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Abstract: We propose a new non-cooperative approach to implement

a cooperative bargaining solution. This approach relies on a mechanism

which specifies what happens when, at the end of the bargaining phase,

players’ propositions are still not compatible. The mechanism uses a

random lottery and the history of proposals. At equilibrium, under the

threat of this mechanism, provided that the use of it carries a small

cost, players reach consensus after a finite number of proposals. No dis-

counting is needed. The equilibrium strategies implement the full Raiffa

bargaining process and players agree on a solution arbitrarily close to

the Raiffa solution.
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/How best to disagree in order to agree? 2

1. Introduction

In bargaining theory a number of cooperative solutions have been proposed

and axioms provided. The basic problem has been to implement these solu-

tions with a non-cooperative procedure. We propose a new approach which

relies on a mechanism that specifies what happens when, at the end of the

bargaining phase, players’ propositions are not compatible. The mechanism

imposes a specific procedure which draws one or the other of the last two

non-compatible proposals, as in a final offer arbitration (Stevens 1966). How-

ever, here, the arbitrator is just a random lottery and the parties have the

possibility to reject its outcome, in which case the mechanism goes back

through the history of pairs of proposals of the bargaining phase. Although

the mechanism may seem complex, its very existence ensures that it will

never be used. At equilibrium, under the threat of this mechanism, provided

that its use carries a small cost, players reach consensus after a finite number

of proposals. No discounting is needed. The equilibrium strategies implement

the full Raiffa bargaining process and players agree on a solution arbitrarily

close to the Raiffa solution.

While the Raiffa bargaining solution does not hold as prominent a place

in the bargaining literature as the Nash (1950), or the Kalai Smorodinsky

(1975) solutions, it has clearly been the object of a recent revival of interest,

mainly in the form of new axiomatic characterizations. An axiomatic charac-

terization of the Raiffa solution was not provided in Raiffa’s initial work but

given later by Salonen (1988), Livne (1989), or in recent alternative axiom-

atizations by Anbarci and Sun (2013) or Trockel (2009). In addition, Diskin

et al (2011) give an axiomatization which characterizes not only the final

outcome but the Raiffa bargaining process of which the Raiffa solution is the

limit. Myerson (1991) provided the first implementation of the Raiffa solu-

tion in a bargaining game where players are drawn alternatively as proposers

for T periods or until the proposer’s offer is accepted. At the equilibrium,

imsart ver. 2006/03/07 file: optoutfinal.tex date: February 16, 2016



/How best to disagree in order to agree? 3

players find an agreement immediately and when the number of periods is

large, the outcome approaches the Raiffa solution. More recently, Trockel

(2011) showed that by modifying the Myerson game, an exact and not only

asymptotic implementation can be obtained.

The procedure we propose implements Raiffa asymptotically as in the My-

erson game but differs from the latter both in the description of the game

and in the strategic behavior it generates. In particular, the Myerson game

implements the Raiffa solution whereas our mechanism can be seen as im-

plementing the full Raiffa bargaining process.

Our model consists of two phases. In the first bargaining phase, players

make proposals to share one dollar. The exact procedure that is followed in

this phase is not critical. Proposals can be simultaneous or sequential in some

order. The main point is that the history of pairs of proposals is recorded.

If parties fail to reach consensus in a given time, this triggers a mechanism

phase in which the two players go through the following procedure. A fair

lottery draws one or the other of the last two proposals recorded, at random.

The player whose proposal was not chosen has to accept or reject. In case

of rejection, the lottery draws, at random, one or the other of the previous

proposals and the procedure goes back in this way through the history of the

bargaining phase, as long as the proposals are rejected at each step. But it is

only if the lottery has gone back through the whole history and if the players

have always rejected, that they get their status quo payoff.

It is interesting to note that the way our mechanism operates implements,

in a sense, in a bargaining game, an idea of Esteban and Sakovics (2008).

Based on this they proposed an axiomatic solution concept, ”agreements in

the shadow of conflict”. Their axiomatic approach assumes that one adds to

the usual givens of a bargaining game a disagreement function f(S), specified

for each subset of the bargaining set, and which gives each player’s worst

possible outcome when disagreeing over the set S. By excluding points that
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are worse than those determined by the disagreement function, a new set is

obtained and the disagreement function applied to the latter and so on until

possibly only one point remains. We can view our mechanism as operating

by explicitly constructing a type of disagreement function based on players’

propositions.

The mechanism triggered at disagreement also provides the players with

something reminiscent of an outside option. More precisely, in our setting,

the latter is not a fixed function of the players’ proposals but a game played

in case of disagreement. However, it is a very simple game, which, if played

rationally has a unique value. Bargaining with fixed outside options have

been studied by Binmore, Shaked and Sutton (1989), Ponsati and Sackovics

(1998) and Manzini and Mariotti (2001). Closer to the situation dealt with

here are games where the outside option evolves as a function of the proposi-

tions. This is precisely the setting that Compte and Jehiel (2004) have shown

to generate, under certain conditions, what is referred to in the literature as

gradualism: the reluctance of players to make more than minimal concessions

or in the extreme case no concessions at all. The main message is that gradu-

alism is generated if concessions increase the outside option of the opponent.

