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ABSTRACT
Geometrically thick tori with constant specific angular momentum have been widely used in the
last decades to construct numerical models of accretion flows on to black holes. Such discs are
prone to a global non-axisymmetric hydrodynamic instability, known as Papaloizou–Pringle
instability (PPI), which can redistribute angular momentum and also lead to an emission of
gravitational waves. It is, however, not clear yet how the development of the PPI is affected
by the presence of a magnetic field and by the concurrent development of the magnetorota-
tional instability (MRI). We present a numerical analysis using three-dimensional GRMHD
simulations of the interplay between the PPI and the MRI considering, for the first time, an
analytical magnetized equilibrium solution as initial condition. In the purely hydrodynamic
case, the PPI selects as expected the large-scale m = 1 azimuthal mode as the fastest growing
and non-linearly dominant mode. However, when the torus is threaded by a weak toroidal
magnetic field, the development of the MRI leads to the suppression of large-scale modes and
redistributes power across smaller scales. If the system starts with a significantly excited m = 1
mode, the PPI can be dominant in a transient phase, before being ultimately quenched by the
MRI. Such dynamics may well be important in compact star mergers and tidal disruption
events.
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1 IN T RO D U C T I O N

Accretion on to black holes provides one of the most effi-
cient mechanisms to power up high-energy astrophysical sources
such as active galactic nuclei (Rees 1984; Marconi et al. 2004;
Reynolds 2014), X-ray binaries (Narayan & Yi 1995; Fender,
Belloni & Gallo 2004; Remillard & McClintock 2006), and gamma-
ray bursts (Woosley 1993; Piran 1999; Kumar & Zhang 2015), just
to cite a few. The conservation of angular momentum commonly
leads to the formation of accretion discs, which in order to con-
vert gravitational binding energy into thermal, kinetic or magnetic
energy need to lose their angular momentum sufficiently fast.

Since black hole-disc models were proposed as central engine for
quasars by Lynden-Bell (1969), there has been a continuous interest

� E-mail: matteo@mpa-garching.mpg.de

in the physics underlying accretion on to black holes (for a general
review, see Abramowicz & Fragile 2013). The seminal papers by
Shakura & Sunyaev (1973) and Lynden-Bell & Pringle (1974) first
described what now is known as the standard disc model: a geo-
metrically thin, optically thick Keplerian disc where the accretion
process is driven by a local turbulent viscosity that is parametrized
by the quantity α. Given the great success of the standard disc model
in providing a self-consistent way to enable accretion along with
accurate predictions for the observed emission, the actual nature
and physical mechanism behind the parameter α (which essentially
gives an estimate of the efficiency of the angular momentum trans-
port in the disc) has been the object of numerous studies and is
currently still under investigation. The capability of hydrodynamic
Keplerian disc models to explain from first principles the onset of
a turbulent accretion flow has been debated for decades. They are
indeed stable to local linear perturbations, since their distribution
of specific angular momentum increases with distance from the
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Figure 1. Schematic representation of the mechanism responsible for the
PPI unstable modes. The negative-energy waves from the inner part of the
disc (where ω < �) interact with the positive-energy ones from the outer
disc (where ω > �), redistributing angular momentum across the corotation
radius with a positive feedback by the reflective boundaries. The grey area
represents the forbidden zone surrounding the corotation radius (dashed
circle), where the waves become evanescent.

central object (this is the well-known Rayleigh stability criterion),
and in general, a small displacement of a fluid element will lead to
epicyclic oscillations (Kato 2016). The non-linear stability of hy-
drodynamic discs is to this date a matter of debate. The first series of
shearing box simulations tackling this problem (Balbus, Hawley &
Stone 1996; Hawley, Balbus & Winters 1999) suggested that hydro-
dynamic accretion flows do not present a transition to a turbulent
state, but it has been argued by Longaretti (2002) that their results
were due to a lack of resolution. More recently Lesur & Longaretti
(2005) showed that at high enough Reynolds numbers non-linear
perturbations could lead to self-sustained turbulence, which, how-
ever, would be too weak to explain observed accretion rates.

An important class of hydrodynamic discs often used in the
context of accretion on to black holes is constituted by accretion
tori (Abramowicz, Jaroszynski & Sikora 1978), also referred to as
Polish doughnuts. These thick discs have a large internal en-
ergy, and they rely on pressure gradients to support the disc
together with centrifugal forces, resulting in a significant ver-
tical thickening of the disc and a departure from a Keplerian
distribution of specific angular momentum. Despite their local
stability, Papaloizou & Pringle (1984) discovered that they are
prone to develop a global non-axisymmetric instability [known
as Papaloizou–Pringle instability (PPI); see Fig. 1], which is able
to transport angular momentum outwards. Although capable of
triggering some accretion, the PPI cannot explain in a satisfac-
tory way the ubiquity of accreting systems, since it mainly affects
nearly constant angular momentum tori (Goldreich, Goodman &
Narayan 1986; Blaes & Hawley 1988). The PPI does also not
fit well in the standard disc model (which assumes locally gen-
erated turbulence to enable accretion), as the instability tends to
saturate in strong spiral pressure waves in radially wide, nearly

constant angular momentum tori (Hawley 1991; De Villiers &
Hawley 2002).

The breakthrough in accretion theory was the realization that
magnetic fields are the key to explain how discs can get rid of
their angular momentum. The discovery of the magnetorotational
instability (MRI) in astrophysics by Balbus & Hawley (1991) pro-
vided a local mechanism, efficient for a wide range of magnetic field
strength, which leads to a growth of linear perturbations on dynami-
cal time-scales and naturally develops MHD turbulence. Since then,
the properties of the MRI have been studied in great detail, from
both a local and a global point of view (Balbus & Hawley 1998;
Fromang 2013; Blaes 2014).

Despite the fundamental importance of magnetic fields in pro-
viding a general and universal mechanism to enable accretion in
astrophysical discs, the PPI is still quite relevant as an agent of
global non-axisymmetric instability, since thick discs with sub-
Keplerian angular momentum distributions are expected to form in
binary neutron stars (Rezzolla et al. 2010; Kiuchi et al. 2010) or
black hole-neutron star (Shibata & Uryū 2006; Foucart et al. 2012)
mergers, after the rotational gravitational collapse of massive stars
(MacFadyen & Woosley 1999; Aloy et al. 2000) and in tidal dis-
ruption events (Loeb & Ulmer 1997; Coughlin & Begelman 2014).
The stability of such wide tori has been studied from both an analyt-
ical (Goldreich et al. 1986; Glatzel 1987) and numerical (Blaes &
Hawley 1988; Hawley 1991; De Villiers & Hawley 2002) point
of view, and they have been proven to be quite generally unstable
to some non-axisymmetric mode induced by the PPI. Moreover,
a residual kick velocity of the central black hole after the merger
can excite large-scale spiral shocks in the accretion torus, even for
an almost Keplerian distribution of angular momentum (Zanotti
et al. 2010). In recent years, there have also been several studies
that included self-gravity of the disc (Kiuchi et al. 2011; Korobkin
et al. 2011; Mewes et al. 2016). They have shown how the non-
axisymmetric structures that arise from the instability can lead to a
significant emission of gravitational waves.

