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Abstract

Shape From Focus refers to the inverse problem of recovering the depth in ev-

ery point of a scene from a set of differently focused 2D images. Recently,

some authors stated it in the variational framework and solved it by minimiz-

ing a non-convex functional. However, the global optimality on the solution

is not guaranteed and evaluations are often application-specific. To overcome

these limits, we propose to globally and efficiently minimize a convex functional

by decomposing it into a sequence of binary problems using graph cuts. To

illustrate the genericity of such a decomposition-based approach, data-driven

strategies are considered, allowing us to optimize (in terms of reconstruction

error) the choice of the depth values for a given number of possible depths. We

provide qualitative and quantitative evaluation on Middlebury datasets and we

show that, according to classic statistics on error values, the proposed approach

exhibits high performance and robustness against corrupted data.

Keywords: Shape From Focus, depth map estimation, graph cuts,

multi-labels.

1. Introduction

1.1. Context

Retrieving the depth of a scene from a collection of at least one image is

a challenging inverse problem that is typically solved using shape-from-X ap-
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proaches (where X denotes the cue to infer the shape, e.g. stereo, motion,5

shading, focus, defocus, etc) or a mixture of them. This topic gave rise to a

huge amount of papers and still represents a great interest for researchers in the

computer vision community. Indeed, it has numerous applications, especially

in robotics, both for localization and environment analysis, in monitoring or

video-surveillance either for security or for medical technical assistance, or in10

microscopy and chemistry [1].

More specifically, let us remind that stereovision relies on the disparities

between matched pixels of an image pair [2], shape-from-shading exploits the

variations of brightness of a single image [3, 4] and shape-from-motion deduces

depth from matched points of interest [5]. Shape-from-focus (SFF) [6] and15

shape-from-defocus (SFD) [7] represent alternatives approaches that share the

idea of using the focus to estimate the 3D structure of a scene from differently

focused images acquired by a monocular camera. Thus, an object appears fo-

cused only in a limited range (depth of field) and is progressively blurred as the

camera moves away from this range. For both approaches, active and passive20

sensors exist, depending on whether or not a structured light composed of pat-

terns is projected onto the scene to alleviate ambiguities. In this paper, we will

focus on the passive device. In addition to the depth map, both approaches

generally also provide an estimation of the all-in-focus image of the scene, i.e.

the image obtained by selecting for each pixel, the intensity at which it appears25

the most focused, or sharp.

Now, SFF and SFD differ on one main point. SFD estimates the depth by

measuring the relative blurriness between a reference image and the remaining

ones. The blurring process needs to be explicitly modeled, a very few images are

usually required and the approach can be applied to dynamic scenes. Similarly,30

[8, 9] have chosen to solve the inverse problem by precisely modeling the defocus-

ing process with the help of an all-in-focus image. This requires the knowledge

of the parameters of the camera to compute the spatially varying point spread

function (PSF). In these works, the authors iteratively minimize, using Split

Bregman algorithm, a regularized energy computed from the distance between35
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the observations and the approximated PSFs applied to the all-in-focus images.

SFF only assumes that there is an explicit relationship between the depth of

a given pixel and the focal value at which it appears the most focused (or sharp).

This implies the choice of an appropriate predefined operator for measuring the

amount of sharpness, and a fairly large number of images to expect a good40

reconstruction quality of the scene. Therefore, SFF is mainly used to analyze

static scenes.

In contrast to multi-cameras systems, SFF and SFD approaches allow for a

more compact size of the electronic system, decrease its cost and avoid to deal

with matching ambiguities. The topic is still of interest as demonstrated by45

recent works, e.g. [8, 10, 9, 11], including machine learning with convolutional

neural networks [11].

1.2. Related work

As previously explained, solving the SFF problem implies the choice of an ap-

propriate sharpness operator for selecting the focus maximizing the pixel sharp-50

ness. First among many, Nayar [6] introduces a sharpness operator named

Summed Modified LAPlacian (SMLAP) based on second derivatives. Then, we

refer the reader to the study [12] that compares a wide variety of sharpness

operators in a comprehensive way.

The idea of early approaches (such as [6]) is to compute a sharpness profile55

over the focus values and take the argument of the maximum of this profile

for every pixel. However, whatever the used sharpness operator, an estimation

using raw profile is prone to errors in presence of degraded or noisy data so that

different filters adapted to the sharpness profile have been proposed. In [6], a

Gaussian interpolation is performed around the maximum detected on the raw60

profile. As an alternative to Gaussian interpolation, [13] proposed to interpo-

late the sharpness profile by a low-order polynomial. This idea has been then

followed in [10], in which an eight-order polynomial is used.

Whatever the sharpness operator and the interpolation method used, blind

techniques (i.e. that consider pixels independently of their neighbors) do not65
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Our [15] [10]
Data term Convex Non-convex Non-convex
Regularization term Convex Non-convex Convex
Functional Convex Non-convex Non-convex
Optimization method Graph cut Graph cut ADMM

Optimality Globally
optimal

Within a known
factor of the

global
minimum [16]

No guaranty
of optimality

Table 1: Functional properties between the proposed approach, [15] and [10].

generally allow for accurate recovering the 3D geometry of a whole scene. In-

deed, the sharpness operator relies on object borders that produce sharp edges

on which reliable and precise depth values may be deduced. In the absence of

such elements or of texture, the maximum of sharpness location tends to pro-

duce unreliable results. Ambiguities are especially present in textureless, under-70

exposed or overexposed regions. To cope with these problems, some authors [14]

proposed to reject the sharpness values being under a threshold, resulting in a

globally more reliable, but sparse depth map.

