2017). A short
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VLA filler observation (VLA-12A-340, D-array, at 7 GHz) was
performed to follow up this potential source (at RA 12:26:58.0
and Dec +33:32:59), but to a limit of ∼50 µJy nothing is seen
(Romero et al. 2017). At 500 µm, Herschel-SPIRE has a point
source sensitivity of ∼8 Jy, but no point source is evident at the
above location.

Adam et al. (2015) find a point source at a different location,
RA 12:26:59.855 and Dec +33:32:35.21, with a flux density of
6.8 ± 0.7 (stat.) ± 1.0 (cal.) mJy at 260 GHz and 1.9 ± 0.2 (stat.)
at 150 GHz. For this source, at 500 µm, Herschel-SPIRE finds
a flux of 100 ± 8 mJy 2. A point source at this location is fit
to the MUSTANG data with a flux density of 0.36 ± 0.11 mJy
(Romero et al. 2017). We subtract this point source from the
NIKA and MUSTANG maps using the above flux density val-
ues. In the Bolocam data, the point source is faint enough to not
be a concern, given Bolocam’s beam size.

We also wish to account for any mean level before fitting
our cluster model, especially because there is a degeneracy be-
tween the mean level and the cluster model, and the mean level
can typically be well constrained a priori. The mean level in the
MUSTANG map is calculated as the mean within the inner ar-
cminute MUSTANG noise map, which was created from time-
flipped time-ordered data. We subtract the mean level from the
MUSTANG map before fitting a cluster model. Within NIKA
data, a mean level is calculated within the timestreams for data
falling outside the masked region. This mean level is subtracted
within the timestream processing of NIKA data. The Bolocam
map already has a mean level subtracted.

3.2. Non-parametric pressure profile models

Our non-parametric pressure profile reconstruction assumes
spherical symmetry and power law interpolation between radial
bins. Because we employ analytic integrals, we can integrate
from zero to a finite radius, and from a finite radius to infin-
ity, with some clear restrictions on the power laws when do-
ing so. The analytic integration has been employed before (e.g.,
Vikhlinin et al. 2001; Korngut et al. 2011; Sarazin et al. 2016).
Here, we resolve previous limitations (Appendix A) found with
certain power laws for which the previously given analytic
formulation are undefined (Korngut et al. 2011; Sarazin et al.
2016), but which are necessary to be covered in our analysis.
Our fitting algorithm is applied to each dataset independently;
therefore, cluster models are binned and gridded differently for
each dataset. Radial bins are defined so that each bin is at least
as wide as a beam width (FWHM), with the additional constraint
that the outer most bin is beyond the FOV of the instrument.

For each bin, i, we denote the radius as Ri, and assign a
pressure Pi. The interpolation of pressure between at a radius r,
Ri < r < Ri+1 is given by P(r) = Pi(r/Ri)−α, where α is calcu-
lated as:

α = −
log(Pi+1) − log(Pi)
log(Ri+1) − log(Ri)

· (1)

For radii interior to our innermost radial bin (R1), we extrapo-
late using the same power law as between R1 and R2. Similarly,
for radii exterior to our outermost radial bin (Rn), we extrapolate
using the same power law as between Rn−1 and Rn. We there-
fore put a prior on our outermost slope such that α > 1, and the
integrated quantity is finite.

We note that for a non-rotating, spherical object in hy-
drostatic equilibrium (HSE) under entirely thermal pressure

2 http://irsa.ipac.caltech.edu/applications/Gator/

support, the power law should be limited to α > 4 in order to
avoid having infinite mass (see Appendix B). While we recog-
nize this limit here, during fitting we only enforce α > 1.

