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Abstract

Shape From Focus refers to the problem of recovering the depth in every point

of a scene from a set of differently focused 2D images. Recently, some authors

stated this inverse problem in the variational framework and solved it by min-

imizing a non-convex functional. However, global optimality on the solution is

not guaranted and evaluations are either application-specific or incomplete. To

overcome these limits, we propose in this paper to globally and efficiently mini-

mize a convex functional by decomposing it into a sequence of binary problems

using graph cuts. To illustrate the genericity of such a decomposition-based

approach, we investigate several decomposition strategies. Specifically, we focus

on data-driven strategies suited to early reconstruction. We provide qualita-

tive and quantitative evaluation on real popular datasets. According to classic

statistics on error values, the proposed approach exhibits high performance and

robustness against corruped data.
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1. Introduction

1.1. Context

Retrieving the depth of a scene from a collection of at least one image is

a challenging inverse problem that is typically solved using shape-from-X ap-

proaches (where X denotes the cue to infer the shape, e.g. stereo, motion,5

shading, focus, defocus, etc) or a mixture of them. This topic gave rise to a

huge amount of papers and still represent a great interest for researchers in the

computer vision community. Indeed, it has numerous applications, especially

in robotics, both for localization and environment analysis, in monitoring or

video-surveillance either for security or for medical technical assistance, or in10

microscopy and chemistry [1].

More specifically, let us remind that stereovision relies on the disparities

between matched pixels of an image pair [2], shape-from-shading exploits the

variations of brightness of a single image [3, 4] and shape-from-motion deduces

depth from matched points of interest [5]. Shape-from-focus (SFF) [6] and15

shape-from-defocus (SFD) [7] represent alternatives approaches that share the

idea of using the focus to estimate the 3D structure of a scene from differently

focused images acquired by a monocular camera. Thus, an object appears fo-

cused in only a limited range (depth of field) and progressively blurred as we

move away from this range. For both approaches, active and passive sensors20

exist, depending on whether or not a structured light composed of patterns

is projected onto the scene to alleviate ambiguities (note that this paper will

focus on the passive device). In addition to the depth map, both approaches

also provide an estimation of the all-in-focus (i.e. sharp) image of the scene.

Now, about the differences between SFF and SFD, SFD estimates the depth by25

measuring the relative blurriness between a reference image and the remaining

ones. The blurring process needs to be explicitly modeled, a very few images

are usually required and the approach can be applied to dynamic scenes. Then,

SFF only assumes that there is a direct correspondence between the depth of

a given pixel and the focal setting at which it appears the most focused (or30

2



sharp). This implies the choice of an appropriate predefined operator for mea-

suring the amount of sharpness and a fairly large number of images to expect

a good reconstruction quality of the scene. Therefore, SFF is mainly used to

analyze static scenes.

In contrast to multi-cameras systems, SFF and SFD approaches allows for a35

more compact size of the electronic system, decreases its costs and avoids to deal

with matching ambiguities. The cost to pay for such approaches lies however in

an increased number of images to acquire and to process.

1.2. Related work

As previously explained, solving the SFF problem implies the choice of an ap-40

propriate sharpness operator for selecting the focus maximizing the pixel sharp-

ness. First among many, Nayar introduces [6] a sharpness operator named

Summed Modified LAPlacian (SMLAP) based on second derivatives. We refer

the reader to the study [8] that compares a wide variety of sharpness operators

in a comprehensive way.45

Then, the idea of early approaches (such as [6]) is to compute a sharpness

profile over focus values and take the argument of the maximum of this profile

for every pixel, independently of its neighbors. However, whatever the used

sharpness operator, an estimation using raw profile is prone to errors in pres-

ence of corrupted data so that different filters adapted to the sharpness profile50

have been proposed. In [6], a Gaussian interpolation is performed around the

maximum detected on the raw profile. As an alternative to Gaussian interpola-

tion, [9] proposed to interpolate the sharpness profile by a low-order polynomial.