Since the measurements from sharpness operator do not necessarily deter-

mine the depth uniquely, the SFF is an ill-posed problem. While formulating75

this kind of problem in the variational framework is a standard way to tackle

it, surprisingly, only very few papers [15, 17, 10] did it. Mathematically, this

amounts to the definition of a functional that embeds a data fidelity term and a

smoothness (or regularization) term and that has to be (efficiently) minimized.

In [10], the variational formulation uses the negative interpolated contrast80

measure from Modified LAPlacian (MLAP, i.e. SMLAP restricted to a single

pixel) as data fidelity term. As a result, this term is a non-convex but smooth

continuous function. The regularization term used is the discrete isotropic Total

Variation (TV), discontinuity-preserving, non-smooth but convex. To minimize

the resulting non-convex functional, the data term is linearized and an iterative85

algorithm, namely Alternating Direction Method of Multipliers (ADMM) is

applied. According to the authors, this algorithm provably converges toward
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a critical point of the functional but no optimality guarantees are mentioned

about the solution. Although the proposed algorithm seems to give good results

and exhibit good convergence properties, it has been actually evaluated only90

qualitatively and on few real images.

The work of [15] also uses the sharpness operator MLAP. The data fidelity

term is the truncated quadratic difference between the maximum value of sharp-

ness and the tested sharpness. This term is therefore non-convex. The smooth-

ness term is a truncated L2 norm (then also non-convex) that is discontinuity-95

preserving. The truncation depends on whether a significant texture is present

or not. The algorithm used for the minimization of the resulting non-convex

functional is the α-expansion based on graph cuts [16]. Interesting results are

obtained but the approach is prone to get easily trapped in local minima of

the energy and in [15], the evaluation is limited to application-specific images100

(optical microscopes).

1.3. Outline of the proposed approach

In this work, we explore a new way to solve the SFF problem by directly

minimizing, for a given depth resolution, a convex functional. The advantage

of such a choice is twofold: (i) The optimality about the solution is easier to105

guarantee and (ii) the convexity property can be exploited to use fast mini-

mization procedures. Functional properties of the aforementioned approaches

against ours are summarized in the Table 1.

Our choice focuses on graph cuts because of their well-founded theoretical

background [18] and the existence of a fast maximum-flow/minimum-cut algo-110

rithm [19]. While [20] has optimality guarantees for convex priors, the graph

construction requires a lot of computational resources (in terms of time and

memory). Alternatives, like the α-expansion [16], allow for minimizing the func-

tional iteratively by solving sequentially binary problems until convergence, but

without any guaranty relatively to the number of iterations required.115

Thanks to a discretization step, the functional can nevertheless be exactly

minimized when the data fidelity term is convex, by mapping the original prob-

5



lem to a deterministic number of independent binary problems (each one solved

using graph cuts) [21]. Each subproblem boils down to choosing a split value

along the depth dimension and labeling the depth map accordingly. Given a120

number of binary problems, the dyadic strategy is an usual efficient way to select

these split values, but a data-driven splitting strategy allows for lowering the

reconstruction error, especially when the fixed number of discrete depth values

is low. Another beneficial effect is to balance the sizes of the subproblems, thus

reducing the complexity of the divide-and-conquer approach.125

Figure 1 gives the outline of our approach. Our optimization algorithm is

based on graph cuts (bottom right rectangular box on Fig. 1). Besides data

images and regularization parameter λ, it takes as an input the tree of split

values, i.e. the values that define hierarchically the subproblems. In our case,

the split value tree (bottom left diamond box on Fig. 1) is built accordingly130

to the depth histogram estimated from the sharpness profiles (middle diamond

box on Fig. 1), and depends on the selected splitting strategy.

Our contributions are in the definition of a convex functional that is fitted

with the graph cut minimization and in the proposition of data-driven strategies

for the split value tree estimation. In what follows,135

• The chosen sharpness operator, the interpolation, and the proposed convex

functional are described in Section 2.

• In Section 3, we provide the algorithm for exactly minimizing such func-

tional for a given split value tree, and secondly we discuss and investigate

the selection of the split values.140

• Section 4 first compares the respective performances achieved by the vari-

ants of sharpness operators with full resolution against [10]. Then, it

analyzes the impact of the splitting strategy on the reconstruction error.

• Finally, Section 5 recalls the main results and presents future work.
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Figure 1: Flowchart representing the approach chosen to solve our problem. In this paper,
different implementations are explored for starred boxes.

2. Proposed functional145

To take advantage of efficient minimization procedures based on graph cuts,

we propose to use a convex functional. Let us first introduce some notations

before detailing it.

For a given positive integer K0 > 0, let us denote by Φ0 the sharpness

operator and let us define the finite sets K0 = {0, . . . ,K0−1} and L0 = {lk}k∈K0
150

with lk ∈ R,∀k ∈ K0. Moreover, we denote by {Ik}k∈K0
the set of focused

images where Ik : P ⊂ Z2 → RM is a M -channels (M > 0) image defined over

lattice P and acquired with focus values lk, for any k ∈ K0.

The proposed approach consists of two steps: (i) A blind estimation of depth

is performed for any pixel p ∈ P independently of its neighbors and (ii) this155

estimation is used to setup the data term of the functional that will then be

minimized to derive the optimal depth map solution. These steps are detailed

in the subsequent sections.

2.1. Sharpness profiles

The model used to interpret the physical process blurring the image is based160

on geometrical optics. For any given 3D point, moving away the sensor from
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it distributes the energy over circular patches (in the image) with a radius

increasing with the sensor displacement. This defines the PSF that acts in the

frequency domain as a low-pass filtering on the all-in-focus image.