Hawley (2000) systematically investigated for the first time the
evolution of three-dimensional (3D) magnetized tori, presenting a
series of models with different gravitation potential (Newtonian and
pseudo-Newtonian), distribution of angular momentum, magnetic
field strength and topology (toroidal and poloidal), and azimuthal
range (from one quadrant to the full 2π angle). Despite considering
models unstable to the PPI, almost each model failed to display a
significant growth of the PPI, as the relatively faster development
of the MRI led to a suppression of the hydrodynamic instability.
The only model that displayed a non-negligible (although still not
dominant) growth of the PPI was the one threaded by a subthermal
constant toroidal field (named CT2 in the paper). This set-up trig-
gers, in fact, a non-axisymmetric MRI mode whose growth is slower
than the one selected by a vertical magnetic field, hence enabling
an early linear development of the PPI.

Fu & Lai (2011) tried to analytically establish the effect of
magnetic fields on the development of the PPI. Their analysis
(which assumes an incompressible fluid) suggests instead that suf-
ficiently strong magnetic fields can actually further destabilize
the torus and reinvigorate the hydrodynamic instability. Despite
this, in the last two decades several studies have investigated the
dynamics of thick magnetized tori accreting on to black holes
with 3D global simulations (Arlt & Rüdiger 2001; Hawley 2001;
Hawley & Krolik 2001; De Villiers & Hawley 2003; De Villiers,
Hawley & Krolik 2003; Machida & Matsumoto 2003; Machida,
Nakamura & Matsumoto 2004; De Villiers et al. 2005; Kigure &
Shibata 2005; Fragile et al. 2007; McKinney & Blandford 2009;
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McKinney, Tchekhovskoy & Blandford 2012; Wielgus et al. 2015;
Fragile & Sa̧dowski 2017) and none of them reported any signifi-
cant growth of the PPI once the presence of weak magnetic fields
of different topologies and strengths were taken into account.

These results suggest that the MRI can efficiently inhibit the on-
set of the PPI in accretion tori. However, it is yet not completely
clear what is the extent of their validity and whether there are
serious limitations to them in astrophysically relevant scenarios.
Indeed, the vast majority of the previously cited numerical stud-
ies considered equilibrium hydrodynamic solutions threaded by a
poloidal magnetic field, hence setting an environment favourable
for the development of axisymmetric MRI modes (also referred to
as channel modes), which generally have a faster growth rate than
the most unstable PPI mode (Hawley 2000). Only few of previous
works considered models with purely toroidal magnetic fields and
the full azimuthal range (Hawley 2000; Hawley & Krolik 2001;
Machida & Matsumoto 2003; Machida et al. 2004; McKinney
et al. 2012). However, such models are necessary conditions to
study the interaction between the PPI in wide tori (where the
fastest growing mode has an azimuthal number m = 1) and the
non-axisymmetric MRI, whose modes have much slower growth
rates than their axisymmetric counterparts and could in principle
allow for a significant (although transient) growth of the PPI (as
suggested by model CT2 in Hawley 2000).

A few recent numerical works employed as initial condition the
analytical equilibrium solution provided by Komissarov (2006),
where the extra-support of a purely toroidal magnetic field is con-
sistently taken into account in the initial state of the disc. For in-
stance, Wielgus et al. (2015) present a detailed study of the on-
set of non-axisymmetric MRI modes in relativistic accretion tori,
but the models considered only covered a limited azimuthal range
(φ ∈ {0, π/2}). Therefore, these authors only consider the dynam-
ics of modes with an azimuthal number m being a multiple of 4,
filtering out a possibly dominant m = 1 mode that would be selected
for a hydrodynamical wide torus. The same limited azimuthal range
was employed in Fragile & Sa̧dowski (2017), who also considered
stronger magnetic fields. Moreover, in most studies, the initial so-
lution is perturbed with a random fluctuation in order to trigger the
growth of instabilities. This choice naturally favours the early dom-
inance of the fastest growing instability, hence preventing a more
general study of the dynamics that characterizes the simultaneous
growth of such two fast instabilities as the PPI and MRI.

In this work, we present 3D GRMHD simulations of magnetized
tori with the goal to establish the effect of the MRI on the PPI
development starting from the equilibrium solution by Komissarov
(2006), which consistently includes the support of a purely toroidal
magnetic field in the disc’s initial condition. The goal of this paper is
to assess whether the PPI can significantly grow (and if so, to what
extent) in a more favourable environment, where a purely toroidal
field triggers the growth of slow non-axisymmetric MRI modes
and where both random and monochromatic initial perturbations
are considered. We first analyse the behaviour of an unmagnetized
torus to characterize the standard (and well known) development
of the hydrodynamic instability. We then consider equilibria with
different strengths of the toroidal field, perturbation seeds, and grid
resolutions to assess how the growth of non-axisymmetric global
modes depends on these parameters.

The plan of the paper is as follows. The disc models and the
numerical set-up are provided in Section 2, while in Section 3 we
introduce the diagnostics used to analyse the data produced by
the simulations. We present then our results and discuss them in
Section 4, and we finally give our conclusions in Section 5.

Table 1. List of the parameters defining the initial unper-
turbed state of the hydrodynamic torus. The same parameters
were used to initialize the magnetized models (see Table 2
for the additional ones related to the magnetic field).

MBH a rin rc l ρc

1 0 6.16 10.17 3.97 1

2 D I S C MO D E L A N D N U M E R I C A L S E T-U P

For all our simulations we used the code ECHO, which integrates
the full set of GRMHD equations and has been used in the past to
study non-Keplerian discs around black holes (Zanotti et al. 2010;
Bugli, Del Zanna & Bucciantini 2014). A complete description of
the code’s algorithms and structure is provided in Del Zanna et al.
(2007) and Bucciantini & Del Zanna (2011).

Although ECHO can use a covariant closure for Ohm’s law that
includes magnetic resistivity and mean-field dynamo action [see
Bucciantini & Del Zanna (2013) and Del Zanna et al. (2014) for
more details on the modelling, Bugli et al. (2014) for a study of
α − � dynamos in accretion discs, and Del Zanna et al. (2016)
for an application to relativistic reconnection], here we assume the
plasma to be a perfect conductor by using the condition of vanishing
electric field in the fluid comoving frame:

E = −v × B, (1)

where E, B, and v are, respectively, the electric field, magnetic field,
and fluid velocity measured in the frame of the Eulerian observer
(also referred to as the Zero Angular Momentum Observer, ZAMO).
The effects of magnetic dissipation will be included in a forthcoming
work.

Since we are interested in the dynamics taking place within the
torus and not in proximity of the black hole event horizon, we
consider for the sake of simplicity a non-rotating black hole of mass
M = 1 in a spherical coordinate system (r, θ , φ). The black hole is
surrounded by a thick torus (Abramowicz et al. 1978) whose inner
edge and centre are located at rin = 6.16 (close to the last marginally
stable orbit located at rms = 6) and rc = 10.17, respectively. This
choice sets the specific angular momentum of the disc to l = 3.97.
The orbital period at the disc centre is Pc ∼ 207. We adopt the
Cowling approximation, i.e. assuming a time-independent metric,
and neglect the self-gravity of the disc, disregarding also any change
in the central black hole mass and spin due to accretion. The rest
mass density ρ can therefore be rescaled to the central peak value
at rc, that is ρc (in the following density is always to be intended in
this way). We assume an ideal EoS for a perfect gas with adiabatic
index set everywhere to ϒ = 4/3.