This is a discouraging message which invalidates the idea that the presence of

a sequence of outside options that increases along the negotiation path could

help players move ahead from the status quo. Compte and Jehiel’s theoret-

ical study explains, in a general setting, a phenomenon which was already

observed in some particular procedures involving outside options depending

on propositions. A relevant and well known example is the case of final of-

fers arbitration, in which an arbitrator assigns a solution which is one or the

other of the final propositions of the players. Widely used, this arbitration

mechanism has nevertheless been shown, in theory and in practice to gen-

erate bargaining impasses (see Feuille (1975), Farber (1980), Brams (1983),

or Dickinson (2006)). Our model can be seen as a form of final offer arbitra-

tion, which, at the cost of what might seem to be a more complex structure,
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eliminates some of the problems of the original approach. Under our mech-

anism, players do not find an agreement immediately. However, convergence

to consensus is rapid in a technically precise sense. Intuitively there is not

gradualism as defined by Compte and Jehiel (2004), due to the fact that the

outside option evolves favorably to a player with its own concessions. Indeed,

we replace the outside option which assigns a payment based on proposals

by a game. This game, if played rationally, actually has a higher value if a

player makes even unilateral concessions.

At a first sight, the extensive recourse to lotteries, required to obtain these

results might seem complicated. However, we note that if arbitration comes

at a cost no lottery is actually every carried out at equilibrium. The im-

plementation of the lottery is just a threat and the very knowledge of its

existence by the players will prevent it from actually having to be used.

By comparison, a seemingly simpler model such as the Myerson procedure,

viewed as a mechanism, actually begins with a lottery: the one to draw the

proposer. Moreover, the use of lotteries in arbitration, even if only putative,

is easy to justify by the fact that it ensures neutrality: the solution obtained

reflects only the preferences of the bargaining parties and not those of an

external arbitrator. The additional structure in our mechanism also gives it

some properties which may be appealing for its practical implementation,

namely considerable robustness in a setting where the players are boundedly

rational in the sense that they do not correctly anticipate the number of

negotiation rounds.

We present the basic model in Section 2. Section 3 gives the characteriza-

tion of the subgame perfect equilibria. We introduce discounting and a cost

of implementation of the mechanism in Section 4. Section 5. discusses the

performance of the mechanism in the presence of boundedly rational players.

We conclude in Section 6.
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2. Definitions, notation and setting of the model

In what follows, we will consider the following setting: two parties P 1 and

P 2 bargain over the partition of a pie, which is taken to be, without loss of

generality, of size 1. The possible ways to split the pie are

{(x, y) : x, y ∈ [0, 1] and x+ y ≤ 1}

in which x is the share of party P 1 and y that of party P 2. Both parties

are assumed to be (weakly) risk averse in the sense that they have concave

utility functions, respectively U1 (x) , U2 (y) that are strictly increasing on

[0, 1]. In terms of possible utility pairs (u, v) ∈ R2, the compact, convex bar-

gaining set ∆ is thus delimited by the points u = U1(0), v = U2(0) and the

curve (U1(x), U2(1 − x)), x ∈ [0, 1]. At the status quo, the parties’ utilities

are U1(0), U2(0) respectively. We denote by GT a sequential game with two

phases. In the first negotiation phase, at each round t, 1 ≤ t ≤ T , each

party makes a proposal. Different cases can be considered, depending on

which rules specifying that order are chosen. For example, the two parties

can make simultaneous proposals or sequential proposals with a fixed order

as in Rubinstein’s bargaining game or sequential proposals in a random order

as in Myerson’s or Sjostrom’s bargaining games. The outcome of round t is a

pair of proposals (xt, yt). There is a finite number of rounds in the negotiation

phase, T , which can be very large. Let us denote by ht the t-history of the

negotiation phase, generated by all the proposals up to and including round

t: (xs)s≤t and (ys)s≤t. If, at round t, t ≤ T , xt + yt ≤ 1 we will say that an

agreement has been concluded. In this case, the game ends, Party 1 gets xt

and Party 2, yt (in equilibrium the case xt + yt < 1 will in fact never arise).

The negotiation phase can also end at t < T if at least one player ceases to

make further concessions: xt = xt−1, or similarly for yt.

If the negotiation phase ends at date t without an agreement, a second
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phase starts, triggering a mechanism based on the history of the negotiation

phase. This mechanism phase has also a maximum of t rounds. At the first

round of the mechanism phase, a fair lottery draws randomly one of the last

two proposals of the negotiation phase. The party whose proposal has not

been chosen by the lottery can reject it and this rejection will then trigger a

new lottery between the previous proposals of the negotiation phase. There-

fore, as the mechanism proceeds, when proposals are rejected, earlier and

earlier pairs of proposals are used.

More precisely, at each round n, 0 ≤ n ≤ t − 1, a fair lottery can be

implemented between the proposals xt−n and yt−n in which each proposal is

drawn with probability 1
2
. At each round, when one party’s proposal has been

drawn, the other party has to accept or reject this outcome. When the out-

come is rejected at round n, the mechanism proceeds to the following round

in the same manner. At the earliest round n at which the outcome xt−n (or

yt−n) is accepted, the game stops. Party 1 gets xt−n (1 − yt−n) and Party

2 gets 1 − xt−n (yt−n). If, at round n = t − 1 the outcome of the lottery is

rejected, the game ends and the two party get their status quo payoffs U1(0)

and U2(0) respectively. We will first consider that there is no discounting.