A common choice among sharpness operators is SMLAP since it presents

similar performance for a shorter processing time compared to alternative op-

erators [12]. For every pixel p ∈ P and every index k ∈ K0, this operator is

defined as

Φ0(p, k) =
∑

q∈Ω(p),
q=(i,j)

(∥∥∥∥∂2Ik(q)

∂i2

∥∥∥∥
1

+

∥∥∥∥∂2Ik(q)

∂j2

∥∥∥∥
1

)
= Φ0(p, lk), (1)

where ‖.‖1 is the L1 norm in RM , Ω(p) ⊂ Z2 is the neighborhood of pixel p165

(typically a small squared window of fixed size), Ik(q) denotes the intensity of

image Ik at pixel q and Laplacian operators are approximated by finite differ-

ences. Note that MLAP can be deduced from Eq. (1) by restricting Ω(p) to

pixel p. The above operator Φ0 is used in Section 4.

Once the sharpness operator has been applied to the sequence of focused170

images {Ik}k∈K0
, the resulting measurements are usually filtered. The benefit of

interpolating sharpness profiles is twofold: (i) It increases the robustness against

potential degradations (noise, contrast, etc.), and (ii) if a high depth resolution

is required by the application, it enables us to reduce the discretization step

along the depth dimension. Polynomial [10] and Gaussian [6] interpolations are175

two standard techniques. In this work, to take into account the increase of the

depth of field with distance, we propose a Gaussian filtering of the sharpness

profile with a standard deviation that linearly depends on the focal value (i.e.

the distance of the object plane to the optical center). In Fig. 2, the raw

sharpness profiles as well as those filtered by the aforementioned techniques180

are drawn (right subplot) for three distinct locations depicted on the all-in-

focus image. For each profile and each location, the position achieving the

maximum sharpness value is also indicated. In textured regions (such as for

shown pixel 3), the maxima found are very close to the ideal one and therefore
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all filtering techniques perform well. The obtained depth estimates however185

differ for textureless regions (such as for pixel 1 and pixel 2). It can be observed

that the polynomial interpolation (used in [10]) presents some oscillations. It

may induce some errors on blind estimates when the profile is flat (e.g. in

the absence of texture). Even if, based on these observations, we favor the

proposed Gaussian filtering, note that our approach is generic with respect to190

the sharpness profile (middle diamond box on Fig. 1).

Let us denote by Φ(p, .) the interpolated sharpness profile of any pixel p ∈ P ,

whatever the sharpness operator Φ0 used. For some integer K > 0, let us also

define the sets K = {0, . . . ,K − 1} and L = {lk}k∈K with lk ∈ R, ∀k ∈ K.

Please note that the focus values {lk}k∈K are not necessarily equally spaced195

along depth dimension: For targeted applications, some preference can be given

to some specific range of values. The blind depth estimates can now be formally

defined as

v =

{
vp

∣∣∣∣vp ∈ argmax
lk∈L

{Φ(p, lk)}
}
p∈P

. (2)
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Figure 2: Influence of the filtering techniques on the blind depth estimates for three cross-
marked pixels shown on the all-in-focus image (left) and their corresponding sharpness profiles
(right).

2.2. Functional

In previous section, L is the set of depth values on which the sharpness

profile is estimated. In the general case, the depth map estimation is performed
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on a set of labels that is a subset of L. Then, we introduce the following

notations. For any positive integer K̃ ≤ K, we define the sets of cardinality K̃,

K̃ = {k0, . . . , kK̃−1} ⊆ K̃ and L̃ = {lk ∈ R}k∈K̃ ⊆ L. K̃ is the set of indices of

L̃ labels in L. Then, given the blind estimate v ∈ LP obtained using Eq. (2),

for any depth map taking its values in L̃ denoted x(L̃) such that x(L̃) ∈ L̃P ,

the functional to minimize with respect to x(L̃) is:

E(x(L̃)) =
∑
p∈P

Up(xp) + λ
∑

(p,q)∈N
Vp,q(xp, xq), (3)

where N ⊂ (P × P) is the set of adjacent pixel pairs, Up(xp) is the data200

fidelity term measuring the cost of assigning the label xp to the pixel p with

respect to blind estimate v, Vp,q(xp, xq) is the regularization term that is chosen

to penalize the difference of labeling between pixels p and q, and λ is a non-

negative weighting parameter determining the balance between both terms.

From Eq. (3), the general problem, that consists of optimizing E with respect205

to both the label set L̃ and the label image x, is not straightforward. Thus,

it has been split into two subproblems. On the one hand, for a given set L̃,

we have to minimize E with respect to x(L̃), i.e. x pixels taking values only

in L̃. On the other hand, for a given K̃, we have to build the subset of labels

L̃ that minimizes the Root Mean Square Error (RMSE) between x̂(L̃) and210

x̂(L) (where ̂ denotes a minimizer of the functional). In the following, this

second subproblem is referred as the choice of the splitting strategy. For the

sake of concision, when dealing with the first subproblem (namely from here to

Subsection 3.3), we omit L̃ (that is actually fixed) in the notation of x(L̃) = x.

In Eq. (3), the data term is defined for any pixel p ∈ P as the weighted Lα

norm (α ≥ 1) between blind estimate vp (see Eq. (2)) and label xp, i.e.