Given the restrictions of ellipsoidal symmetry and a power
law dependence of the integrated quantity (pressure) on the ellip-
soidal radius, it is possible to calculate the integral along the line
of sight analytically (e.g., Vikhlinin et al. 2001; Korngut et al.
2011). We follow principally the formulation provided in
Korngut et al. (2011). As noted in Sarazin et al. (2016), there are
certain power laws (α/2 = p = 1/2, 0,−1/2,−1,−3/2, ...) for
which the formulation given in Korngut et al. (2011) fails, but
a reformulation provides a valid integration. More generally, the
formulation fails for α/2 = p < −1/2. While a negative index in-
dicates a rise in pressure with radius (atypical), this could arise,
especially localized, from shocks, for example. We also wish to
minimize our restrictions on the power laws (between bins) so
as to minimize induced correlations between bins. Therefore, we
implement extensions to the canonical formulation that allow us
to integrate within finite regions (spheres or shells that extend
only to a finite radius). These extensions and reformulations of
specific half integers are described in Appendix A.

The profiles, integrated along the line of sight (`) are calcu-
lated as the Compton Y parameter:

y =
σT

mec2

∫
Ped`, (2)

are converted into the units of the original data map. Maps are
gridded by assuming a linear interpolation of the 1D (radial) pro-
files. When gridding our bulk ICM component, we adopt the AC-
CEPT centroid of CLJ1227, and grid a larger map than used for
fitting. These (2D) maps are then convolved with the respective
beam and transfer function. Aliasing is alleviated by trimming
the region not fitted. For MUSTANG, NIKA, and Bolocam, we
fit a square region about the centroid with lengths of 2′, 4′, and
13.33′ respectively.

3.3. Fitting Algorithm

We employ a maximum posterior distribution algorithm, and
take our noise to be Gaussian. In previous works, NIKA
and MUSTANG noise have been taken as uncorrelated (e.g.,
Romero et al. 2015, 2017; Adam et al. 2015). Bolocam noise
has been taken as approximately uncorrelated, but 1000 noise
realizations, which included CMB and point source estimates,
are provided to allow for a more accurate noise estimation
(Sayers et al. 2011). We calculate the two-dimensional power
spectrum for noise maps of each dataset. On the scales we use to
constrain the models, the noise is consistent with white noise.

We calculate the final probability of our models by applying
priors as prescribed by Bayes’ Theorem. On each of the pressure
bins, we assign strict priors that Pi > 0, and as previously men-
tioned, the last bin has a prior that on its associated power law
slope: α > 1. We allow for the choice of including a Gaussian
prior on the integrated Compton Y parameter:

Y =

∫
ydΩ, (3)

where the integral over solid angle taken within a given ra-
dius is generally referred to as the cylindrical Compton Y
value (Ycyl). We calculate Ycyl using the un-filtered Compton
y profile (before convolution with an instrument’s beam and
transfer function). The prior on Y comes from Planck data
(Planck Collaboration XXIX 2014) as discussed in Sect. 2.5.
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In particular, we take the prior Ycyl(15′) = (0.94 ± 0.36) ×
10−3 arcmin2.

We employ the described probability function in a
python Markov chain Monte Carlo (MCMC) package, emcee
(Foreman-Mackey et al. 2013). It provides fairly accessible im-
plementation and parallelized sampling.

3.4. Validation and performance of fitting algorithm

Our algorithm is first tested with mock cluster observations. We
create mock observations by adding a noise realization (cre-
ated from jack-knifed timestreams) for each of the three maps
to the corresponding filtered map of a previously determined
(Romero et al. 2017) gNFW profile. We perform initial tests to
validate the number of bins chosen. The resolution (FWHM) and
FOV of our instruments (see Sect. 3.2) suggest that between four
and eight bins are appropriate. We cover this range, with fits run
with four, six, and eight bins with two model constructions. The
first, as described in Sect. 3.2, and a second being uniform spher-
ical pressure bins. F-tests on the posterior distributions do not
indicate a preference in the number of bins used. We consider
how well the recovered pressure profile matches the input gNFW
pressure profile. To do so, we calculate χ2 of the fitted pressure
profile relative to the input gNFW and find that the reduced χ2

is minimized when using six bins for MUSTANG and Bolocam.
For NIKA, it is minimized at eight bins, but this is likely influ-
enced by the prior on the integrated Compton Y , which is only
implemented on the NIKA data. A difference of χ2 test results in
p-values for preferring eight bins over six bins for MUSTANG,
NIKA, and Bolocam are 0.015, 0.80, and 0.50. Except for MUS-
TANG, it appears that statistically there is not a significant pref-
erence. Given satisfactory fits with six bins for all instruments,
and a preference from MUSTANG, we adopt six bins across the
board.