For the magnetized tori, we initialize our simulations with the
stationary solution provided by Komissarov (2006), keeping the
same parameters as in the hydrodynamic models for black hole spin,
disc’s inner edge and centre location, and density normalization (see
Table 1). Indicating the gas thermal pressure with p, we vary the
value of the magnetization σ = B2/2p at the disc’s centre, i.e. σ c,
to investigate the role of the magnetic field strength on the system’s
stability. Further details on the initialization of the magnetized thick
disc can be found in Del Zanna et al. (2007).

The atmosphere is initialized as a Michel’s radial inflow
(Michel 1972), a stationary solution in the Schwarzschild metric
determined by the adiabatic index ϒ = 4/3 and the value of the
atmospheric density at distance rc, i.e. ρatm = 10−6. To provide
stability for the integration, we set a numerical floor value for the
density equal to ρfl = 10−9.

MNRAS 475, 108–120 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/475/1/108/4718469 by guest on 11 N
ovem

ber 2024



PPI suppression by MRI in relativistic discs 111

Table 2. List of the models considered in our study. Nr, Nθ , and Nφ are the number of grid points in radial, polar, and azimuthal
direction, and A(vφ ) is the amplitude of the initial perturbations. σ c and |B|c are, respectively, the initial value of the magnetization and
magnetic field magnitude at the centre of the disc. 〈Qφ〉V is the initial volume average of the quality metric Qφ (weighted by the rest
mass density ρ).

Nr Nθ Nφ A(vφ ) Excitation σ c |B|c 〈Qφ〉V

H64r3 256 256 64 10−3 Random 0 0 0
H256r-4 256 256 256 10−4 Random 0 0 0
H{32...256} m1-4 256 256 32, ..., 256 10−4 m = 1 0 0 0
H64m{2..5} -2 256 256 64 10−2 m = 2, ..., 5 0 0 0

H256r 256 256 256 10−3 Random 0 0 0
Ml256r 256 256 256 10−3 Random 10−2 8.06 × 10−3 6.94
Ml512r 256 256 512 10−3 Random 10−2 8.06 × 10−3 13.89
Mm256r 256 256 256 10−3 Random 3 × 10−2 1.38 × 10−2 11.88
Mm512r 256 256 512 10−3 Random 3 × 10−2 1.38 × 10−2 23.75
Mh256r 256 256 256 10−3 Random 10−1 2.43 × 10−2 20.79
Mh512r 256 256 512 10−3 Random 10−1 2.43 × 10−2 41.57
H512m1 256 256 512 10−3 m = 1 0 0 0
Ml512m1 256 256 512 10−3 m = 1 10−2 8.06 × 10−3 13.89

We adopt Kerr–Schild coordinates (see the Appendix) to allow
for an inner radial boundary inside the black hole event horizon
located at a radius rh = 2, thus preventing numerical artefacts due
to boundary effects that could otherwise propagate through the
domain and affect the simulation at r > rh. In radial direction, the
numerical domain ranges from rmin = 0.97 rh to rmax = 100 covered
by Nr = 256 grid points, with outflow boundary conditions ( zeroth-
order extrapolation) applied at both radial extrema. The radial mesh
is non-uniform to increase the resolution towards the black hole
event horizon by defining our radial grid points ri as

ri = rmin + rmax − rmin

ε
tan [arctan(ε)xi] , (2)

where xi = (i − 0.5)/Nr and the stretching parameter ε is set to
10. The polar domain extends from θmin = 0 to θmax = π with a
resolution of Nθ = 256 points. For simplicity, we impose axisym-
metric reflection at the boundaries, since we do not expect our 3D
models to be affected by the dynamics in the low-density regions
close to the rotation axis. To better resolve the disc, the polar mesh is
refined towards the equatorial mid-plane by setting the polar grid
points θ i to

θi = π

2
[1 + (1 − ζ )(2yi − 1) + ζ (2yi − 1)n], (3)

where yi = (i − 0.5)/Nθ , ζ = 0.6, and n = 29. This gives a roughly
constant and fine grid spacing across the disc and a rapidly de-
creasing resolution towards the rotational axis (Noble, Krolik &
Hawley 2010). Finally, we consider the full azimuthal range
φ ∈ [0, 2π] with uniformly distributed cells and periodic bound-
aries to be able to resolve global azimuthal modes with mode num-
ber m = kφr = 1, which are expected to develop and to be also the
fastest growing modes for the PPI in our disc model.

An important aspect to consider in any numerical experiment is
its convergence, i.e. whether or not the results depend on the grid
resolution. For a simulation involving magnetized accretion flows,
the key aspect that needs to be properly resolved is the MRI turbu-
lence that appears whenever a differentially rotating fluid is threaded
by a magnetic field of any topology. Following Hawley, Guan &
Krolik (2011), we define a quality metric as the ratio of the char-
acteristic wavelength of the MRI mode λMRI = 2π|uA|/� (which
corresponds to the distance travelled by an Alfvén wave during an
orbital period) and the grid zone size, where uA = B/

√
ρh + B2 is

the relativistic Alfvén velocity, h is the specific enthalpy, � = uφ/ut

is the disc’s angular velocity, and uμ is the fluid 4-velocity. Since
we start with a purely toroidal magnetic field, the relevant quality
metric should consider the wavelength along the φ direction, that
is

Qφ = λMRI

�φ
√

γφφ

= 2π|uAφ |
��φ

√
γφφ

. (4)

The volume average of Qφ for each magnetized model at the begin-
ning of the simulation is reported in Table 2. Hawley et al. (2011)
suggest that Qφ � 20 should provide a sufficiently good descrip-
tion of the non-linear phase of MHD turbulence. Note, however,
that the recent stratified shearing box simulations of Ryan et al.
(2017) suggest that none of the current simulations may actually
be converged, even at much higher resolution than achievable in a
global model. For all our simulations, we use the Harten–Lax–van
Leer Riemann solver instead of the more dissipative Lax–Friedrichs
scheme, together with a PPM reconstruction scheme.

To trigger the growth of non-axisymmetric modes, we introduce
inside the torus a small perturbation δvφ of the equilibrium az-
imuthal velocity v

φ
0 , with either random noise or cosine waves of

the form:

δvφ = Av
φ
0 cos(mφ), (5)

with m = 1, ..., 5 and amplitudes A ranging from 10−6 to 10−2

depending on the simulation.

3 D I AG N O S T I C S

We now introduce the quantities that we calculate from each simu-
lation to probe the dynamical evolution of the models and determine
the relative importance of the PPI and MRI in these models.