We will consider a case with discounting latter in the paper but we will show

that it does not play a determinant role here.

We will denote by Lt the lottery between xt and yt. An outcome of game

GT is defined by a history of proposals ht, t ≤ T , in which (xt, yt) is the

only agreement. When there is no agreement in ht, it is completed by the

outcomes of the lotteries Lt,Lt−1, ,Ls where Ls is the first lottery in which

the proposal that was drawn was accepted. As we have noted previously, the

fact that the lotteries Lt, ,Ls were implemented necessarily implies that the

party whose decision was not drawn rejected his partner’s proposal in all the

previous lotteries Lt,Lt−1,Ls+1
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/How best to disagree in order to agree? 8

We will use the convenient notation U1(Lt) = 1
2
U1(xt) + 1

2
U1(1− yt).

We note that the recursive structure of the lotteries can be represented in

its extensive form as a tree. If the first lottery was implemented after date

t, the tree has length t. The first branches from the root lead to two nodes

at which xt and yt respectively are proposed. Each party intervenes at the

nodes where his opponent’s proposal is drawn and decides to accept or reject

it. If xt or yt is rejected at level t, we follow one of the branches to either

xt−1 or yt−1, which will be one level further from the root. Each node has

two branches leading to successor nodes. Whenever the proposal at a node

is rejected, each branch leading to a successor node at the level below (i.e.

one step further from the root) is chosen with probability 1
2
.

3. Characterizing the equilibria

In this section we characterize the equilibria of game GT . The proof involves

two phases. First, we take the proposals x = (xs)s≤t and y = (ys)s≤t as given

and we consider the strategies for accepting or rejecting proposals in the

extensive game that starts with the implementation of the first lottery Lt
which is expected by the players at the end of the negotiation phase at some

date t. Subgame perfection of these strategies imposes constraints on the

proposals that are accepted. For any proposals x = (xs)s≤t and y = (ys)s≤t,

these constraints define the expected payoffs of the parties when a lottery is

about to be implemented. This can then be used to characterize the proposal

strategies at equilibrium.

We define two recursive functions V 1
t and V 2

t which depend on ht =

(xs, ys)s≤t, the vector of propositions up to and including date t.
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/How best to disagree in order to agree? 9

V 1
0 = U1(0), V 2

0 = U2(0).

V 2
t =

1

2

{
U2(yt) if U

1(1− yt) ≥ V 1
t−1

V 2
t−1 otherwise

}
+

1

2
max[U2(1− xt), V 2

t−1].

V 1
t =

1

2

{
U1(xt) if U

2(1− xt) ≥ V 2
t−1

V 1
t−1 otherwise

}
+

1

2
max[U1(1− yt), V 1

t−1]. (1)

We can prove the following lemma:

Lemma 3.1. Suppose that proposals x and y are given and that both parties

use subgame perfect strategies when they accept or reject proposals in the

mechanism phase of game GT . Then:

• The proposals yt and xt are accepted by the parties 1 and 2 respectively

if and only if they verify

U1(1− yt) ≥ V 1
t−1

U2(1− xt) ≥ V 2
t−1 (2)

where the V i
t are defined in (1).

• Party i’s expected payoff when facing lottery Lt is V i
t .

Proof. We prove Lemma 3.1 by induction. If t = 1, Party 1 must accept

any proposal y1 such that U1(1 − y1) ≥ V 1
0 = U1(0) since she gets U1(0)

if she refuses, the same is true for party 2. It follows that in a stage of the

mechanism phase of the game where lottery L1 between x1 and y1 is about

to be implemented, Party 1’s expected payoff is V 1
1 . Indeed, with probability

1
2
, y1 is drawn and he accepts this only if U1(1− y1) ≥ V 1

0 . With probability
1
2
, x1 is drawn and it is accepted if and only if U2(1− x1) ≥ V 2

0 . We suppose

that the statements are true at t− 1. Suppose that Party 1 rejects yt. Then

lottery Lt−1 is implemented and by the induction hypothesis his expected

utility is V 1
t−1. Thus he should accept yt if and only if U1(1 − yt) ≥ V 1

t−1.
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An analogous statement is true for party 2. We then show that in a stage

of the mechanism phase where the lottery Lt between xt and yt is about

to be implemented, Party 1’s expected utility is V 1
t . This lottery draws xt

with probability 1
2

and xt is accepted if U2(1 − xt) ≥ V 2
t−1. Otherwise, xt is

refused and the lottery Lt−1 is implemented, in which case Party 1’s expected

utility is V 1
t−1 by the induction hypothesis. With probability 1

2
, yt is drawn.

Player 1 accepts if U1(1− yt) ≥ V 1
t−1, otherwise he refuses and has, again by

the induction hypothesis, an expected utility V 1
t−1. Consequently, when the

lottery Lt is about to be implemented, his expected utility is V 1
t defined in

(1).