We further test the dependence of the fit results on initial
guess of the pressure values, and find that this dependence is
minimal. We change the input guesses by the following factors
fP = [0.01, 0.1, 0.33, 3.0, 10, 100], and perform the fits on the
mock cluster observations. We find that at worst, we see that the
results are generally within 7% of each other, with the excep-
tion that the outermost bin may see a dispersion up to 20%, and
one of the inner bins in NIKA data sees a dispersion of 14%.
However, if we limit the span to just fP = [0.1, 0.33, 3.0, 10], the
dispersions are less than 6% for all but the outer bins, which see
dispersions less than 10%.

Finally, across the above suite of tests (number of bins, uni-
form or power law distribution within a bin, and initial guesses),
we find that the outermost bins in MUSTANG and Bolocam are
biased high, where for Bolocam, the second most outer bin is
also biased high. We find that in the production of the models,
this appears to arise with the application of the transfer functions
of these instruments. In particular, with Bolocam, the transfer
function produces artifacts at large radii (r >∼ 1000 kpc). As we
define the outermost bin of our power law model to extend to
infinity, truncating, or reducing the number of bins does not re-
solve this bias. Rather, we find it best to retain the bins in the
map fitting procedure and to trim them in subsequent analyses.
Therefore, in our analysis of real data, six bins are used within
the fitting procedure, and we retain five, six, and four bins for
MUSTANG, NIKA, and Bolocam respectively for subsequent
analysis and discussion.

We show the fits to our mock observations with this six-
bin, power-law model in Fig. 2, and note that the reconstructed

10−1 100
R/R500

10−4

10−3

10−2

10−1

P e
  (
ke
V/
cm

3 )

I put gNFW
Output gNFW
No -parametric NIKA profile
Non-parametric MUSTANG profile
Non-parametric Bolocam profile

Fig. 2. Non-parametric pressure profiles as determined via each mock
observation individually, and the gNFW (parametric) pressure profile
as simultaneously fit to the non-parametric pressure profiles. The error
bars are statistical, from the MCMC fits.
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Fig. 3. Non-parametric pressure profiles as determined via each dataset
individually. The error bars are statistical, from the MCMC fits. The
vertical dashed and dotted lines correspond to the half width at half
maximum (HWHM) and FOV/2 (i.e., radial FOV), respectively.

profiles are consistent with the input profile. Our input
gNFW model has been taken from Romero et al. (2017), and our
output model is fit as prescribed in Sect. 5.

4. Non-parametric pressure profile results

As noted in the previous section, we trim the outer one and two
bins in MUSTANG and Bolocam respectively from subsequent
analysis. We trim these bins due to bias in the fits on simulated
data. The results, shown in Fig. 3 are also tabulated in Table 2
with trimmed points in red.

From the Monte Carlo chains of the non-parametric fits, we
determine the covariance matrix of the pressure bins for each
dataset as:

Ni, j = 〈did j〉 − 〈di〉〈d j〉. (4)

This formulation assumes that the data is well described by a
Gaussian distribution; however Table 2 shows that the distribu-
tions of binned pressures are asymmetric. From the residuals in
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Fig. 4. Non-parametric bin correlation matrices. Left: MUSTANG. Middle: NIKA. Right: Bolocam. The coloring is scaled to make the magnitude
of off-diagonal terms more apparent, and the range changes for each instrument.

Table 2. Non parametric pressure profile fits.