3.1 Power of azimuthal modes

In analogy with De Villiers & Hawley (2002) and Wielgus et al.
(2015), for any given azimuthal number m we calculate the power
contained in an azimuthal mode for a generic quantity Q as

Pm,Q(t) =
∫ rout

rin

∫ π

0

∣∣∣ 1
2π

∫ 2π

0 Qeimφdφ
∣∣∣2

w(r, θ )
√

γ dθdr∫ rout

rin

∫ π

0 w(r, θ )
√

γ dθdr
, (6)
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where w(r, θ ) is an axisymmetric weight function. For Q = u
φ
A, the

integrals in radial and polar direction in equation (6) are weighted
by the rest mass density, i.e.

w = 〈ρ〉φ = 1

2π

∫ 2π

0
ρ dφ, (7)

where the operator 〈〉φ represents an azimuthal average. This choice
avoids overestimating the contribution of the rarefied atmosphere
enveloping the disc and at the same time leads to a quantity that re-
lates to the azimuthal components of magnetic energy. For Q = ρ,
we set w = 1. Since we are interested mostly in the relative im-
portance of the m = 1 mode with respect to other higher order
non-axisymmetric modes, we decided to normalize the mode power
in equation (6) at any given time by P0,Q(t), i.e. by the instanta-
neous power in the axisymmetric mode. By doing so, we factor out
any decrease of the azimuthal power introduced by the significant
mass-loss occurring in all the models we considered. The evident
drawback of this time-dependent normalization is a loss of informa-
tion in absolute terms on the evolution of the power within a specific
azimuthal mode, once a non-negligible fraction of the disc’s mass
has been accreted on to the black hole. However, we verified that
this normalization did not affect the estimate of growth rates and
the value at which the modes power saturates, since most mass is
accreted during later stages.

With these diagnostics, we estimate growth rates and saturation
levels. We also quantify the time evolution of the relative importance
of the various modes resolved by the numerical simulations by
constructing spectrograms. At any given time t, we compute the
power in equation (6) of modes with azimuthal number up to m = 50,
and we plot the power in a m versus time diagram. By time-averaging
over the full duration of the simulations, we also compute spectra
to characterize the power distribution across different modes.

We display information on the frequency components present in
the fastest growing PPI mode with frequency-radius diagrams. We
consider the complex amplitude of the m = 1 mode of the density
in the equatorial plane (since most of the dynamics takes place in
this region):

M(r, t) = 1

2π

∫ 2π

0
ρ(r,π/2, φ)eiφdφ. (8)

For each radius r, we compute M̃(r, ω) = FFT (M(r, t)), i.e. the
Fourier Transform in the frequency domain.

3.2 Turbulence and accretion

We keep track of the development of turbulence in the system by
considering the evolution of the r − φ components of the Reynolds
and Maxwell stress tensors, defined, respectively, as

WRe = ρ δur δuφ√
γrr

√
γφφ, (9)

WMa = Br Bφ √
γrr

√
γφφ, (10)

where δur = ur − 〈ur〉φ and δur = ur − 〈ur〉φ . We compute their
volume averages by considering only those regions of the compu-
tational domain where the rest mass density ρ exceeds a threshold
value set to ρth = √

ρc ρatm to track the dynamics of the disc and
exclude that of the atmosphere.

Still related to the stresses, we compute the disc alpha parameter
(not to be confused with the lapse function) as the ratio of the volume

average of the total stress Wtot = WRe + WMa and the volume average
of the thermal pressure:

αturb = 〈Wtot〉V
〈p〉V . (11)

As a further diagnostics of the efficiency of angular momentum
transport in the disc, and thus of the overall accretion process, we
also monitor the evolution of the radial distribution of the disc’s
orbital angular velocity �. The radial dependence of � is usually
described with a power law:

� ∝ r−q , (12)

where the parameter q can range from 3/2 (for a Keplerian disc) to 2
(constant specific angular momentum). However, in the relativistic
case and for a non-rotating black hole � = −lgtt/gφφ = l(r − 2)/r3,
and the value q = 2 can be assumed only if the disc extends suffi-
ciently far away from the black hole. Since our disc model extends
from rin = 6.16 to rout = 21.6, initially q ranges from q(rin) = 1.52
to q(rout) = 1.90. Since we want to relate the redistribution of spe-
cific angular momentum to the classical case where the slope in
equation (12) starts as a constant equal to 2 across the disc, instead
of q we monitor the evolution of the quantity

q̃ = 2 −
∣∣∣∣ d log l

d log r

∣∣∣∣ , (13)

which is evaluated performing a least-squares fit of the power
law describing the radial dependence of the specific angular
momentum l.

4 R ESULTS AND DI SCUSSI ON

4.1 Hydrodynamic disc

First,we focus on the development and saturation of the PPI in
the absence of magnetic fields to have an initial benchmark for a
later comparison with the results for magnetized models. Fig. 1
illustrates the core mechanism responsible for the PPI growth, but a
more detailed and complete discussion on the topic can be found in
Narayan & Goodman (1989). As shown in Table 2, we performed a
set of simulations that differ by resolution in the azimuthal direction,
and amplitude and spectrum of the initial perturbation. We followed
the evolution of these models up to 20 orbital periods at the disc
centre, which is sufficient for the hydrodynamic instability to reach
saturation in terms of azimuthal mode power.

Our results confirm that the m = 1 azimuthal mode is the fastest
growing one. Therefore, it was selected by the system independently
of the initial perturbation. We ran a series of simulations with the
same monochromatic m = 1 perturbation but with different resolu-
tions in the azimuthal direction (models H32m1-4 to H256m1-4).
Fig. 2 shows the time evolution of the azimuthal power of the den-
sity fluctuations for the m = 1 and m = 2 modes. Even with a modest
resolution of 32 zones, ECHO is capable of capturing the dynamical
evolution of the PPI, since the most unstable mode has a quite large
wavelength. Fig. 2 also shows the linear phase of the instability dur-
ing the first 10 orbital periods, with growth rates for the m = 1 and
m = 2 modes of 0.080 �c and 0.042 �c, respectively. The power of
the two modes differs also in the value of saturation levels, which
is more than an order of magnitude larger for the m = 1 mode.

The minimum resolution required to properly resolve the fastest
growing mode of the PPI can be much higher in radial direction
than in azimuthal direction (i.e. higher than 32 points), because
the m = 1 mode developing from wide tori is not (as in the case
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PPI suppression by MRI in relativistic discs 113

Figure 2. Time evolution of the power in density for the m = 1 (solid
curves) and m = 2 (dashed curves) modes, as computed from equation (6)
for models H32m1-4 to H256m1-4. All models are initialized with an m = 1
perturbation.

of slender tori) the so-called principal mode. This mode is the
result of the interaction of two nodeless (across the radius) surface
gravity waves (also referred to as edge-waves) that are generated
at the disc’s inner and outer boundaries and are advected by the
shear flow with respect to the corotation radius. While this mode is
essentially incompressible, the one that we see in our simulations is
the outcome of the interaction between a pressure wave in the outer
part of the disc and an edge wave from the interior. The former has
multiple nodes in radial direction (two, in the case of our models),
which require an adequate radial resolution. If one has insufficient
resolution, one systematically underestimates the instability growth
rates [see Blaes & Hawley (1988) for a detailed discussion].

Fig. 3 (left-hand panel) shows an equatorial slice of the rest
mass density for model H256r after about 15 orbital periods. The
dominant m = 1 mode is clearly visible as an overdensity that
corotates with the disc, while the flow still maintains overall a
smooth profile. The region between the black hole horizon and

Figure 4. Time evolution of the power in density for the m = 1 (solid curves)
and m = 2 (dashed curves) modes for models H256r (black), Ml512r (blue),
Mm512r (green), and Mh512r (red). All models are initialized with a random
perturbation.

the disc’s inner edge is relatively depleted of mass, apart from an
inspiraling flow that detached from the main body of the disc.