The properties stated in lemma 3.1 can now be used to characterize the

proposal strategies of the negotiation phase at equilibrium.

Regarding, the notation used in Lemma 3.2 and in its proof, recall that V 1
t

(and similarly V 2
t ) is a function of the history of proposals ht = (xs, ys)s≤t.

Note that in what follows, we will use the following equivalent notations for

Vt(ht): Vt(x, y), where (x, y) = (xs, ys)s≤t and Vt(ht−1, xt, yt).

Lemma 3.2. If x(e) = (xs(e))s≤t and y(e) = (ys(e))s≤t are the proposals in

a subgame perfect equilibrium, they verify:

• x(e) ∈ argmaxxV 1
t (x, y(e)) and y(e) ∈ argmaxyV 2

t (x(e), y)

• for every s ≤ t, given the history hs−1, xs(e) ∈ argmaxxsV 1
s (xs, hs−1),

and ys(e) ∈ argmaxysV 2
s (ys, hs−1).

Proof. Suppose that there is an equilibrium in GT where x(e) and y(e) are

the proposals. It follows from the lemma 3.1 that if the parties use subgame

perfect strategies when they accept or reject proposals then the expected

equilibrium payoffs, which are the expected payoffs when the lottery Lt is

about to be implemented are V 1
t (x(e), y(e)) and V 2

t (x(e), y(e)). Depending

on the proposals, these payoffs are realized either by immediately accepting

the proposals in Lt or by moving further down the tree. Nash equilibrium

requires that x(e) ∈ argmaxxV 1
t (x, y(e)) and y(e) ∈ argmaxyV 2

t (x(e), y) as
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/How best to disagree in order to agree? 11

claimed.

To show the second part of lemma 3.2, we note some useful properties

that are verified by the functions V i
t for any 1 ≤ s ≤ t ≤ T and that

can be inferred from the definition of the functions in (1). First, we observe

that for any history hs−1, the proposals xs that maximize V 1
s do not depend

on ys. Therefore argmaxxsV
1
s (hs−1, xs, ys) = argmaxxsV

1
s (hs−1, xs) and an

analogous statement is true for the proposals ys that maximize V 2
s . Also, we

have

argmaxxsV
1
s (hs−1, xs) ⊂ argminxsV

2
s (hs−1, xs)

argmaxysV
2
s (hs−1, ys) ⊂ argminysV

1
s (hs−1, ys). (3)

Finally, we note that maxxsminysV
1
s (hs−1, xs, ys) is a strictly increasing func-

tion of V 1
s−1 and that maxysminxsV

2
s (hs−1, xs, ys) is a strictly increasing func-

tion of V 2
s−1.

Since V 1
t (x(e), y(e)) and V 2

t (x(e), y(e)) are the expected payoffs, equilib-

rium requires that

xt(e) ∈ argmaxxtV 1
t (ht−1, xt)

yt(e) ∈ argmaxytV 2
t (ht−1, yt).

The relations (3) imply that

V 1
t (e) = maxxtminytV

1
t (ht−1, xt, yt)

V 2
t (e) = maxxtminytV

2
t (ht−1, xt, yt).

Thus, V i
t (e) is a strictly increasing function of V i

t−1. Therefore, at equilibrium,

player i’s proposal at t−1 must maximize V i
t−1 given the history of proposals.
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This implies that at date t− 1:

xt−1(e) ∈ argmaxxt−1V
1
t (ht−2, xt−1)

yt−1(e) ∈ argmaxyt−1V
2
t (ht−2, yt−1).

By reiterating the arguments above, we can show that the second part of

lemma 3.2 holds for every s ≤ t, where t is the end of the negotiation phase.

The types of proposals that verify the conditions in lemma 3.2 will depend

on the players’ attitude to risk. We will focus on the case where at least one

player is risk averse. When both parties are risk neutral, there is a very large

class of equilibria but all of these induce outcomes that give the players the

same level of expected utility.

Proposition 1. Under the assumption that both parties are risk neutral, the

equilibria of GT are such that

• x1(e) = y1(e) = 1

• for all t > 1, xt(e) ≥ 1
2

and yt(e) ≥ 1
2

• If there is a T such that xT + yT ≤ 1, the game ends in agreement.

• If at least one player ceases to make concession at a date t, this triggers

the lottery Lt. Any proposition inferior to 1/2 is rejected and when a

proposal is rejected the parties go to the next lottery until the lottery L1

whose result is accepted.

Clearly, each risk neutral player can guarantee an expected payoff of 1
2

by

demanding 1 in the first period and by always demanding at least 1
2

after

that. If his offers are not accepted, he can return to the first lottery which

gives him 1 with probability 1
2

and thus an expected utility of at least 1
2

since

he is risk neutral. When parties are risk neutral, the mechanism does not

always lead to agreement in the bargaining phase. In this case, the players

will be assigned an outcome determined by a lottery but for risk neutral
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/How best to disagree in order to agree? 13

players this entails no loss of utility compared to an agreement on (1
2
, 1
2
).