R Pe σPe ,low σPe ,high
(kpc) (keV cm−3) (keV cm−3) (keV cm−3)

NIKA
73 0.225 0.051 0.035
134 0.150 0.049 0.065
216 0.0744 0.0181 0.0226
349 0.0358 0.0053 0.0060
564 0.00508 0.00068 0.00071
910 0.00200 0.00024 0.00024

MUSTANG
37 0.257 0.151 0.115
67 0.311 0.146 0.216
110 0.0436 0.0243 0.0352
180 0.0874 0.0231 0.0270
294 0.0133 0.0064 0.0091
479 0.000959 0.00082 0.00284

Bolocam
233 0.0367 0.0147 0.0092
429 0.0332 0.0139 0.0181
698 0.00795 0.0035 0.0045
1135 0.00141 0.00081 0.00104
1845 0.00320 0.00083 0.00084
3000 0.00101 0.00044 0.00047

Notes. Pe is taken as the 50th percentile, and the corresponding errors
bars (σ) are taken at the 16th and 84th percentiles. The red rows corre-
spond to bins which have been trimmed.

Fig. 6, which account for the asymmetries, we find that assum-
ing Gaussian distributions does not adversely impact our results,
particularly as we have employed the covariance matrix in this
work.

We show the correlation matrices in Fig. 4. We notice that
any two adjacent bins are negatively correlated, and by exten-
sion, bins spaced two apart (e.g., bins one and three) are posi-
tively correlated. The maximum amplitude of off-diagonal cor-
relations is 0.13, 0.05, and 0.05 for MUSTANG, NIKA, and
Bolocam respectively. These are relatively small correlations, es-
pecially when contrasted with Sayers et al. (2013), whose corre-
lations (with 13 radial bins) appears to be over 0.5 for the some
adjacent radial bins.

5. Parametric pressure profile (gNFW) fits

We wish to compare our non-parametric fits to each other (test-
ing consistency between instruments) and to previous results of
cluster pressure profiles. We note that at a z = 0.89, CLJ1227

is at a high redshift, and although only being one cluster, serves
as an initial test of the universality of so-called universal pres-
sure profile (Arnaud et al. 2010), which was derived from a lo-
cal (z < 0.2) sample of clusters. Given the prevalence of para-
metric pressure profiles in previous analyses, and in particular,
the gNFW parameterization, we fit a gNFW profile to our non-
parametric pressure profile constraints. The gNFW profile is
given as:

P̃ =
P0

(C500X)γ[1 + (C500X)α](β−γ)/α (5)

where X = R/R500, and C500 is the concentration parameter; one
can also write (C500X) as (R/Rp), where Rp = R500/C500. The
exponentials α, β, and γ are commonly cited as the (logarithmic)
slopes at moderate, large, and small radii. However, α should be
understood to govern the rate of turnover between the two slopes,
β and γ.

We aim to constrain all parameters within the gNFW profile,
but find that α is driven to high values, and furthermore the con-
straints are very poor for these high values. Therefore, we choose
to restrict α to 1.05, the value found in A10. We further include
nuisance parameters of calibration offsets for each dataset. The
calibration uncertainties for NIKA, MUSTANG, and Bolocam
are taken to be 7%, 10%, and 5% respectively. The mean level
in each dataset has already been removed or fitted, so it is not
considered here. We use the full covariance matrices from our
non-parametric fits.

We find gNFW parameters of [P0, C500, β, and γ] =
[49.7+22.4

−24.9, 5.89+1.94
−1.78,2.98+0.28

−0.23, and 0.23+0.30
−0.17]. We take our best-

fit value as the 50th percentile in each marginalized parameter
distribution. The error bars are calculated at the corresponding
1σ (50 ± 34%) percentiles. The power law slope γ is within the
typical value range found in previous gNFW constraints (e.g.,
Nagai et al. 2007; Arnaud et al. 2010; Sayers et al. 2013), on
CLJ1227 as well as general cluster samples. However, our value
of β is less than expected; moreover, for a non-rotating spherical
cluster in HSE under thermal pressure support β ≤ 4 would indi-
cate an unbounded mass at arbitrarily large radii (Appendix B).
Similarly, P0 and C500 are larger than generally found. Given
the degeneracy between β, P0, and C500, as shown in Fig. 5, and
shape of the pressure profile, these atypical values of β and P0
appear to be driven by C500 being pushed to larger values, where
a large C500 value indicates that the scale radius (transition in
pressure profile slopes) occurs at a relatively small radius.