From the time evolution of the mode power in Fig. 4 and the
spectrogram in Fig. 5 (top panel), it is clear that the m = 1 mode
dominates since very early times, and no other small-scale perturba-
tion grows as much during the linear phase of the instability. After
10 orbital periods, a further deposition of energy occurs on smaller
scales presumably because of non-linear interactions, but the m = 1
mode remains the strongest one. This interpretation is confirmed
by the density power spectrum (the top panel of Fig. 6), which
shows also most power in low-order modes, peaking at m = 1, and
decaying as a power law m−4 for m � 3.

All these results are in full agreement with the predictions of the
linear theory (Goldreich et al. 1986; Glatzel 1987) as well as pre-
vious numerical simulations (Blaes & Hawley 1988; De Villiers &
Hawley 2002).

Figure 3. Equatorial cut of the rest mass density ρ for models H256r (left) and Ml512r (right) at t = 3000 	 15 Pc. The maximum value of ρ is normalized to
1 in each plot. The solid black curve represents the black hole event horizon, while the dotted curve indicates the radius of the last marginally stable orbit rms.
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114 M. Bugli et al.

Figure 5. Rest mass density spectrograms of the azimuthal mode power,
colour-coded in logarithmic scale. The panels refer, from top to bottom,
respectively to models H256r, Ml512r, Mh512r, H512m1, and Ml512m1.

4.2 Magnetized discs

We now consider the effect of a weak toroidal magnetic field. We
use the analytical solution provided by Komissarov (2006), which
allows one to avoid initial spurious transients by taking into ac-
count the extra pressure provided by a toroidal magnetic field. Re-
cent models by Fragile & Sa̧dowski (2017) suggest that strongly
magnetized thick discs with a purely toroidal magnetic field may
experience a fast drop of magnetization, mostly due to redistribu-
tion of gas and migration of magnetic fields into the funnel region.
As we are more interested in the dynamics taking place within the
torus, we limit ourselves to values of central magnetization up to
σ c = 0.1.

We focus for the moment on the magnetized models with the high-
est resolution along the φ direction (i.e. 512 grid points), leaving the
discussion of the effects of a lower resolution to the next paragraph.
As illustrated by the right-hand panel of Fig. 3, the distribution
of rest mass density in the magnetized models show small-scale
fluctuations not present in the hydrodynamic models, with the clear
presence of MHD turbulence triggered by the MRI and the absence
of a large-scale overdense non-axisymmetric structure.

The time evolution of the azimuthal mode power in the mag-
netized models (Fig. 4, blue, green, and red curves with increas-
ing magnetic field strength) reveals an earlier growth of low order
modes, without a clear distinction between the m = 1 and m = 2

Figure 6. Rest mass density (top) and azimuthal Alfvén velocity (bottom)
spectra in azimuthal number m, averaged over the time t ∈ {0, 13.6}Pc. The
black curve represents the hydrodynamic model, the other solid curves refer
to magnetized models with high resolution along the φ direction (i.e. Ml512r,
Mm512r, and Mh512r), while the dashed ones stand for the low-resolution
models Ml256r, Mm256r, and Mh256r.

modes as in the hydrodynamic case. The mode power reaches a
maximum, which occurs at earlier times and at a slightly higher
value the stronger the magnetic field strength, although both the
m = 1 and m = 2 modes still saturate at roughly the same level.
This behaviour is confirmed also by the spectrograms in Fig. 5,
which show a much broader range of excited modes in the magne-
tized cases (second and third panel from the top), and provides a
picture which is fully consistent with the onset of the linear phase
of the non-axisymmetric MRI (Balbus & Hawley 1992; Wielgus
et al. 2015).

The time-averaged density spectra shown in the top panel of
Fig. 6 provide a more quantitative confirmation of this trend. The
hydrodynamic model H256r (black curve) develops predominantly
large-scale modes, with a steep power-law decline from the m = 1
mode to m ≈ 5, followed by a shallower decline up to m = 10 and
again a steep drop. The magnetized models (coloured curves) have
no strong excess of power at large scales, with a much shallower
slope down to m = 10 followed by a steeper decrease due to the
numerical dissipation introduced by the reconstruction scheme. The
spectra of the high-resolution models (coloured solid curves) be-
have quite similarly to each other. For σ c = 0.01, 0.03, the spectra
computed from the orbital Alfvén velocity show no particular dif-
ference in their shape (the bottom panel of Fig. 6), as they overlap
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PPI suppression by MRI in relativistic discs 115

Figure 7. Reynolds and Maxwell stresses (solid and dotted curves, top
panel) and αturb (bottom panel) for models H256r, Ml512r, Mm512r, and
Mh512r (black, blue, green, and red as in the previous figure).

quite well for both small and large azimuthal numbers. The high-
magnetization model (σ c = 0.1) exhibits a slightly steeper profile
and also less power, which is probably due to the earlier transport
of magnetic flux in the disc’s atmosphere. In fact, by choosing as
weighting function in equation (6) the rest mass density, a higher
concentration of magnetic field in the rarefied atmosphere leads to
an underestimate of the mode’s power.

All the models we considered produce accretion on to the central
black hole, but at different times and in different ways. In the hy-
drodynamic disc the development of the PPI is the sole responsible
for angular momentum transport, hence accretion. After 10 orbital
periods, when the m = 1 mode approaches its maximum amplitude,
the kinetic energy and stresses are large (the black curve in Fig. 7),
which consequently lead to a significant redistribution of angular
momentum (see the evolution of the parameter q̃ in Fig. 8) and
mass-loss (almost 30 per cent of the disc’s initial mass).

The situation is quite different in the magnetized models. The ac-
cretion is triggered at much earlier times (after only 2 orbital periods
for the model with highest magnetization) with a steeper increase of
Wtot. In model Ml256r, the Reynolds and Maxwell stresses increase
initially at the same growth rate, but then the magnetic component
takes over. For model Mh256r, Maxwell stresses dominate from
the very beginning and during the whole simulation. Consequently,
accretion is enhanced and a higher mass-loss results, leading in the
most highly magnetized model to a dramatic decrease of the disc
mass down to 30 per cent of its initial value. Concerning the angular
momentum distribution, Fig. 8 confirms these findings, showing a

Figure 8. Slope parameter q̃ for models H256r, Ml512r, Mm512r, and
Mh512r.

Figure 9. Space-time diagrams of the azimuthally averaged radial distri-
bution of specific angular momentum l in the equatorial plane for models
H256r (top), Ml512r (middle), and Mh512r (bottom).

faster and earlier decrease of q̃ (see equation 13) and also a lower
saturation value with respect to the hydrodynamic case.

A space–time diagram of the radial profile of the specific angular
momentum l at the equator (the top panel in Fig. 9) clearly shows that
in the hydrodynamic model the waves that constitute the unstable
mode are increasing l outside the corotation radius (starting from
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the outmost parts of the disc) and at the same time decreasing it
in the inner region of the disc. During this phase (up to t ∼ 13 Pc),
the angular momentum in the disc’s central region does not change,
since its transport is carried out by two coupled waves propagating
in different parts of the torus. This reveals once again the inherently
non-local nature of the PPI. The same diagrams for models Ml512r
and Mh512r (the middle and bottom panel of Fig. 9) show how
in the magnetized case angular momentum is transported outwards
from the inner regions of the disc much faster than in the absence
of a magnetic field. The transport proceeds in this case from the
highly magnetized regions of the disc towards the outer edge, with
the angular momentum being deposited at increasingly larger radii,
and hence producing a rather different pattern in the space–time
diagram.