Up(xp) = ηp|xp − vp|α, (4)

where ηp is a coefficient independent of xp. ηp is computed from the sharpness
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profile and the blind estimate:

ηp ∝

(
K (Φ(p, vp)− Φ(p, zp))

2∑
k∈K (Φ(p, lk)− Φ(p, zp)) + ε

)
∈ [0,K(Φ(p, vp)− Φ(p, zp))[ ,

with ε & 0 and zp is defined for any pixel p ∈ P as zp = argmink∈L {Φ(p, lk)}.215

Indeed, the dynamic range of the sharpness profile Φ(p, .) varies with the

pixels depending on the local texture. ηp is proportional to this dynamic range

divided by the normalized area under the sharpness profile Φ(p, .) (ε avoiding

division by zero). Therefore, ηp measures the local significance of the difference

between xp and vp and weights the data fidelity term accordingly.220

The regularization term in Eq. (3) corresponds to the anisotropic total vari-

ation (TV). For any pixel pair (p, q) ∈ N , it is expressed as

Vp,q(xp, xq) = wp,q(xp − xq)+, (5)

where a+ = max {a, 0} and wp,q are fixed positive coefficients (see [22]). Despite

some undesired behaviors of TV such as “staircase effect”, i.e. creation in the

depth map of flat regions separated by artifact boundaries, this operator enjoys

desirable properties (convexity, discontinuity-preserving of image boundaries,

etc.) and it has been successfully applied to numerous applications and problems225

such as in image restoration when α = 1 or α = 2 (see [22] and the references

therein). The above definition of the TV is general. In particular, it allows

us to have wp,q 6= wq,p. While neighborhoods taking into account complex

relationships between pixels could be considered, we only use the 8-connexity

in the experimental results presented in Section 4.230

3. Depth estimation using graph cuts

We now describe how the graph cut based approach [21] for exactly minimiz-

ing discrete convex functionals (like the functional (3) presented in Section 2.2)

can be used for solving our problem, the set of labels L̃ being given. Firstly,
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we remind how this problem can be mapped to a set of independent subprob-235

lems which only involve binary variables. Secondly, we recall how each of these

subproblems can be efficiently solved using a maximum-flow/minimum-cut al-

gorithm and how their number can be drastically reduced using a divide-and-

conquer process with a dichotomous splitting strategy. The most common split-

ting strategy is the dyadic one. However, since it corresponds to a special case240

of L̃, other splitting strategies are investigated, i.e. we discuss the estimation

of L̃ itself.

3.1. Leveled-energy decomposition

In the sequel, we assume that the label values of L̃ are ordered with respect

to their indices in K̃: lki > lki−1
,∀i ∈ {1, . . . , K̃ − 1}. As explained in [21], the

data term (see Eq. (4)) and the regularization term (see Eq. (5)) of the functional

(see Eq. (3)) can be decomposed as a sum of energies on the level sets of x, with

x ∈ L̃P . Let us denote by χlp the value in pixel p of χl = 1{xp≥l} ∈ {0, 1}P the

l-level set of image x. For any pixel p ∈ P , the data term can be decomposed

as

Up(xp) =

 ∑
0<i<K̃

χ
lki
p

(
Up(lki)− Up(lki−1)

)+ Up(lk0). (6)

Note that the latter equation is consistent whatever xp ∈ L̃. Similarly, for any

pixels pair (p, q) ∈ N , the regularization term can be decomposed as

Vp,q(xp, xq) =
∑

0<i<K̃

wp,q(χ
lki
p − χ

lki
q ))+︸ ︷︷ ︸

Vp,q(χ
lki
p ,χ

lki
q )

. (7)

In the latter expression, the sum on i starts from i = 1 since χlk0
p = χ

lk0
q = 1,

∀(p, q) ∈ N . Using Eq. (3), Eq. (6) and Eq. (7), the functional may now be

written

E(x) =
∑

0<i<K̃

Elki (χlki ) + C, (8)

12



where C is a constant that does not depend on x and the energy Elki is defined,

for any 0 < i < K̃ and any binary image (level set) χlki ∈ {0, 1}P , by

Elki (χlki ) =
∑
p∈P

χ
lki
p (Up(lki)− Up(lki−1

)) + λ
∑

(p,q)∈N
Vp,q(χ

lki
p , χ

lki
q ). (9)

For any k, k′ ∈ K̃\ {k0}, let us denote by χ̂lk , χ̂lk′ ∈ {0, 1}P minimizers of Elk

and Elk′ respectively. If these minimizers satisfy

χ̂lkp ≥ χ̂lk′p , ∀0 ≤ k ≤ k′ ≤ K̃ − 1, ∀p ∈ P , (10)

i.e. the level sets χ̂lk are nested, then, from Eq. (8), we can check that the level

set x̂ ∈ L̃P defined for all p ∈ P , by

x̂p = max {lk ∈ L̃ | χ̂lkp = 1}, (11)

minimizes Eq. (8). According to [21], if the condition (10) holds for data fidelity

term (which is the case here since the data term of Eq. (4) is convex), a minimizer245

of E can be deduced from all the minimizers of {Elk}k∈K̃\{k0}. We now present

how every binary problem Elk can be efficiently solved using graph cuts.

3.2. Graph cut minimization

Due to limited resources and algorithm developments, graph cuts remained

bounded to binary image restoration for a long time [23]. The emergence of a fast250

maximum-flow/minimum-cut algorithm [19] coupled to a better characterization

of what energies can be minimized [18], was a milestone for solving challenging

vision tasks such as segmentation, restoration, stereovision, etc.

In particular, [18] provides a key result about the conditions for the appli-

cability of the approach: Submodularity of pairwise terms is a necessary and255

sufficient condition for minimizing a functional. In our case, since TV is sub-

modular, this condition is verified for Eq. (3).