We also note that the value of C500 itself may not be nearly
as high if a smaller value of R500 is adopted (implying a smaller
M500 and P500.) This may well be the case, as several other
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Fig. 6. Our gNFW (parametric) pressure profile as simultaneously fit to
the non-parametric pressure profiles is shown in red. The error bars are
statistical, from the MCMC fits. The residual significances (σ, lower
panel) are calculated from the asymmetric statistical errors (Table 2)
and calibration errors. The non-parametric symbol-to-instrument asso-
ciation remains the same as in Figs. 2 and 3. The MUSTANG point that
falls well (∼−2.8σ) below the gNFW pressure profile (close to 0.1 R500)
is of note and discussed in Sect. 6. The last two NIKA points fall −5.5σ
and −2.8σ below the gNFW profile.

studies conclude that R500 < 1000 kpc (e.g., Rumsey et al. 2016;
Mroczkowski et al. 2009).

Setting aside the variations in parameter values themselves,
we see in Fig. 6 that our gNFW fit is in agreement for R >∼
0.3 R500. In the central regions, our fit shows greater pressure
than would be inferred from A10 or Planck Collaboration V
(2013), but is consistent with Romero et al. (2017).

6. Discussion

Our non-parametric fits are well reproduced with varying input
parameters (Sect. 3.4). This procedure can be readily applied to
ellipsoidal cluster geometries, and could also be modified to in-
clude shock components. Given the potential for ellipsoidal clus-
ters and presence of shocks, we find that the ability to analyze
both the global and local electron pressure in clusters within a
non-parametric approach will be of considerable utility as sensi-
tive, high-resolution, SZ observations of individual clusters be-
come more commonplace, especially at high redshift.

While our estimation of outer pressure bins may be influ-
enced by the mean level in a map, or a poorly constrained trans-
fer function, we see that the inner bins remain largely unaffected
(Sect. 3.4). We find good agreement in our non-parametric fits
between MUSTANG, NIKA, and Bolocam, as all but two points
lie within 2.5σ of the fitted gNFW profile. The inner point that
falls below the gNFW profile comes from MUSTANG fits, and
is only ∼2σ discrepant from the gNFW profile.

This deviation (at a radius of ∼12′′ or 0.1 R500) is consis-
tent with the location of the point source found in Korngut et al.
(2011), and performing a fit on mock observations, where we
add a 0.5 mJy source (at 90 GHz) at this location, can reproduce
the observed deviation. Within the NIKA (150 GHz) data, no
evidence for a weak point source is seen, although, we note that
simulated observations of a 1.4 mJy source at the same radial
distance does not have a significant effect on the non-parametric
fits, relative to the fits of the simulated observations without a
point source. At other wavelengths, in the 260 GHz NIKA data
(Adam et al. 2015), as well as at lower frequencies and higher
frequencies (Sect. 3.1), no evidence is seen for a point source.

Within our gNFW fits, if α is left unconstrained, we find that
large values of α are preferred, indicating a rapid transition be-
tween the inner and outer pressure profile slopes. This turnover is
largely driven by NIKA, where, in Fig. 6 (with α fixed), the outer
two points fall −5.5σ and −2.8σ away from the fitted gNFW
pressure profile. NIKA has the best coverage in the spatial re-
gion where this transition occurs, and additionally, NIKA has
the strongest detection of the cluster and places the greatest con-
straints on the pressure profile, globally.

Our gNFW pressure profile fit shows a higher core pressure
than that of other sample-averaged gNFW profiles (see Fig. 6).
Many sample-averaged profile studies have subdivided their
samples by dynamical state and find that cool-core clusters tend
to have steeper inner pressure profiles (e.g., Arnaud et al. 2010;
Planck Collaboration V 2013; Sayers et al. 2013; Romero et al.
2017), and therefore one might infer that CLJ1227 is also a core
core cluster. However, X-ray data show that the core is relatively
hot (13 keV; Maughan et al. 2007), thus highlighting that dy-
namical state is certainly not well established via a pressure pro-
file alone.