4.3 Mode frequency

The mode selected by the PPI as the fastest growing one is charac-
terized not just by the azimuthal number m = 1, but also by a specific
angular frequency ω, which we can measure and directly compare
with the disc rotation rate �. In fact, the mechanism behind the PPI
growth (see once again Fig. 1) relies on the interaction between a
negative energy wave (which has ω < � and therefore is slower
than the surroundings) and a positive energy wave (with ω > �).
This interaction happens at the corotation radius Rcor (defined by
�(Rcor) = ω), so that negative energy waves from the inner region
of the disc (r < Rcor) exchange energy and angular momentum with
the positive energy ones from the outer parts (r > Rcor). A funda-
mental condition for this process to be efficient is the presence of
a reflective boundary (Goldreich et al. 1986) that allows the waves
to be reflected and approach the corotation radius where the inter-
action can take place, leading to a positive feedback and hence the
development of the PPI (see Fig. 1).

The top panel of Fig. 10 clearly shows the presence of a specific
spectral component at ω0 	 0.86�c (where �c = 2π/Pc is the
orbital angular frequency at the disc’s centre) in the hydrodynamic
model, which represents the m = 1 mode selected by the PPI. Both
positive and negative energy waves are present, and they interact
through the corotation radius Rcor 	 rc, defined as the location where
the mode frequency and the disc’s orbital frequency are equal (the
white curve in Fig. 10). The two waves cannot propagate through a
narrow forbidden region surrounding the corotation radius, but they
can still be transmitted by tunnelling.

In the magnetized case with high resolution in azimuthal direction
(bottom panel), there is no clear selection of a single mode at a well-
defined frequency. In the region beyond the corotation frequency
the positive-energy waves are much less excited, and there seems
to be a lack of modes with frequency below ω ∼ 0.5 �c. We also
observed no significant dependence on the model’s magnetization:
models Ml512r, Mm512r, and Mh512r all present a similar pattern
in the ω-radius diagram.

4.4 Dependence on resolution

We focus now on how the results we considered so far change when
a lower resolution in azimuthal direction is employed in magnetized
models (256 instead of 512 grid points).

As we can see from the last column of Table 2, some magne-
tized models have an average value of the quality metric Qφ �
20, suggesting that in these cases the MHD turbulence might not be
sufficiently well resolved. Moreover, considering that the resolution
constraint gets stricter when weaker magnetic field are employed,

Figure 10. Amplitude of the m = 1 mode frequency components in a ω

versus radius diagram calculated from the rest mass density ρ and computed
from the Fourier transform of (8) within the time interval t ∈ {0, 20}Pc.
The white curve represents the azimuthally and time-averaged equatorial
orbital frequency profile. The panels refer, respectively, to model H256r
(top), Ml256r (middle), and Ml512r (bottom).

one could also expect the low magnetized discs to exhibit greater
differences between the two different grids (with respect to the
models with higher magnetization).

This expectation is confirmed by Fig. 6. The rest mass density of
model Ml256r (the dashed blue curve in the top panel) shows a small
excess of power in the m = 1 mode, as the ratio P1,ρ/P2,ρ ∼ 3 is
roughly twice as large as in the corresponding high-resolution run.
Moreover, at all m, the power is systematically lower than in the
model with the finer grid, pointing to a less efficient MHD-driven
mode excitation. This is corroborated by the bottom panel of Fig. 6,
where the power in the spectrum of the azimuthal Alfvén velocity
decreases by almost a factor of 2 on the coarser grid for all values of
m < 10. The middle panel of Fig. 10 shows that at lower resolution
a still significant excitation of positive-energy modes is present at
frequency ω ∼ 0.7 �c, while there is almost none when a finer grid
is employed (bottom panel). The model with low magnetization
and Nφ = 256 displays also a later onset of accretion and growth of
stresses, consistent with a less efficient MHD turbulence.

Both models with higher magnetization (σ c = 0.03, 0.1) show
no such a significant dependence on the azimuthal resolution. The
main difference visible from the averaged spectra in Fig. 6 is in
the slopes at m � 10, which can be ascribed to the increase in
numerical dissipation on the coarser grid for a given accuracy of the
reconstruction scheme.

Both the initial value of Qφ and the spectral behaviour of the mag-
netized models suggest that the fastest growing mode of the MRI
is underresolved in the low-resolution, low-magnetization model
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PPI suppression by MRI in relativistic discs 117

Figure 11. Time evolution of the power in density for the m = 1 (solid
curves) and m = 2 (dashed curves) modes for models H256r (black), Ml512r
(blue), H512m1 (green), and Ml512m1 (red). The former two models are
initialized with a random perturbation, while the others are initialized with
an m = 1 perturbation.

Ml256r. In these models, the MHD turbulence is not well devel-
oped, and the PPI appears to be still capable of exciting to some
extent the large-scale m = 1 mode.

Since the non-axisymmetric fastest growing modes selected by
the MRI are typically associated with short vertical and radial wave-
lengths (Balbus & Hawley 1998), we also expect a dependence of
our results on the resolution along the θ -direction. Indeed, running
the three magnetized models with a polar resolution decreased by
a factor of 2 leads to results qualitatively similar to those obtained
at lower azimuthal resolution. Underresolving the MHD turbulence
produces a small excess of power in the low order modes and a
general drop in power for modes with m � 5.

4.5 Dependence on the initial perturbation

So far we considered the evolution of models that were started with a
random perturbation of the azimuthal velocity, therefore exciting all
modes with a low enough azimuthal number that could be resolved
by the number of points in our numerical grid. Our high-resolution
models are able to resolve the MRI fastest growing mode, which
has azimuthal number typically much larger than 1, i.e.

mMRI = 2πR

λMRI
	 R�

u
φ
A

(14)

has an average value of 〈m〉V ∼ 36 for the models with magnetiza-
tion σ c = 0.01. Hence, a random perturbation will equally excite
the PPI and the MRI fastest growing modes. However, the growth
rate of the fastest MRI mode exceeds the typical growth rate of the
hydrodynamic PPI, which plays a key role in the results from the
previous sections (Hawley 2000).

It is not clear, though, whether the PPI could leave a clear signa-
ture on the disc structure if the initial perturbation were to favour
the PPI fastest growing mode over the higher order ones excited by
the MRI. To assess this, we initialized some of our models with a
purely m = 1 perturbation, hence exciting from the beginning of
the simulation the most unstable PPI mode.

When the hydrodynamic disc is initially excited with a m = 1
mode (model H512m1), its evolution resembles quite closely that
of the randomly perturbed disc (see Fig. 11), with the growth of

the fastest growing mode’s power peaking at much earlier times.
Hence, there is also an earlier non-linear interaction between the
m = 1 and higher order modes, leading to episodic redistributions
of power across scales (compare the first and the fourth panel from
the top in Fig. 5).