Let us now assume that at least one party is risk averse in the sense that his

utility function is strictly concave. We show that under this assumption, for

every t ≥ 1, the proposals xt and yt that maximize the expected utilities V 1
t

and V 2
t given the history of proposals before t are unique. The concessions are

partial and gradual and V 1
t and V 2

t are strictly increasing in t. The following

proposition characterizes the equilibria in the presence of risk aversion.

Proposition 2. Under the assumption that at least one party is risk averse,

the only subgame perfect equilibrium strategies are such that

• The negotiation phase continues until T the maximal end date.

• The strategies proposed are: x1(e) = y1(e) = 1 and for 1 < t ≤ T ,

each party proposes the unique xt (yt) that verifies U2(1 − xt) = V 2
t−1

(U1(1 − yt) = V 1
t−1) where the V i

t are defined by (1) (at equilibrium,

V 2
t = U2(Lt) and V 1

t = U1(Lt) for t ≥ 1).

• In the lottery Lt, Party 1 accepts the proposal yt if and only if U1(1−
yt) ≥ V 1

t−1, and similarly for Party 2.

Proof. To show this, we note that with risk aversion, we have at the equi-

librium V 1
t = U1(xt)+U1(1−yt)

2
and V 2

t = 1
2
[U2(yt) + U2(1 − xt)]. This is

true at t = 1 and can recursively be verified to hold at later dates. For

t = 1, it is easy to verify that x1 = 1 (y1 = 1) is the unique maximizer

of V 1
1 (V 2

1 ) defined in 1. For an arbitrary t, assuming Party 1 to be risk

averse, U1(1
2
[xt + (1 − yt)]) > V 1

t . The highest acceptable demand Party

2 can make gives party 1 his certainty equivalent of Lt. We verify that

this proposal gives Party 2 a strictly greater utility than V 2
t : Indeed, let

yt+1 be the proposal such that U1(1 − yt+1) = V 1
t . Since Party 1 is risk

averse, V 1
t = U1(xt)+U1(1−yt)

2
< U1(xt+1−yt

2
). Thus 1 − yt+1 < xt+1−yt

2
or

equivalently yt+1 >
yt+1−xt

2
and U2(yt+1) > V 2

t . The highest acceptable de-

mand that party 1 can make is xt+1 such that U2(1 − xt+1) = V 2
t . Since

V 2
t = U2(yt)+U2(1−xt)

2
≤ U2(yt+1−xt

2
), 1 − xt+1 ≤ yt+1−xt

2
. Since party 1 is risk
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averse, U1(xt+1) > V 1
t . Thus, for both parties, the unique way to maximize

V i
t+1 is to make the smallest possible acceptable offer, leaving the other party

his certainty equivalent of Lt. By making such a proposal, the proposing

party ensures himself a strictly higher utility than if he does not make any

(or a non-acceptable) proposal. The concessions that are made at each pe-

riod are partial since xt+1 + yt+1 >
yt+1−xt

2
+ xt+1−yt

2
= 1. It also follows

from the above that no player will cease to make concessions, triggering the

end of the negotiation phase before T . First, consider the case where both

players propose xt = xt−1 and yt = yt−1 at some t < T . But both players

would have an incentive to propose xt = xt(e) instead. This proposition gives

him strictly higher utility and sub game perfection requires his partner to

accept it. If only Player 1 ceased to make concessions, xt = xt−1, similarly he

could switch to a strategy providing higher utility by proposing xt = xt(e)

instead. By doing so, the negotiation phase would no longer end at t but

he can clearly find a strategy for the rest of the game that guarantees him

Vt(xt(e), ht−1) > Vt(xt, ht−1). Thus no player has an incentive to end the

negotiation phase before T . .

The first point of Proposition 2 means that there is a unique subgame

perfect equilibrium in GT , for every T ≥ 1. In each one of these, the strategies

for the proposals that are made before T and the decisions about whether to

accept them are identical and have a simple structure : each party initially

makes a maximal demand x1 = 1 and y1 = 1. In the following periods, each

party demands as much as he can, given that he needs to leave the other

party the utility that corresponds to his certainty equivalent of the lottery

between the previous proposals, xt−1 and yt−1. The equilibrium of game GS

where S < T has the same structure as the equilibrium of GT and in a sense

”truncates” the process at an earlier date.

The sequences of proposals (xt)t≥1,(yt)t≥1 defined recursively in (??) are in

fact the sequences defining the Raiffa bargaining process (see Raiffa 1953).
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Corollary 1. (Convergence to the Raiffa solution)If we denote by (x(R), y(R))

the payoffs of the parties in the Raiffa solution, then

lim
t→∞

xt(e) = lim
t→∞

(1− yt(e)) = x(R)

lim
t→∞

(1− xt(e)) = lim
t→∞

yt(e) = y(R).

As the number of maximal negotiation rounds in our mechanism grows, the

equilibrium shares converge to the Raiffa solution.