This idea has been then followed in [10], in which an eight-order polynomial is

used.55

Whatever the sharpness operator and the interpolation method used, blind

techniques (i.e. that consider pixels independently of neighbors) therefore do

not generally allow for accurately recovering the 3D geometry of a whole scene.

Indeed, the sharpness operator relies on objects borders that produce sharp

edges on which reliable and precise depth values may be deduced. In the ab-60
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Our [12] [10]
Data term Convex Non-convex Non-convex
Regularization term Convex Non-convex Convex
Functional Convex Non-convex Non-convex
Optimization method Graph cut Graph cut ADMM

Optimality Globally
optimal

Within a known
factor of the

global
minimum [13]

No guaranty
of optimality

Table 1: Functional properties between the proposed approach, [12] and [10].

sence of such elements or of texture, the maximum of sharpness location tends

to produce unreliable results. Ambiguities are especially present in texture-

less, underexposed or overexposed regions. To cope with these problems, some

authors [11] proposed to reject the sharpness values being under a threshold,

resulting in a globally more reliable, but sparse depth map.65

Since the measurements from sharpness operator do not necessarily deter-

mine the depth uniquely, the SFF is an ill-problem. While formulating this kind

of problem in the variational framework is a standard way to tackle it, surpris-

ingly, only a very few papers did it [12, 14, 10]. Mathematically, this amounts to

the definition of a functional embedding a data fidelity term and a smoothness70

(or regularization) term that has to be (efficiently) minimized.

In [10], the variational formulation uses the negative interpolated contrast

measure from Modified LAPlacian (MLAP, i.e. SMLAP restricted to a single

pixel) as data fidelity term. As a result, the latter is a non-convex but smooth

continuous function. The regularization term used is the discrete isotropic Total75

Variation (TV), discontinuity-preserving, non-smooth but convex. To minimize

the resulting non-convex functional, the data term is linearized and an iterative

algorithm (Alternating Direction Method of Multipliers (ADMM)) is applied.

According to the authors, this algorithm provably converges to a critical point of

the functional but no optimality guarantees are mentioned about the solution.80

Although the proposed algorithm seems to give good results and exhibit good

convergence properties, it has been actually evaluated only qualitatively and
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over few real images.

The work of [12] also uses the sharpness operator MLAP. The data fidelity

term is the truncated quadratic difference between the maximum value of sharp-85

ness and the tested sharpness. This term is therefore non-convex. The smooth-

ness term is a truncated L2 norm (then also non-convex) that is discontinuity-

preserving. The truncation depends on whether a significant texture is present

or not. The algorithm used for the minimization of the resulting non-convex

functional is the α-expansion based on graph cuts [13]. Interesting results are90

obtained but the approach is prone to get easily trapped in local minima of

the energy and in [12], the evaluation is limited to application-specific images

(optical microscopes).

In this work, we explore a new way to solve the SFF problem by directly

minimizing a convex functional. The advantage of such choice is twofold: (i) op-95

timality about the solution is easier to guarantee and (ii) the convexity property

can be exploited to use fast minimization procedures. For the latter, our choice

focused on graph cuts because of their well-founded theoretical background [15]

and their efficiency to solve a variety of multi-labels problems with an ob-

served near-linear complexity with the number of pixels using a fast maximum-100

flow/minimum-cut algorithm [16]. Functional properties of the aforementioned

approaches against ours are summarized in the Table 1. While [17] has opti-

mality guarantees for convex priors, the graph construction requires a lot of

computational resources (in terms of time and memory), making the approach

totally impractical for images with a large number of pixels and/or a large105

number of focused images. The α-expansion overcomes this limit by iteratively

considering and solving independent binary problems over a fixed sequence of

labels until convergence. At each iteration, the energy is guaranteed to decrease

but the number of iterations is neither fixed nor bounded. The functional can

also be exactly minimized without stopping criterion (modulo a quantization110

step) when the data fidelity term is convex, by mapping the original problem

to a fixed number of independent binary problems (each one solved using graph

cuts) [18]. In the latter paper, this approach has been successfully applied to

5



grayscale images restoration but the adaption to color images is not straight-

forward. The number of binary problems can be drastically diminished using115

a divide-and-conquer strategy [18]. The idea is to divide a multi-label problem

into a set of binary problems. In our case, it boils down to choosing splits along