For minimizing every Elk (see Eq. (9)) using graph cuts, we adopt the graph

construction detailed in [18]. Let us consider a weighted and oriented graph

13



G = (V , E) where V = P ∪{s, t} is the set of nodes (s and t are named terminal

nodes) and E = N ∪{(s, p)}p∈P∪{(p, t)}p∈P is the set of edges (edges connecting

s or t are named t-links while remaining edges are named n-links). Then, we

assign a non-negative capacity to any edge (p, q) ∈ E as follows:
cs,p = (Up(lki)− Up(lki−1

))−, ∀p ∈ P ,

cp,t = (Up(lki)− Up(lki−1))+, ∀p ∈ P ,

cp,q = λwp,q, ∀(p, q) ∈ N ,

(12)

where (a)− = max {−a, 0}. For any S ⊆ P , we define the value of the s-t cut

(S ∪ {s}, (P \ S) ∪ {t}) in the graph G by

valG(S) =
∑

p∈(S∪{s})
q∈((P\S)∪{t})

cp,q.

For any S ⊆ P , we also define χS the binary image such that for every p ∈ P

χSp =

 0 if p ∈ (S ∪ {s}),

1 if p ∈ ((P \ S) ∪ {t}).

There is a one-to-one correspondence between the sets S (being elements of the

powerset of P) and the elements of {0, 1}P . Using the edge capacities (12) as well

as the definitions (9) and (5), it is straightforward to see that valG(S) is equal to260

Elk(χS), up to a constant that is independent of χS . If (Ŝ ∪ {s}, (P \ Ŝ)∪ {t})

is a minimum s-t cut (s-t cut of minimum weight) in the graph G, χŜ is thus a

minimizer of Elk . This minimizer can be efficiently computed using a maximum-

flow/minimum-cut algorithm such as [19]. Although it has a pseudo-polynomial

worst-case complexity depending on the value of the minimum s-t cut, its near-265

linear behavior still makes it attractive for many computer vision problems.

More generally, the minimization of the functional Eq. (3) requires the com-

putation of precisely K̃ s-t minimum cuts, which is time-consuming when K̃ is

large. Due to the monotone condition (10), binary solutions are nested. The

divide-an-conquer process proposed in [21] takes advantage of this property and270
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via the tree traversal of a tree of split values, defining a set of independent bi-

nary problems. It allows us to decrease drastically the number of s-t minimum

cuts until blog2(K̃)c.

3.3. Data-driven decomposition

The key point for reducing the number of used graph cuts (until blog2(K̃)c275

instead of K̃) is the definition of a hierarchical tree having K̃ leaves and whose

nodes encodes the binary subproblems. The tree derived from the dyadic split-

ting provides, for a given K̃, a deterministic number of graph cuts, namely

blog2(K̃)c that is the depth of the label tree, also later referred to as iteration

or cut number. However, it does not necessarily yield the best results in terms280

of RMSE between x̂(L̃) and x̂(L). Here x̂(L) is the optimal depth map con-

sidering an extended set of labels L relative to the actually used set L̃. Then,

the mentioned RMSE evaluates the errors between an ideal depth map with

the reconstructed one having a limited number of labels. In order to minimize

this error for a given K̃, we investigate constructions of the label tree based on285

automatic data-driven decompositions as alternatives to the dyadic splitting.

The idea is to base the choice of the split values (used at each iteration) on

the depth histogram of the considered data. Then, instead of thresholds corre-

sponding to dyadic splitting of the whole depth interval, we will derive adaptive

values based on this depth histogram. Let us denote by τ ij the split values used290

at iteration i, with iend the final number of iterations, i ∈ {1, . . . , iend − 1)},

j ∈
{

1, . . . , 2i−1
}
. At each iteration, the label values are computed in a deter-

ministic way (cf. fourth comment further in the section) within the intervals

defined by the τ ij set.

Without loss of generality, we consider depth interval equal to [0, 1] (linear295

transformation is trivial for other interval bounds). Considering the dyadic split-

ting, extending threshold notation so that τ i0 = 0,∀i ∈ {0, . . . , iend}, the set of τ ij
values at iteration i is independent of the data, namely

{
τkj + 1

2i ,∀0 ≤ k < i
}
.

Now, considering a data-driven approach, the most prevalent depths drive the
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splitting strategy, in order to provide more details (and therefore a more accu-300

rate depth map) for the main objects of the scene.

Two adaptive splitting ways have been considered, namely:

• the median splitting, where the chosen thresholds correspond to the me-

dian values of the depth histogram restricted to the interval to split.

Specifically, τ1
1 is the median of the whole histogram interval, τ2

1 is the305

median of the histogram restricted to
[
0, τ1

1

[
and τ2

2 is the median of the

histogram restricted to
[
τ1
1 , 1
]
, and so on.

• Otsu’s splitting, where the chosen split values derive from Otsu algo-

rithm [24] applied to the depth histogram restricted to the interval to

split. Similarly to the median splitting case, τ1
1 is the Otsu threshold of310

the whole histogram interval, τ2
1 is the Otsu threshold of the histogram

restricted to
[
0, τ1

1

[
and so on.

At this stage, five comments have to be made.

• Firstly, as required (for ensuring monotone condition (10)), for any pro-

posed tree of labels (dyadic, median, Otsu), the level sets are nested and315

thus the graph cut based approach still operates as previously depicted.

In the same way, Eq. (11) remains applicable for x̂ estimation.

• Secondly, since the actual depth histogram is unknown, we use the blind

depth map to derive an estimation of the depth histogram. Indeed, even if

the blind depth map has numerous errors, we assume that it is sufficiently320

correct in terms of statistics to allow for the choice of adaptive thresholds

more appropriated than the dyadic splitting.