Note that the structure of our equilibrium is very different from other

implementations of the Raiffa solution proposed by Myerson (1991) and

Sjöstrom (1991). Myerson (1991) proposes a noncooperative bargaining game

in which, at each round, one of the two players is drawn at random to make

a proposal. At the equilibrium, solved by backward induction, at each round,

each player proposes for his opponent the certainty equivalent of his expected

utility of continuing the game. An agreement is reached at the first round, and

this converges to the Raiffa solution when the maximum number of rounds

tends to infinity. Sjöstrom (1991) uses the same type of framework but with

discounting. In our model, at the equilibrium we do not only observe the

Raiffa solution but the whole Raiffa sequence. This holds when the proce-

dure used in the negotiation phase of the game is that of Myerson but also

with other bargaining procedures, such as for example the Rubinstein’s al-

ternating offers procedure. In the latter case, discounting is not necessary for

our result but can be introduced. In that case, as we will see in the following

section, we retrieve the Raiffa solution at the limit when the discounting van-

ishes. Of course, when there is discounting, the gradual concessions observed

at the equilibrium generate some inefficiency. We will discuss this point in the

following two sections. We will see that this inefficiency can easily be limited

and we will show the advantages we obtain in compensation, by correcting

the non-robustness of the results obtained in bargaining games that rely on

backward induction to be solved.
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What is crucial in our model is not the precise description of the process of

the bargaining phase but what happens in the mechanism phase which has

to be triggered in case of disagreement. The mechanism has as its objective

to give the parties an incentive to reach consensus, ideally, without actually

having to be triggered. In fact, the mechanism achieves this goal when at

least one player is risk averse but not otherwise. Formally, even in the case

where the parties are risk averse, complete compatibility of propositions is

never reached at any finite date t and a lottery is implemented. However,

for risk averse parties, this is an artefact of the model, since the parties’

proposals are arbitrarily close. In practice, we could easily do without the

lottery by assuming that triggering the mechanism carried a small cost (see

the following section). In the case of non-risk averse parties, on the other

hand, there is a real need for exterior arbitration since the final proposals

may be totally incompatible.

4. The effects of adding a discount factor or an arbitration cost

The mechanism we have presented suggests a way in which parties gradually

reach an approximate consensus without assuming discounting. Let us now

assume that the parties’ utilities are discounted by a factor δ1 ≤ 1 and δ2 ≤ 1

respectively so that the utility derived from implementing the lottery at time t

and agreeing on (xs, 1−xs) with s ≤ t is (δ1)
t−1

U1
t (xs) and (δ2)

t−1
U2
t (1−xs).

When the parties are risk neutral, introducing a discount factor has no effect

on the equilibrium strategies since players ended the proposition phase as

soon as possible even without discounting.

If at least one player is risk averse, we will see that the presence of a dis-

count factor alters the equilibrium proposals but not the general structure

of the equilibrium. The recursive sequence of values that define Party i’s ex-

pected utility at the stage where Lt is about to be implemented as a function

of (xs)s≤t and (ys)s≤t is now V i
0 = U i(0) and for t ≥ 1:
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V i,δ
t =

1

2

{
(δi)tU i(xt) if (δj)tU j(1− xt) ≥ V j,δ

t−1

V i,δ
t−1 otherwise

}
+

1

2
max[

(
δi
)t
U i(1− yt), V i,δ

t−1]. (4)

Essentially, everything is the same as in the model without discounting.

The equilibrium proposals are determined as before. We can represent graph-

ically how the equilibrium solution is affected by a discount factor. (figure

1).

We summarize the effects of discounting on equilibrium in the proposition

below.

Proposition 3. With discounting, under the assumption that at least one

party is risk averse, the only subgame perfect equilibrium strategies are such

that:

• The negotiation phase continues until T̃ , which is either the maximal

end date T , or a date at which some player ceases to make concessions

because the benefits of doing so is outweighed by discounting.

• The strategies proposed are: x1(e) = y1(e) = 1 and for 1 < t ≤ T ,

each party proposes the unique xt (yt) that verifies U2(1 − xt) = V 2,δ
t−1

(U1(1 − yt) = V 1,δ
t ) where the V i,δ

t are defined by (4). (If T̃ < T then

the strategies are as above except that xT̃ = xT̃−1 or yT̃ = yT̃−1
• In the lottery Lt, Party 1 accepts the proposal yt if and only if U1(1−
yt) ≥ V 1,δ1

t−1 , and similarly for Party 2.

Finally, we note that when the discount rates, which are not necessarily

identical, go to zero, we recover the Raiffa solution.

Proposition 4. Let xδ(e), yδ(e) denote the equilibrium payoffs of the dis-

counted game and as before x(R), y(R) the payoffs of the parties in the Raiffa

solution. Under the assumption that U1 and U2 are strictly concave and

strictly increasing on [0, 1], for every ε > 0, there is a T ∈ N and a τ > 0

such that if there are at least T bargaining rounds and if δi > 1−τ for i = 1, 2
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∆
δ∆

δ2∆

U1(0) δ2U1(x3)     δU1(x2)     U1(x1=1)

U2(y1=1)

δU2(y2) 

δ2U2(y3) 

U2(0)

Figure 1. The initial bargaining set ∆, and the discounted bargaining sets,
δ1∆, δ2∆, δ3∆.... The last acceptable proposals are made at t = 2. The black dots show
the utility of the last proposals, (δ)2U1(x2), (δ)2U2(1 − x2) ∈ δ2∆ and (δ)2U1(1 − y2),
(δ)2U2(y2) ∈ δ2∆

then:
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||(xδ(e), yδ(e))− (x(R), y(R))|| ≤ ε