The other model we excited with a m = 1 perturbation is the
low magnetized one, i.e. model Ml512m1. From Fig. 11, we can
see how in this case (red curve) the m = 1 mode develops during
the first four orbital periods almost exactly as in the hydrodynamic
counterpart (green curve). However, the mode’s power starts then
to drop and approaches the values reached in the randomly per-
turbed magnetized model (blue curve), i.e. it is damped by almost
two orders of magnitude. The power in the m = 2 mode (dashed
curves) is affected in a similar way: its growth significantly slows
down with respect to the hydrodynamic case after about five orbital
periods, and it reaches values that are roughly a factor of 2 below
the unmagnetized model’s ones.

The spectrograms in Fig. 5 show that high-order modes (i.e.
with m > 2) are excited by the MRI in both models Ml512r and
Ml512m1 (second from the top and bottom panels) roughly at the
same time t ∼ 4Pc, which marks also the beginning of the departure
from the hydrodynamic model’s behaviour. The onset of the MRI
appears therefore to be rather insensitive of the initial perturbation
employed. Model Ml512m1 still shows a distinctive excitation of
the m = 1 mode (contrary to the randomly perturbed case), which
however disappears after t ∼ 10Pc. There is no trace of the episodic
excitation of the modes with 2 < m < 7 that takes place in the
unmagnetized disc between t = 6Pc and t = 10Pc, but instead
the power is more uniformly distributed across high-order modes,
qualitatively resembling the behaviour of model Ml512r.

4.6 Interaction between the two instabilities

From the previous analysis, it seems clear that the inclusion of a
toroidal magnetic field deeply affects the development of the PPI,
even when the field is highly sub-thermal. The m = 1 mode selected
by the PPI is suppressed, leaving no clear signature on the azimuthal
or frequency spectra.

One possible explanation could reside in the early accretion trig-
gered by MHD turbulence, which leads to a faster redistribution of
angular momentum across the disc. The free energy stored in the
shearing flow decreases and the edge waves that should reach the
corotation radius and transport energy are not efficient enough to
sustain the unstable m = 1 mode. Hawley (2000) found that a torus
threaded by a weak constant toroidal magnetic field (i.e. with mag-
netization σ ∼ 0.01) can display an initial appearance of the PPI,
though the later development of the MRI interrupts the growth of
the hydrodynamic instability. The author suggests the redistribution
of angular momentum produced by the MRI to be the main cause
of the inability of the PPI to significantly affect the disc dynamics.

A comparison between model H512m1 and Ml512m1 provides
new insights in the dynamical quenching of the PPI by the MRI.
For both models, the power in the m = 1 mode (Fig. 12) reaches its
peak value at a similar time (roughly t ∼ 8 Pc), while the parameter
q̃ decreases in both models at the same rate. This is consistent with
the usual interpretation that the m = 1 mode ceases to be excited
when q̃ reaches a sufficiently low value, which sets an unfavourable
environment for the development of the PPI.

While it is true that in model Ml512m1, the transport of angular
momentum after t ∼ 10 Pc further proceeds due to the MRI (hence
leading q to the same saturation value as the randomly perturbed
model), the strong decrease in the m = 1 mode power between
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Figure 12. Slope parameter q̃ for models H256r, Ml512r, H512m1, and
Ml512m1.

t = 8 and 11 cannot be attributed to this effect because q̃ has not
yet dropped below the value of the corresponding hydrodynamical
model. Furthermore, the first deviations of the m = 1 mode from the
hydrodynamic model appear even earlier at t ∼ 4 Pc, at the same time
as the rise of high-order modes excited by the MRI. We therefore
argue that it is an early coupling between low- and high-order
modes, and not the transport of angular momentum, that leads to
the increasing difference in the m = 1 mode’s power between models
H512m1and Ml512m1: energy is redistributed towards small scales,
and the PPI fastest growing mode is damped until its power reaches
the same value as in the randomly perturbed models. Hence, the
disc evolves to a state which is ultimately independent of the initial
perturbations: even when the PPI most unstable mode is initially
enhanced, its later interaction with the higher order modes excited
by the MHD instability ends the initial transient growth. The same
coupling is also present in the hydrodynamic case, but since the
high-order modes are less excited by the PPI than by the MRI,
the resulting non-linear interaction is weaker and only leads to
oscillations in the m = 1 mode’s power (see the first and fourth
panels of Fig. 5).

To confirm that in presence of stronger magnetic fields, the disc
dynamics is completely dominated by the MRI, we performed a
run with the exact set-up used in model Mh256r but reduced the
azimuthal range to [0,π] to filter out the m = 1 mode from the
system. We observed no appreciable change in the evolution with
respect to the results obtained using the full azimuthal range [0, 2π].
Hence, we conclude that in this case the dynamics of the system is
independent of the large-scale m = 1 mode, which does not play any
significant role in the evolution of our most strongly magnetized
model. Powerful accretion and small-scale turbulence set by the
MRI prevent any significant development of the PPI fastest growing
mode.

These results may seem to be in disagreement with what was
reported by Fu & Lai (2011), who performed an analytical study
of the influence of magnetic fields (in both toroidal and poloidal
configurations) on the stability on accretion tori. They found that
a sufficiently strong toroidal magnetic field can further destabilize
the disc and enhance PPI development. However, they assumed
incompressibility in their analysis, and therefore they excluded all
those modes that, as in the case of the wide tori we considered,
result from the interaction between a pressure wave outside the
corotation radius coupled to an internal edge wave [see Glatzel

(1987) for a more complete analysis of the role of compressibility
in the development of PPI].

5 C O N C L U S I O N S

We presented 3D GRMHD simulations of magnetized thick accre-
tion discs around black holes with the goal of estimating the inter-
action between the PPI, which deeply affects hydrodynamic wide
tori with constant specific angular momentum, and the MRI, which
is omnipresent in ionized differentially rotating astrophysical discs
threaded by magnetic fields. By starting from the magnetized equi-
librium solution provided by Komissarov (2006) we could avoid
initial transients in the disc’s dynamics and assess how the lin-
ear growth and subsequent dynamics of the PPI is affected by the
development of the MRI.

Consistently with previous works, we find that even in the
presence of a sub-thermal toroidal field the growth of the non-
axisymmetric m = 1 mode (usually the fastest growing mode for
wide hydrodynamic tori) is significantly quenched, i.e. no large-
scale overdensity structure (planet) forms and the flow is more
turbulent.

The inclusion of toroidal magnetic fields excites higher order
modes, thus smaller length-scales, in contrast of the strong dom-
inance of the m = 1 mode in the purely hydrodynamic case. For
all our high-resolution magnetized models, there is no clear sign
of an excess of power in the m = 1 mode, showing therefore that
its growth has been suppressed by the action of MRI. The redis-
tribution of angular momentum proceeds much faster than in the
unmagnetized model, resulting in a lower saturation value for the
parameter q̃ measuring the slope of the orbital angular velocity
with radius. This is consistent with the fact that, as expected, higher
magnetizations lead to stronger stresses and accretion rates on to
the black hole.

Launching the model with the weakest magnetic field (σ c = 10−2)
with a monochromatic m = 1 azimuthal perturbation leads to a tran-
sient phase, where the PPI fastest growing mode behaves in the same
way as in the hydrodynamic counterpart. For more than five orbital
periods, even in presence of magnetic fields, the disc’s dynamics is
regulated by the PPI, with the power in the m = 1 mode that greatly
exceeds that of any other azimuthal mode. Then, the power drops
and reaches in a very short time the same saturation level as in the
randomly perturbed magnetized models. While the ultimate fate of
the large-scale mode appears to be the same, independently of the
particular spectrum of the perturbation, we observe nevertheless a
transient PPI-dominated phase that lasts for a few orbital periods
and that could be interesting in those astrophysical scenarios where
the gravitational interaction with the central black hole can indeed
excite the m = 1 mode.