the depth dimension and labeling according to each split. A dyadic dichotomic

strategy is an usual way to select these splits [18]. However, a data-driven

splitting strategy may be more interesting than the dyadic one when the labels120

distribution is unbalanced. Indeed, in this case: (i) the size of the subproblems

is unbalanced, so that the complexity of a divide-and-conquer process increases

and (ii) for the dyadic strategy, the results of intermediate iterates present a

higher (than data-driven ones) reconstruction error w.r.t. the all-in-focus image.

The latter point is thus of interest when some reconstruction error is targeted125

by the user.

In what follows, the proposed functional is described in Section 2. In Sec-

tion 3, we provide the algorithm for exactly minimizing such functional and

investigate different splitting strategies. Section 4 analyzes the results obtained

on real data and it compares the respective performances achieved by the vari-130

ants of against [10]. Finally, the contributions of this paper are summarized and

future work is discussed in Section 5.
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2. Proposed functional

To take advantage of efficient minimization procedures based on graph cuts,

we propose to directly use a convex functional. Let us first introduce some135

notations before detailing it.

For positive integers K > 0 and M > 0, let us denote by Φ the sharpness

operator and let us define the finite sets K = {0, . . . ,K − 1} and L = {lk}k∈K
with lk ∈ R,∀k ∈ K. Moreover, we denote by {Ik}k∈K the set of focused images

where Ik : P ⊂ Z2 → RM is a M -channels image defined over lattice P and140

acquired with focus setting lk, for any k ∈ K.

The approach proposed in this paper consists of two steps: (i) a blind esti-

mation of depth is performed for any pixel p ∈ P independently of its neighbors

and (ii) this estimation is used to setup the data term of the functional that

will then be minimized to derive the optimal depth map solution. These steps145

are detailed in the subsequent sections.

2.1. Sharpness profiles

The model used to interpret the physical process blurring the image is based

on geometrical optics. For any given 3D point, moving away the sensor from it

distributes the energy over circular patches (in the image) with radius increasing150

with the sensor displacement. This phenomenon in the frequency domain acts

as a low-pass filtering on the all-in-focus image.

A common choice among sharpness operators is SMLAP since it presents

similar performance for a shorter processing time compared to alternative sharp-

ness operators [8]. For every pixel p ∈ P and every index k ∈ K, this operator

is defined as

Φ(p, lk) =
∑

q∈Ω(p),
q=(i,j)

(∥∥∥∥∂2Ik(q)

∂i2

∥∥∥∥
1

+

∥∥∥∥∂2Ik(q)

∂j2

∥∥∥∥
1

)
, (1)

where ‖.‖1 is the L1 norm in RM , Ω(p) ⊂ Z2 is the neighborhood of pixel p

(typically a small squared window of fixed size), Ik(q) denotes the intensities of
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image Ik at pixel q and Laplacians are approximated by finite differences. Note155

that MLAP can be deduced for Eq. (1) by restricting Ω(p) to pixel p. The above

operator Φ is used in Section 4.

Once the sharpness operator has been applied to the sequence of focused

images {Ik}k∈K, resulting measurements are usually filtered. The interest of

interpolating sharpness profiles is twofold: (i) it increases the robustness against160

potential degradations (noise, contrast, etc.), and (ii) it enables us to reduce the

discretization step along the depth dimension, when a larger resolution is needed.

The interpolation or filtering technique should be carefully selected since the

blind estimation relies on it. Polynomial [10] and Gaussian [6] interpolations

are two common techniques. In this work, to take into account the increase of165

the depth of field with distance, we propose a Gaussian filtering of the sharpness

profile with a standard deviation that linearly depends on the focal value (i.e.

the distance of the object plane to the optical center). In Fig. 1, the raw

sharpness profiles as well as those filtered by the aforementioned techniques are

drawn on the right for three distinct locations depicted on the left all-in-focus170

image. For each profile and each location, the position achieving the maximum

sharpness value is also indicated. In textured regions (such as for pixel 3),

the maxima found are very close to the ideal one and therefore all filtering

techniques perform equally well. The obtained depth estimates however differ

for textureless regions (such as for pixel 1 and pixel 2). It can be observed175

that the polynomial interpolation (used in [10]) presents some oscillations. It

may induce some errors on blind estimates when the profile is flat (e.g. in the

absence of texture). Based on these observations, we therefore use the Gaussian

filtering in this work.