Corollary (1) implies that for any fixed ε > 0, there is a date T such that in

the non-discounted model ||(U
1(xT )+U1(1−yT )

2
, U

2(yT )+U2(1−xT )
2

)−(x(R), y(R))|| ≤
ε Let V i,δ

t denote the value that party i can guarantee in the discounted

model. We note that in equilibrium U i(xT )+U i(1−yT )
2

= V i,δ
T . Without detailing

the proof of Proposition 4, we note that the hypotheses guarantee that U1

and U2 have a continuous inverse so that (V 1,δ
t , V 2,δ

t ) and (V 1
t , V

2
t ) are contin-

uous functions of
(
V 1,δ
t−1, V

2,δ
t−1

)
and (V 1

t−1, V
2
t−1) respectively. Since V i

0 = V i,δ
0

it is easily shown that for every t ≤ T , the difference |V i,δ
t −V i

t | can be made

arbitrarily small by taking |V i,δ
t−1 − V i

t−1| sufficiently small for i = 1, 2 and δi

sufficiently close to 1 for both parties.

Next, we show that introducing a cost C of triggering the mechanism will

allow players to reach an agreement without having recourse to it. The second

part of the proposition states that the time at which a player’s utility from

his own proposition and that of his partner differs by at most C, and at which

he is thus willing to make a final concession rather than paying the cost, is

bounded by a logarithmic function of 1/C. It is thus a statement about the

time required to reach an agreement which shows that even if the cost to

trigger the mechanism is very small, players will reach an agreement quickly.

Proposition 5. • Let C be a positive cost paid by each player when they

have recourse to the mechanism. Then, there is a time T (C) such that

an equilibrium exists where both players find an agreement at T (C) and

the proposals induced by the equilibrium strategies (xt(e))
t=T (C)
t=1 , (yt(e))

t=T (C)
t=1

coincide with those defined in Proposition 2 for t < T (C) and xT (C) =

1− yT (C) with xT (C) = x for some x ∈ [1− yT (C)−1, xT (C)−1].

• T (C) ≤ 2 + log2(
K
C

) where K is a constant that depends on the bar-

gaining set.
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Proof. The strategies that induce these propositions coincide with those de-

fined in the case without cost except for the fact that at a certain date

T (C) that we will characterize below, the players ”agree” on some x ∈
[1 − yT (C)−1, xT (C)−1] provided that the equilibrium strategies were followed

prior to T (C). It can be shown, in the same way as before, that it is neither

profitable to deviate from one’s strategy for accepting nor from the proposi-

tion strategy prior to T (C) since this does not increase the functions V i
t . We

verify that at T (C) it is not profitable to deviate. At equilibrium, there is

agreement at T (C). Consider the ”worst” case for Player 1 (without loss of

generality) where, at equilibrium, he is supposed to make the last concession

alone so that xT (C) = 1− yT (C)−1(e). Suppose that he deviates. It is obvious

that any proposition where xT (C) > xT (C)−1(e) would be refused. Therefore

the maximal benefit of deviating would be U1(xT (C)−1(e))−U1(1−yT (C)−1(e))

but this benefit will be inferior to the cost C for a sufficiently large end date.

Indeed, it is easy to see geometrically that the equilibrium propositions ver-

ify the following property: if we consider the Euclidian distance in the utility

plane between the points (U1(xT ), U2(1 − xT )) and (U1(1 − yT ), U2(yT )), it

verifies

||(U1(xT ), U2(1− xT ))− (U1(1− yT ), U2(yT ))||2 ≤
||(U1(1), U2(0))− (U1(0), U2(1))||2

2T
.

Therefore we can choose T (C) as the smallest t such that

t− 1 ≥ log2(
1

C
||(U1(1), U2(0))− (U1(0), U2(1))||2), (5)

which ensures that max[U1(xT (C)−1(e))−U1(1−yT (C)−1(e)), U2(yT (C)−1(e))−
U2(1− yT (C)−1(e))] ≤ C. We define the constant K in proposition 5 as K =

||(U1(1), U2(0))− (U1(0), U2(1))||2).

The results above show that the basic model can satisfactorily incorporate
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the introduction of discounting which does not alter the nature of the equilib-

rium strategies. Moreover, the effect of discounting is continuous in the sense

that for sufficiently low discounting, the parties’ shares in this equilibrium

are close to those of the Raiffa solution. We have also seen that it can be

interesting to impose a cost to trigger the mechanism. When the mechanism

comes at a small cost, the parties can reach an efficient agreement close to

the Raiffa solution without needing to implement any lottery.

5. Robustness with respect to bounded rationality and errors

about the number of negotiation rounds

In this section we discuss some properties of our mechanism that could be

appealing if the mechanism were actually to be implemented in the presence

of parties who are boundedly rational, in the sense that they do not correctly

anticipate the number of available negotiation rounds.

This actually stems from a simple property that was stated already in the

equilibrium description. If we denote by GT the game with end date T , the

unique equilibrium strategy in games GT and GS, with T < S induce the

same actions at all dates t ≤ T < S.