• Thirdly, the choice of Otsu’s algorithm stems from the fact that, theoreti-

cally, it yields the smallest RMSE between x̂(L̃) and x̂(L). However, both

due to discretization of the labels and regularization step, the achieved325

RMSE value between x̂(L̃) and the ground truth cannot be predicted.
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• Fourthly, to compute RMSE values, we need the depth value (label) associ-

ated to each interval defined by two consecutive split values. To minimize

the RMSE, rather than the interval centers, we propose to consider the

interval centroids (i.e. mean) values.330

• Fifthly, the adaptive splitting is mainly relevant for small values of K̃.

Indeed, for large values of K̃, the different sets of leaves (intervals and

associated labels L̃) converge toward the same set, L.
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Figure 3: Illustration of the different splitting strategies, for λ = 0.025; 1st column: Tree of
the centroids, also showing the split values versus the iteration number, 2nd column: 4-valued
depth map achieved at iteration 2.

Figure 3 illustrates the different splitting strategies: Dyadic, median or

Otsu’s way as proposed. The trees (below the blind histogram of the image)335

show the split values (squares) and the centroids (crosses) versus the iterations.

For this figure, the different iterations can also be interpreted as different results
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when increasing the cardinality of K̃. The centroid set provides the depth values

used for depth map estimation. On the right part of the figure, the four-labels

image corresponds to the second graph cut iteration. According to this example,340

we clearly see that Otsu’s and median splitting strategies efficiently retrieve the

main objects for small values of K̃.

4. Numerical experiments

4.1. Data and evaluation measures

The dataset on which we focused for our experiments is derived from the345

Middlebury college dataset from 2005 and 2006 [25]. This dataset provides, for

various realistic scenes, accurate depth maps as well as colored all-in-focus im-

ages (here, M = 3), with several available exposures and illumination settings.

Among them, we have selected the intermediate exposure, the lowest illumi-

nation and smallest image resolution, for both views 1 and 5. The unknown350

depth values due to occlusions have been estimated by the median value of the

surrounding depths.

From this patched dataset, we generate the sequence of K0 focused images

for each scene using the code provided by Pertuz1 run with default values of

parameters: Each pixel of the all-in-focus image is blurred depending on the355

distance between its actual depth and the image focal plane. In the following

experiments, we present the results obtained from datasets simulated with this

software adapted to the usage of a depth map and a colored all-in-focus im-

age, with K0 = 30 and K0 = 50 images. We furthermore add noise on the

images obtained by adding normally distributed random values (centered on 0,360

of standard deviation σ ∈ {σ0 = 0, σ1 = 0.005, σ2 = 0.01}) to the float intensity

images scaled to [0, 1]. Note that the noise images are uncorrelated along the

depth dimension.

To evaluate the performance of our SFF algorithm, we propose to estimate

1https://fr.mathworks.com/matlabcentral/fileexchange/55103-shape-from-focus
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quantitatively the accuracy of our estimation x ∈ L̃P against the ground truth

y ∈ LP using four metrics: (i) The RMSE; Then, computed from the histogram

of the absolute error values, (ii) the median and (iii) the 90th percentile; And

(iv) the Structural Similarity Index (SSIM, [26]). To remove the dependency on

the dynamic of the scene (denoted by ∆), we scale RMSE values by ∆:

RMSE(x,y) = 100

√
1

]P∆2

∑
p∈P

(xp − yp)
2 ∈ [0, 100],

where ] denotes the cardinality of a set.

Then, absolute error distribution provides a complementary evaluation (for365

instance it is less sensitive to outliers that the RMSE criterion). For these three

metrics (i-iii), the lower the achieved values, the better the results are. Finally,

the SSIM is also complementary since it evaluates the correlation between es-

timation and ground truth (ideal estimation). We use the version specified in

[26], with α = β = γ = 1 so that SSIM is defined by:370

SSIM(x,y) =
1

]P ′
∑
p∈P ′

(
2x̄Ω(p)ȳΩ(p) + C1

) (
2σxyΩ(p)

+ C2

)(
x̄2

Ω(p) + ȳ2
Ω(p) + C1

)(
σ2
xΩ(p)

+ σ2
yΩ(p)

+ C2

) ∈ [−1, 1] ,

where P ′ is the set of the centers p of the used windows Ω(p) of size 7× 7,

x̄Ω(p), ȳΩ(p) are the means on Ω(p) of x and y values respectively, and σxΩ(p)
,

σyΩ(p)
, and σxyΩ(p)

are the variances and covariance. Finally, the constants C1

and C2 are computed from ∆ as C1 = (0.01∆)
2 and C2 = (0.03∆)

2. For

metric (iv), the larger the achieved values, the better the results are.375

4.2. Benefit of proposed energy model

The aim of this subsection is to check the usefulness of the regularization pro-

cess based on the proposed energy model. Assuming that Moeller’s work [10]2

2The CUDA/C++ code of the parallelized GPU version is publicly available on the webpage
https://github.com/adrelino/variational-depth-from-focus
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represents the state-of-art (of variational SFF methods), we compare it to three

variants of our method with K̃ = K = K0. Faced to the number of algorithm380

parameters to tune, we run [10] algorithm with its default value parameters (ex-

cept λM parameter that was fitted, see Fig. 5), having checked that these default

values provide rather satisfying results. For our approach, three variants of the

functional (3) were implemented in OpenCV/C++ with a 8-neighbors graph

connexity. Even though the introduced noise is Gaussian, we empirically ob-385

serve that it yields to a noise likened to impulsive noise on maximal sharpness

values and blind estimated depths (see Fig. 4b). Based on this observation, we

therefore have chosen α = 1 in data fidelity term (Eq. (4)).