Let us denote by Φ̃(p, .) the interpolated sharpness profile of any pixel p ∈ P ,

whatever the sharpness operator Φ used. For some integer K̃ > 0, let us also

define the sets K̃ = {0, . . . , K̃−1} and L̃ = {lk}k∈K̃ with lk ∈ R, ∀k ∈ K̃. Please

note that the focus values {lk}k∈K̃ are not necessary equally spaced along depth

dimension: For targeted applications, some preference can be given to some

specific range of values. In the following, we only refer to the set L̃ instead of
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L. The blind depth estimates can now be formally defined as

v =

{
vp

∣∣∣∣∣vp = argmax
k∈L̃

{Φ̃(p, lk)}

}
p∈P

. (2)

Figure 1: Influence of the filtering techniques on the blind depth estimates for three cross-
marked pixels shown on the all-in-focus image (left) and their corresponding sharpness profiles
(right). The absence of contrasted texture leads to a poor depth estimate (i.e. too far from the
ideal one). The proposed Gaussian filtering offers more accurate results than the polynomial
interpolation.

2.2. Functional180

Given blind estimates v ∈ L̃P obtained using Eq. (2) (see Section 2.1) and

for any x ∈ L̃P , we denote the functional to minimize by

E(x) =
∑
p∈P

Up(xp) + λ
∑

(p,q)∈N
Vp,q(xp, xq), (3)

where N ⊂ (P ×P) is the set of adjacent pixel pairs, Up(xp) is the data fidelity

term measuring the cost of assigning the label xp to the pixel p with respect

to the sharpness profile, Vp,q(xp, xq) is the regularization term that is chosen to

penalize the difference of labeling between pixels p and q, and λ is a non-negative

weighting parameter determining the balance between both terms.185

In Eq. (3), the data term is defined for any pixel p ∈ P as the weighted Lα
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norm (α ≥ 1) between blind estimate vp (see Eq. (2)) and label xp, i.e.

Up(xp) = ηp|xp − vp|α, (4)

where

ηp ∝

 K̃
(

Φ̃(p, vp)− Φ̃(p, zp)
)2

∑
k∈L̃

(
Φ̃(p, lk)− Φ̃(p, zp)

)
+ ε

 ∈ [0,
K̃(Φ̃(p, vp)− Φ̃(p, zp))

K̃ − 1

[
,

with ε ' 0 and zp is defined for any pixel p ∈ P as zp = argmink∈L̃ {Φ̃(p, lk)}.

In Eq. (4), ηp is independent of xp and is therefore only computed once. The

dynamic range of the sharpness profile Φ̃(p, .) is variable across the pixels de-

pending on whether the pixel p lies in a textured region or not. ηp is proportional

to this dynamic range divided by the normalized area under the sharpness pro-190

file Φ(p, .) (ε avoiding division by zero). Therefore, ηp measures the reliability

of each pixel p and weights the data fidelity term accordingly.

Now, the regularization term in Eq. (3) corresponds to the anisotropic total

variation. For any pixel pair (p, q) ∈ N , it is expressed as

Vp,q(xp, xq) = wp,q(xp − xq)+, (5)

where a+ = max {a, 0} and wp,q are fixed positive coefficients (see [19]). De-

spite some undesired behaviors of TV such as “staircasing effect” (creation in

the depth map of flat regions separated by artifact boundaries), this opera-195

tor has been well studied in the past, it enjoys desirable properties (convexity,

discontinuity-preserving of image boundaries, etc.) and it has been successfully

applied to a number of applications and problems such as in image restoration

when α = 1 or α = 2 (see [19] and the references therein). The above definition

of the TV is general. In particular, it allows us to have wp,q 6= wq,p. While200

neighborhoods taking into account complex relationships between pixels could

be considered, we only use the 8-connexity in the experimental results presented

in Section 4.
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3. Depth estimation using graph cuts