Due to this property the mechanism can perform well even if one or several

players misapprehend the number of available rounds, which is something

that does not seem unlikely in practice. Suppose some player mistakenly

believes that there are fewer rounds than in reality: T1 < T (it is obvious

that if T1 > T , the equilibrium is not altered). Arriving at the date T1 he

necessarily realizes that this is not the end and must change his belief to a

T2 > T1. Possibly he may still not correctly perceive the number of periods

so that T2 < T , and so he will change his belief again and so on until the

negotiation phase really ends. Both players may make this type of mistake

with different errors; in our mechanism, it is easily verified that this has no

impact on the equilibrium.

Let T be the actual number of available rounds in the negotiation phase.
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Let Player i make a sequence of errors described as above by (T ik)
k=N
k=1 . This

sequence corresponds to the successive beliefs about the number of rounds.

We show recursively that the equilibrium with errors coincides with stan-

dard equilibrium until the date nk, where (nk)
K
k is an increasing sequence

such that nK = T . Define n0 = 0. h0 = ∅ coincides with the history in the

standard equilibrium.

Define nk = min{n ∈ N |n > nk−1, n ∈ (T ik)
k=N
k=1 fori = 1or2}. The induc-

tion hypothesis is that both players played the equilibrium proposals until

nk−1, so that hnk−1
= h̄nk−1

. Assume that nk ∈ (T ik)
k=N
k=1 . Then Player i plays

his equilibrium strategy in Gnk with history h̄nk−1
. Player j 6= i plays in the

game Gt where t = min{n ∈ N |n ≥ nk−1, n ∈ (T jk )k=Nk=1 }. He plays the equi-

librium strategy in this game given history h̄nk−1
. The equilibrium strategy

at time t < T of a game with end date T is independent of T . These two

strategies induce the history h̄nk
.

Our mechanism conserves the equilibrium even when used with bound-

edly rational players who misapprehend the number of available rounds. In

comparison, in the Myerson implementation of Raiffa, where the equilibrium

propositions are determined by backward induction starting from the last pe-

riod, knowledge of the exact number of rounds is crucial and mistakes about

this number could generate outcomes with absence of consensus. Indeed, this

occurs when the player who believes there are fewer remaining rounds is

drawn as proposer because his proposals are unacceptable for the player who

believes a greater number of rounds remain, leading to a positive probability

of a status quo outcome.

6. Conclusion

In the literature on non-cooperative bargaining theory, it has been argued

that introducing an outside option as an alternative to the status quo as

the outcome, in case of disagreement, can be disruptive for the negotiation,

because it generates gradualism or in the worst case no agreement at all
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(Compte and Jehiel 2004).

In our paper, the parties who fail to reach an agreement, are committed to

follow a specific procedure which, although more complex than resorting to

the status quo, leads to an agreement. The novelty of our contribution resides

in the choice of the mechanism to be used when there is no agreement in the

negotiation phase. The mechanism, which is actually a very simple game,

imposes a specific procedure that goes back through the history of propos-

als of the bargaining phase. This choice of procedure avoids multiplicity of

equilibria and the main source of gradualism identified in the analysis of

Compte and Jehiel (2004), namely that concessions made by one party only

benefit their opponent. For this reason, in our bargaining process, whether

the players can opt out, that is, trigger the mechanism at their discretion,

or not; does not play a crucial role. The structure of our mechanism rewards

even unilateral concessions in the bargaining phase, provided the opponent is

rational in the subsequent mechanism phase. A nice property of the equilib-

rium is that the strategies do not depend on the maximum possible number

of bargaining rounds. As a consequence, the mechanism could perform well

even in presence of boundedly rational players who do not correctly antici-

pate the number of negotiation rounds.

Such a mechanism has not been implemented in practice. However it is

natural to compare it to ones that are actually in use and with which it

shares some features. Arbitration, which similalrly requires from the parties

a certain degree of commitment in case of disagreement, is an obvious exam-

ple. Final Offers Arbitration, in which the arbitrator can only choose between

one or the other of the two last incompatible proposals, can be compared to

our mechanism. However, there is an important difference since the arbitra-

tor is in our case only a fair lottery and the decision is not binding, leading to

the recursivity of our mechanism. The role of risk aversion for bringing par-
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ties to an agreement was already identified in the litterature on arbitration.

Indeed, Stevens (1966) proposed Final Offer Arbitration in order to correct

what was supposed to be a side effect of Conventional Offer Arbitration, in

which intermediary solutions can also be imposed: the chilling effect. In the

arbitration litterature, this term refers to something similar to gradualism,

that is a persistant lack of concessions. Stevens thought that the restricted

choice of the arbitrator would allow the mechanism to exploit the parties’ risk

aversion and to avoid this problem. He appears to have been wrong. It can

easily be seen that in the limit case where the arbitrator chooses uniformly

at random between the last two proposals, it is even a dominant strategy

not to make any concession. Risk aversion, while important, is not in itself

sufficient. Our mechanism also involves a fair lottery between proposals, but

in addition the recursivity is crucial to exploit the parties’ risk aversion.
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