We compare our parametric and non-parametric profiles to
non-parametric profiles derived in ACCEPT (Cavagnolo et al.
2009), a publicly available database of data products from Chan-
dra observations of galaxy clusters3. We find agreement with the
ACCEPT profile (Fig. 6), noting that both the ACCEPT and our
pressure profiles rise above the ensemble averages of (Planck
Collaboration V (2013; z < 0.5) and A10 (z < 0.2. In an X-
ray study of 80 South Pole Telescope (SPT) selected clusters,
McDonald et al. (2014) found lower central pressure, relative to
the universal pressure profile in A10, for their subsample of high-
(z > 0.6) redshift clusters. Where CLJ1227 is at z = 0.89, its in-
creased central pressure relative to A10 is counter to the trend in
3 https://web.pa.msu.edu/astro/MC2/accept/
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McDonald et al. (2014), is suggestive that CLJ1227 is somehow
unique. Indeed, CLJ1227 is among the most massive clusters at
z > 0.6 (e.g., Menanteau et al. 2012).

The uniqueness of CLJ1227 is likely enhanced given the var-
ious studies supporting merger activity. Maughan et al. (2007)
interpreted the hot ICM to be suggestive of a merger event. This
interpretation is echoed in Jee & Tyson (2009), whose lensing
analysis supports a picture in which the dark matter distribution
appears undisturbed on large scales, but shows a clear bimodal-
ity in the central region, and conclude by postulating an early-
stage head-on merger scenario. Rumsey et al. (2016) support the
early stage merger scenario primarily from the differences seen
in scaling quantities (YX) between X-ray and SZ (AMI) data.

The profiles recovered here are consistent with the paramet-
ric profiles found in Adam et al. (2015). We note that the tran-
sition in the pressure profile from the inner to outer profile ap-
pears gradual in Adam et al. (2015), whereas our work is sug-
gestive of a sharper transition, especially when we allow α to
vary (Sect. 5). In none of the SZ maps used in this analysis is
there clear (significant) substructure which may be inferred to
cause elevated pressure. Where a merger in the plane of the sky
may produce observable shocks, especially via high-resolution
SZ observations, we find the lack of substructure in our study
to be consistent with a head-on merger. Given the noise levels
achieved by NIKA and MUSTANG, if substructure exists in the
core, it may require yet higher resolution to observe it.

This merger scenario could still be consistent with our find-
ings, as a merger affecting the central pressure should indeed
increase the pressure there. Provided that the system is not
in equilibrium, and in particular, that increased gas pressure
has not propagated to the outer extent of the cluster, then this
scenario would be consistent with the cluster pressure profiles
that we have reconstructed (both the non-parametric and sub-
sequent parametric profiles). An approach of determining non-
parametric profiles, such as that presented here, will be use-
ful for a more accurate analysis of pressure fluctuations and
will inform the degree of non-thermal pressure support (e.g.,
Khatri & Gaspari 2016).

7. Conclusions

We developed an algorithm to determine a non-parametric pres-
sure profile for galaxy clusters. This method is of particu-
lar utility to SZ observations, where the filtering effects from
data processing favor fitting forward modeled pressure profiles,
as opposed to deriving non-parametric pressure profiles via ge-
ometric deprojection. Our fitting algorithm is robust with re-
spect to input parameters, bin spacing, and instrumental setup
specifics. While the constraints of single-dish SZ observations
beyond the FOV for a given instrument are poor, we find that the
inclusion of such a bin appears to improve the robustness of the
pressure constraints within the FOV.