The three variants, represented in the box named Sharpness Operator in

Fig. 1, only differ by the data fidelity term, namely either based on the poly-390

nomial interpolation of MLAP sharpness profile (that is also the blind estimate

of [10]), or on the Gaussian filtering of MLAP sharpness profile, or on the pro-

posed Gaussian filtering of SMLAP sharpness profile (Eq. (1) with Ω window

of size 7× 7). These three variants are called ‘Graph cut PM’, ‘Graph cut GM’

and ‘Graph cut GS’, respectively. For the the ‘Graph cut GM/GS’ variants, the395

standard deviation of the Gaussian filter is determined empirically according to

the relationship σ(k) = 0.2k+1, where k is the index of the focused image in the

sequence. For each of the above variants, the blind estimation is derived con-

sidering λ = 0 whereas the regularized ones correspond to λ > 0. We vary the

parameter λ within a fixed interval. This allows us to observe the behavior of400

the algorithm with respect to the regularization parameter as well as to get the

λ value achieving the minimal RMSE value (denoted by λ∗) in the considered

λ interval.

Figure 4 gives a qualitative comparison of some results obtained in the case

of the Art image example. Specifically, the first column shows the all-in-focus405

image (last row), the depth ground truth (first row) and ‘optimal’ result of [10]

(middle row). The three following columns allows us to compare the ‘Graph cut

PM’, ‘Graph cut GM’ and ‘Graph cut GS’ results with the blind estimations

shown on first row, the λ∗-regularized results shown on second line and examples
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of over-regularized results on the last line. Main comments are:410

• The benefit of the proposed data fidelity term (SMLAP, Gaussian) is vis-

ible when comparing Fig. 4b, Fig. 4c and Fig. 4d: Firstly, conversely to

polynomial interpolation, Gaussian filtering avoids oscillations and sec-

ondly, SMLAP allows for early 2D-spatial filtering of high frequencies of

depth map. Besides, Fig. 4f, Fig. 4g and Fig. 4h show that the data fidelity415

term also impacts the result obtained after regularization.

• The regularization allows for the removal of noise in blind estimation.

Using the optimal regularization parameter, the proposed model allows

for much better preservation of details and fine structures than with [10]

(that may seem a little bit too regularized even though it is the best result420

achieved when varying the weight of the regularization term).

• Increasing furthermore the regularization parameter (beyond its optimal

value), spatial details are wiped out whereas the overall shape of objects

in the scene is well preserved and remains visible.

To evaluate quantitatively the usefulness of the proposed method, on Fig. 5,425

we plot the RMSE values versus the regularization parameter λ. As previously,

the considered SFF methods are [10], ‘Graph cut PM’, ‘Graph cut GM’ and

‘Graph cut GS’. RMSE values are averaged over all the images of the consid-

ered dataset. On the first line of Fig. 5, the subgraphs correspond to the two

considered datasets with either K0 = 30 or K0 = 50 images with a given noise430

level (intermediate) whereas on the second line the noise level varies for a given

dataset (K0 = 30). In the presented graphs, the λ scale is those used for the

models ‘Graph cut PM/GM/GS’, whereas regularization parameter λM of [10]

is derived using λM = 103+3×log10(λ). From Fig. 5, we observe that:

• The RMSE curves are consistent with the qualitative results depicted in435

Fig. 4: Whatever the variational method (among the considered ones),

increasing λ until λ∗ allows for RMSE decrease (by removing blind esti-

mation noise) but when increasing λ beyond λ∗, the RMSE value increases
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MLAP, Polynomial MLAP, Gaussian SMLAP, Gaussian

(a) Ground truth (b) Blind estimate PM (c) Blind estimate GM (d) Blind estimate GS

(e) Approach [10] (f) λ∗-regularized (g) λ∗-regularized (h) λ∗-regularized

(i) All-in-focus (j) Over-regularized (k) Over-regularized (l) Over-regularized
Figure 4: Examples of SFF depth maps associated to all-in-focus (i) and ground truth (a)
images; Shown results correspond to: [10] algorithm (e) and our model (see Eq. (3)) when vary-
ing the blind estimation (from MLAP polynomial interpolation to proposed SMLAP Gaussian
filtering) and the regularization parameter.

(by removing relevant thin structures of the scene).

• The minimal average RMSE value depends on the noise level (see Fig. 5a,440

5c and 5d).

• In terms of averaged RMSE, the best results are achieved by the proposed

‘Graph cut GS’ algorithm (or in one case by its variant ‘Graph cut GM’)

for the three considered noise levels and the two datasets. The curves

obtained when varying the dataset (see Fig. 5a and 5b) are quite similar445

(also for not shown noise levels).

• In the case of Fig. 5c (and visually with the pencils in Fig. 4g), avoiding
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the spatial averaging of the SMLAP allows for retrieving thin details in

the depth map. However, for noisy data, ‘Graph cut GS’ outperforms

‘Graph cut GM’ thanks to noise filter included in SMLAP.450

Table 2 shows the values of the four metrics (see Section 4.1), averaged over

the two considered datasets with K0 = 30 and K0 = 50 images, for λ∗GS = 0.025

and λ∗M = 0.001. We note that, as seen on Fig. 5, ‘Graph Cut GS’ achieved

smaller RMSE values than [10] and that both mean and standard deviation

values increase with noise level. For a given dataset, the histogram of the455

absolute errors has been computed on all the included images, with ground

truth depths scaled in [0, 100]. As usual, the noise has a much stronger impact

on the 90th percentile values than on the median ones. We notice that the

effect of K0 (number of used images) is more visible on median criterion than

on RMSE or 90th ones. Again, according to these two new criteria (ii-iii), our460

approach outperforms [10]. Finally, considering SSIM, we see that [10] provides

slightly better performance than graph cut approach. Indeed, [10] algorithm

provides smooth edges and rather homogeneous regions (see Fig. 4e) compared

to the obtained results (see Fig. 4f, 4g and 4h). Besides, in [10], handled depths

are continuous values whereas our approach considers a finite number of labels.465