The comparison between model H512m1 and Ml512m1 offers
a very interesting insight into the physical mechanism behind the
suppression of the PPI. The redistribution of specific angular mo-
mentum from a constant radial profile towards the Keplerian one
occurs for both the PPI and the MRI, and it has been invoked in pre-
vious studies (Hawley 2000) as the sole responsible of the missing
development of the PPI in 3D MHD global simulations, since the
hydrodynamic instability is intrinsically susceptible to being stabi-
lized if enough angular momentum is transported outwards in the
disc. Our results are consistent with this mechanism being respon-
sible for the halt in the growth of the PPI most unstable mode, since
in both models H512m1 and Ml512m1 the m = 1 mode’s power
reaches a maximum at similar times, while displaying the same de-
crease in the parameter q̃. However, our simulations also show that
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the general lack of a dominant m = 1 mode in magnetized discs
is mainly due to the coupling with higher order modes that drains
power from large scales and redistributes it towards smaller scales.
Such a coupling is rather strong in the magnetized case (since the
MRI excites modes with large m more than the PPI does), and we
identify it as the main mechanism that quenches the growth of the
PPI. This process leads to a turbulent state completely dominated
by the MRI and ultimately independent of the initial perturbation.

The initial PPI dominated evolution of the magnetized model
Ml512m1 is consistent with the findings of Nealon et al. (2018),
who argued that a thick disc can undergo a significant accretion
phase dominated by the PPI, before the onset of the MRI. Their
analysis is based on numerical measurements of accretion rates in
the evolution of the remnant of a hydrodynamic tidal disruption
event around a supermassive black hole and a comparison between
the expected duration of the linear phases of the PPI and MRI. They
argue that for weak enough magnetic fields the saturation time of
the MRI will significantly exceed that of the PPI, suggesting that in
that case the disc could undergo an accretion phase regulated mostly
by the PPI. However, they also notice that using this argument to
discern between a PPI and MRI dominated regime can lead to a
significant overestimate of the magnetic field strength required for
the latter scenario. Indeed, we found that the quenching of the PPI
fastest growing mode starts well before the saturation of either of
the instabilities.

Our results suggest that with the inclusion of magnetic fields the
dominance of the m = 1 mode (with respect to higher order ones)
due to PPI should not hold in thick tori, but there are some caveats
that need to be addressed. First, we neglected the self-gravity of
the disc. This is expected to be a good approximation, for example,
in X-ray binaries, but not in the case of the remnant of an NS–NS
merger that produces a black hole–torus system. It has been shown
by Korobkin et al. (2011) that the gravitational interaction between
the disc and the central black hole can indeed further excite the
m = 1 mode, leading hence possibly to a different outcome than
ours once a magnetic field is included into the simulations.

In this work, we considered tori with a constant specific angular
momentum radial profile, which are most susceptible to PPI and
therefore represent the most favourable environment for its devel-
opment. Despite the general suppression by the MRI, we find an
initial transient phase where the PPI dominates the evolution of a
magnetized disc excited with a weak m = 1 perturbation. It would
be interesting to assess whether this would still be the case when
using magnetized equilibrium solutions with a more realistic distri-
bution of angular momentum, such as those recently presented in
Gimeno-Soler & Font (2017).

Another important aspect is the role of turbulent resistivity. We
found that if the dynamical evolution of the MRI is not resolved
properly, the system shows a residual excess of power in the m = 1
mode and a clear signature of negative- and positive-energy waves
coupled through the corotation radius. This suggests that for a strong
enough magnetic dissipation, which could be present in a turbulent
environment, the MRI could be quenched, and hence the PPI could
still grow significantly and produce a non-negligible m = 1 like
overdensity. As mentioned in Section 2, in a forthcoming work we
will investigate how the system is affected by an explicit magnetic
diffusivity.
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A P P E N D I X : C O O R D I NAT E
T R A N S F O R M ATI O N

To exploit the regularity property of the Kerr–Schild (KS) coor-
dinates at the event horizon, we perform a transformation of all
the vectorial variables computed for a stationary torus in Boyer–
Lindquist (BL) coordinates. In the following, the labels KS and BL
indicate quantities measured by a KS and BL Eulerian observer,
respectively, while unprimed and primed indices refer to quantities
expressed in KS and BL coordinates.

One has to consider the linear transformation:

Aμ
μ′ =

⎛
⎜⎜⎜⎝

1 G 0 0

0 1 0 0

0 0 1 0

0 H 0 1

⎞
⎟⎟⎟⎠with

{
G = − 2r

�

H = − a
�

(A1)

where � = r2 − 2Mr + a2, r is the radial coordinate, and a is the
black hole spin (which in general will be different from 0). This

transformation relates vectors and tensors, respectively:

xμ = Aμ
μ′x

μ′
, (A2)

T μν = Aμ
μ′Aν

ν′T μ′ν′
. (A3)

We also have to consider that Eulerian observers in the two coordi-
nate systems are not identical in general; that is, we cannot simply
apply the transformation in equation (A1) to the vectorial primi-
tive variables (v, B, E), which represent quantities measured in the
Eulerian frame of reference. For quantities like the fluid 4-velocity
uμ and the Faraday tensor Fμν , on the other hand, one must only
apply equation (A1) to fully take into account the change of frame
of reference (e.g. Aμ

μ′u
μ′
BL = u

μ
KS).

To obtain for v, E, and B the correct relation between KS com-
ponents measured by the KS Eulerian observer and BL components
measured by the BL Eulerian observer, we first write the spatial
velocity, magnetic field, and electric field in terms of 4-velocity and
Faraday tensor in KS coordinates as measured by the KS Eulerian
observer:

vi
KS = 1

αKS

(
ui

KS

ut
KS

+ βi
KS

)
, (A4)

Bi
KS = αKSF

∗t i
KS , (A5)

Ei
KS = αKSF

ti
KS, (A6)

where α is the lapse function and β i is the shift vector. Next, we use
equation (A1) to transform the components of ui

KS, F ∗t i
KS , and F ti

KS

in BL coordinates, then we write these components in terms of vi′
BL,

Ei′
BL, and Bi′

BL. The result gives the correct transformation rules:

vi
KS = 1

αKS

[
Ai

j ′ (αBLv
j ′
BL − β

j ′
BL)

1 − A0
r ′αBLvr ′

BL

+ βi
KS

]
, (A7)

Bi
KS = αKS

αBL

{
Bi

BL − A0
r ′

×
[
Br ′

BLβi
BL + αBL

γ
1/2
BL

(
δi
φ′EBL

θ ′ − δi
θ ′EBL

φ′
) ]}

, (A8)

Ei
KS = αKS

αBL

{
Ei

BL − A0
r ′

×
[
Er ′

BLβi
BL − αBL

γ
1/2
BL

(
δi
φ′BBL

θ ′ − δi
θ ′BBL

φ′
)]}

. (A9)
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