We have applied this algorithm to SZ observations of the
high redshift cluster (z = 0.89) CLJ1227 from MUSTANG,
NIKA, and Bolocam. In doing so, we cover a radial range
0.05 R500 < r < 1.1 R500, continuously recovering spatial scales
in this range, and find consistency among the non-parametric
fits of the individual instruments. Furthermore, parametric best
fits indicate a gNFW profile with a relatively small scale ra-
dius (rp; rp = C500/R500). If left unconstrained, α tends toward
large values, indicating a rapid transition at this scale radius be-
tween the inner and outer slope. This rapid transition is consis-
tent across all three instruments, where NIKA is most sensitive
to this transition region and indeed NIKA data alone favors a

rapid transition. This rapid transition is also supported by MUS-
TANG data, in part due to the drop in recovered pressure at a
radius, 9′′ < r < 23′′ (0.07 R500 < r < 0.18 R500).

Empirical investigations into potential point source contam-
ination within this region (9′′ < r < 23′′) indicate that such a
point source would have to be ∼0.5 mJy at 90 GHz. However,
the lack of support for such a point source at other wavelengths
leads us to doubt this potential explanation for the dip in MUS-
TANG pressure between 9′′ < r < 23′′.

Our non-parametric fits of the pressure profile of CLJ1227
are consistent with a smooth (parameterized) pressure profile.
Yet, we have the advantage that deviations from a parameter-
ized pressure profile will be more evident, localized, and allow
for easier investigation of potential contamination or deviations
from hydrostatic equilibrium. In its current implementation, this
approach is relatively intuitive, robust, and fast (due to the ana-
lytic integration). While a spherical cluster was assumed for this
analysis, the approach already allows for an ellipsoidal geome-
try. We also foresee the potential to extend this approach to in-
clude analysis of slices within an ellipse, which will prove useful
for investigating shocks. We anticipate that this versatility will be
useful in analysis of the NIKA2 SZ large program Comis et al.
(2016) and other future SZ observations.
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Appendix A: Analytic integrals of ellipsoidally
symmetric power laws

In our non-parametric pressure bin analysis, we assume that the
pressure distribution is spherically symmetric. As the formalism
is applicable to ellipsoidally symmetric systems, we present the
formulations in ellipsoidal generality, with the condition that an
axis (taken as the z axis) is along the line of sight. Our quantity
to be integrated along the line of sight is denoted as ε, and has
the following behavior:

ε(x, y, z) = εi

 x2

a2
i

+
y2

b2
i

+
z2

c2
i

−Qi

, (A.1)

where εi is a normalization for the pressure within bin i; ai, bi,
and ci are the ellipsoidal scalings of their respective axes, with
the z-axis being along the line of sight, and −2Qi is the slope of
the pressure profile. We define an ellipsoidal radius, re = ( x2

a2
i

+

y2

b2
i

+ z2

c2
i
)1/2. A pressure bin can be in one of three cases: (C1) an

ellipsoid of finite extent; (C2) a shell of finite extent; and (C3) a
shell of infinite extent. We use these markers (C1, C2, and C3)
as superscripts when writing definitions per case. The pressure
distribution can be rewritten as follows:

εC1(re) =

{
εi · (r2

e )−P : r2
e ≤ 1

0 : r2
e > 1,

(A.2)

εC2(re) =


0 : r2

e < 1
εi · (r2

e )−P : 1 ≤ r2
e ≤ R2

i
0 : r2

e > R2
i , and

(A.3)

εC3(re) =

{
0 : r2

e < R2
i

εi · (r2
e )−P : R2

i ≤ r2
e ,

(A.4)

where Ri is a boundary radius (the outer boundary in Case 2).
Given a cluster profile with more than three bins, we end up
with many bins in Case 2, in which case we rescale ai, bi, ci, and
subsequently Ri each time to properly normalize each bin (εi)

Let us define

κ =
√
πεic

Γ(Qi − 0.5)
Γ(Qi)

A1−2Qi , (A.5)

where A2 = (x2/a2
i ) + (y2/b2

i ). While the integration of each bin
will share this expression, the actual values may change depend-
ing on ai, bi, and ci used for each bin (as above, when multiple
bins fall into Case 2). We write the integration of ε(re) along the
line of sight as:

I =

∫ z0

−z0

ε(re)dz, (A.6)

where z0 is the outer limit (in z) of the region in question. Over
the three cases, the solutions are as follows:

IC1 =

{
κ(1 − IA2 (Qi − 0.5, 0.5)) : A2 ≤ 1
0 : A2 > 1 (A.7)

IC2 =


κ(IA2 (Qi − 0.5, 0.5)−IA2/R2

i
(Qi−0.5, 0.5)) : A2 < 1

κ(1 − IA2/R2
i
(Qi − 0.5, 0.5)) : 1 ≤ A2 ≤ R2

i
0 : R2

i ≤ A2

(A.8)

IC3 =

{
κ(IA2/R2

i
(Qi − 0.5, 0.5)) : A2 ≤ R2

i
κ : A2 > R2

i .
(A.9)

Here, IA2 , or IA2/R2
i

is the incomplete beta function, often denoted
as Ix(a, b). For the discussion of the gamma and incomplete beta
function (below), x, y, a, and b serve as dummy variables. Given
our use of the gamma and incomplete beta functions, it is impor-
tant to recognize their limitations. Specifically, Γ(a) is undefined
for a = − j, j ∈ N ∪ {0} (negative integers, including zero). The
incomplete beta function, having a = Qi − 0.5 and b = 0.5 suf-
fers from undefined values for Qi = 0.5 − j, j ∈ N ∪ {0} as well
as Qi = − j, j ∈ N ∪ {0}. Finally, all incomplete beta functions
are generally defined for B(a, b) that Re(a) > 0 and Re(b) > 0.
However, the relation of the incomplete beta function (Ix):

Ix(a, b) = Ix(a + 1, b) +
xa(1 − x)b

aB(a, b)
(A.10)

allows us to extend the function into the negative domain (for a,
which we take as Qi − 0.5).

To deal with the limitation, generally seen as: 2 ∗ y − 2 =
− j, j ∈ N∪ {0}, we derive another approach. From Eq. (A.6), we
can substitute variables (t = z/(cA)) to arrive at:

I = 2εiA−2Qi

∫ t0

0
(1 + t2)−Qi cAdt and now adopt t2 =

u
1 − u

(A.11)

= 2εiA−2Qi

∫ θ0

0
(1 + tan2(θ))−Qi sec2(θ)dθ (A.12)

= 2εiA−2Qi

∫ θ0

0
cos2Qi−2(θ)dθ. (A.13)

This must then be extended, and is done so with the relation:∫
cosn−2(θ)dθ =

n
n − 1

∫
cosn(θ)dθ −

1
n − 1

cosn−1(θ) sin(θ).

(A.14)

Given the values of interest/applicability (2y − 2 = − j, j ∈ N ∪
{0}), this extension is perfectly applicable, and we will end in
well-behaved functions; either:∫

cosn(θ)dθ = tan(θ) for n = −2 or:∫
cosn(θ)dθ = ln | sec(θ) + tan(θ)| for n = −1.

The only case where this analytic integration fails is for Qi <
0.5 when integrating out to infinity, which is fine, as this must
diverge in any case.

Appendix B: Requirements for finite mass
for a non-rotating, spherical object under HSE

For a non-rotating, spherical object in hydrostatic equilibrium
(HSE) under thermal pressure support, we have:

1
r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ, (B.1)

where G is the Newtonian constant of gravity and ρ is the (to-
tal) matter density (Landau & Lifshitz 1959). Moreover, we can
integrate the first derivative and find:

M(r) =

(
−

dP
dr

)
r2

Gρ
(B.2)
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where we have used the integral

M(R) =

∫ R

0
(4πρr2dr), (B.3)

and note that under this formulation ρ must have a dependence
of r−δ, where δ > 3 to have a finite mass at an arbitrarily large
radius. Therefore, returning to Eq. (B.2), we find that M(r) can
be written as:

M(r) =
(
αP0r−1−α

) r2

Gρ0(r−δ)
, (B.4)

where P0 and ρ0 are simply normalizations of the pressure and
density respectively. The mass under hydrostatic equilibrium
will then have the radial dependence as r1+δ−α, where again,
δ > 3. Therefore, we find that α ≥ 4 is required for a finite
mass of an object, under the assumptions stated above.
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