4.3. Benefit of data-driven decomposition

Let us now investigate the behavior of the proposed data-driven splitting,

either according to the median value (of the considered interval) or to Otsu’s

criterion. For doing so, we mainly compare the results of our different variants,

represented in the box named Splitting Strategy in Fig. 1, during the first it-470

erations of the algorithms that correspond to small numbers of labels K̃, for

which adaptive splitting offer the best appreciation. Figure 6 illustrates some

recovered depth maps either after two iterations (K̃ = 4, first line) or after

three iterations (K̃ = 8, three remaining lines). The first column shows the all-

in-focus image (Aloe, Flowerpots and Moebius examples of the database); The475

following columns show the depth maps achieved using the dyadic splitting, the
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(b) Dataset K0 = 50, σ1 noise
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(c) Dataset K0 = 30, σ0 noise
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(d) Dataset K0 = 30, σ2 noise
Figure 5: RMSE between the recovered depth maps and the ground truths (averaged value
on the whole dataset), versus λ (points for λ = 0 correspond to blind estimation), for the four
variants of our approach; Three levels of noise: σ0 = 0, σ1 < σ2.

median one and Otsu’s splitting strategies, respectively. From Fig. 6, we may

notice that:

• In the case of the dyadic splitting, there are some unused grey levels (i.e.

depth values), e.g. only 3 labels used instead of 4 for Aloe at second480

iteration, or 5 labels actually used instead of 8 for Flowerpots. Note that

unused labels occur only for specific depth histograms, e.g. empty bins

either at the histogram bounds or between main modes.

• Concerning median or Otsu’s splitting, the labels distribution follows the

histogram features, so that each of the labels (among 4 or 8) represents485

significant numbers of pixels. In the case of the median strategy, although

theoretically the numbers of pixels per label should be equal, practically

these numbers only are close due to the regularization and to the quan-

tification from labels discretization.
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• The median splitting seems to provide more detailed depth maps in the490

background whereas the Otsu’s splitting gives more details in the fore-

ground. Indeed, Otsu’s criterion is sensitive to the global dynamic of the

histogram (difference between bounds of the considered depth interval) so

that, even a few pixels at interval border can attract the split value. In the

presented examples (but the Flowerpots), most pixels are located around495

intermediate depths with few pixels very close to the camera (foreground),

hence explaining the different behaviors.

Ground truth Dyadic Median Otsu

Figure 6: Regularized depth maps obtained after two (top row) or three iterations (three
remaining rows) of our approach, each of the three last columns representing a splitting
strategy. The second column shows the full resolution ground truth for comparison.

To evaluate the benefit of data-driven splitting, RMSE values (averaged over

the considered dataset) are plotted against the number of iterations for three

noise levels and two datasets and for all tested splitting strategies in Fig. 7. On500
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the first line, the noise level is fixed while the considered datasets correspond

either to K0 = 30 or K0 = 50. In contrast, the second line shows subgraphs

for distinct noise levels and for the dataset with K0 = 30. As expected, when

increasing the number of labels, all splitting strategies converge towards depth

maps having the same RMSE value and for all splitting strategies, RMSE values505

grow with the noise level. Additionally, it can be observed that globally (i.e.

for a large number of scenes with various depth histograms), the data-driven

strategies allow for a lower RMSE for small values of K̃ (small iteration numbers)

compared to usual dyadic splitting. On Fig. 7, the curves named Dyadic+

correspond to the dyadic splitting except that the labels (interval centroids510

represented by crosses on Fig. 3) are estimated as the average values of the

depths over the interval (knowing blind histogram) rather than as the interval

center. This allows for a decrease of the RMSE values (under dyadic strategy)

and a fair comparison with data-driven strategies that also use interval-averaged

values for label value estimation. Comparing all strategies for small values of K̃,515

Otsu’s splitting clearly offers the fastest RMSE decrease when noise is absent.

In the other cases, all data-driven splitting strategies perform equally well and

still outperform dyadic splitting.

5. Conclusion and perspectives

In this paper, we present a new Shape-From-Focus method based on varia-520

tional formulation using a convex functional. Thanks to its convexity property,

the functional can be minimized exactly using graph cuts. More precisely, the

multi-label problem is decomposed into a sequence of independent binary sub-

problems, that can be solved in an efficient way using the graph cut optimization

framework. We explore different strategies for decomposition, namely the clas-525

sic dyadic splitting, and two data-driven strategies, namely either median value

splitting or using Otsu’s algorithm. Their benefit relies in the reconstruction of

the main parts of the scene with a small number of labels.

The proposed data-driven strategies can be applied to several other problems
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(b) Dataset K0 = 30, σ1 noise
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(c) Dataset K0 = 50, σ0 noise
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(d) Dataset K0 = 50, σ2 noise
Figure 7: RMSE between the recovered depth maps and the ground truths (average on the
whole dataset), versus the number of graph cuts (iteration), for four splitting strategies; Three
levels of noise: σ0 = 0, σ1 < σ2.

designed for the ‘divide-and-conquer’ approach. In particular, the problems530

dealing with the estimation of a unknown variable taking values in an ordered

set can be formulated in terms of a leveled-energy, for which the data-driven

decomposition may be relevant, such as image denoising or half-toning.
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