We now describe how the approach [18] for exactly minimizing (modulo a205

quantization step) convex functionals (like the functional (3) presented in Sec-

tion 2.2) can be used using graph cuts for solving the SFF problem. Firstly,

we remind how this problem can be mapped to a set of independent subprob-

lems which only involve binary variables. Secondly, we recall how each of these

subproblems can be efficiently solved using a maximum-flow/minimum-cut al-210

gorithm (graph cut) and how their number can be drastically reduced using a

divide-and-conquer process with a dichotomic splitting. Thirdly, other splitting

strategies are investigated.

3.1. Leveled-energy decomposition

In the sequel, we assume that the set L̃ is ordered and consists of increasing

values, i.e. l0 < . . . < lK̃−1. As explained in [18], the data term (see Eq. (4))

and the regularization term (see Eq. (5)) of the functional (see Eq. (3)) can be

decomposed as a sum of energies on the level sets of x, with x ∈ L̃P . For doing

so, let us denote by xlp = 1{xp≥l} the l-level set of the variable xp. For any pixel

p ∈ P , the data term can be decomposed as

Up(xp) =

 ∑
k∈K̃\{0}

xlkp (Up(lk)− Up(lk−1))

+ Up(l0). (6)

Note that the latter equation is consistent whatever xp ∈ L̃. Similarly, for any

pixels pair (p, q) ∈ N , the regularization term can be decomposed as

Vp,q(xp, xq) =
∑

k∈K̃\{0}

wp,q(x
lk
p − xlkq ))+︸ ︷︷ ︸

Vp,q(x
lk
p ,x

lk
q )

. (7)

In the latter expression, the sum on k starts from k = 1 since xl0p = xl0q = 1,

∀(p, q) ∈ N . Using Eq. (3), Eq. (6) and Eq. (7), the functional may now be
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written

E(x) =
∑

k∈K̃\{0}

Elk(xlk) + C, (8)

where C is a constant that does not depend on x and the energy Elk is defined,

for any k ∈ (K̃\ {0}) and any binary matrix w = {0, 1}P , by

Elk(w) =
∑
p∈P

wp(Up(lk)− Up(lk−1)) + λ
∑

(p,q)∈N
Vp,q(wp, wq). (9)

For any k ∈ K̃\ {0}, let us denote by x̂lk ∈ {0, 1}P a minimizer of Elk . If these

minimizers satisfy

x̂lkp ≥ x̂lk′p , ∀0 ≤ k ≤ k′ ≤ K̃ − 1, ∀p ∈ P , (10)

i.e. the level sets x̂lk are nested, then, from Eq. (8), we can check that the level

sets x̂ ∈ L̃P defined for all p ∈ P , by

x̂p = max {k ∈ K̃ | x̂lkp = 1},

minimizes Eq. (8). According to [18], if the condition (10) holds for data fidelity215

term (which is the case here since the data term of Eq. (4) is convex), a minimizer

of E can be deduced from all the minimizers of {Elk}k∈K̃\{0}. Let us now present

how every binary problem Elk can be efficiently solved using graph cuts.

3.2. Graph cut minimization

Due to limited resources and algorithmic developments, graph cuts remained220

bounded to binary image restoration for a long time [20]. The emergence of a

fast maximum-flow/minimum-cut algorithm [16] coupled to a better charac-

terization of what energies can be minimized [15], was a milestone for solving

challenging visions tasks such as segmentation, restoration, stereovision, etc. In

particular, [15] provides a key result about the conditions for the applicability225

of the approach: submodularity of pairwise terms is a necessary and sufficient
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condition for minimizing a functional. In our case, since TV is submodular, this

condition is verified for the functional (3).

For minimizing every Elk (see Eq. (9)) using graph cuts, we adopt the graph

construction detailed in [15]. Let us consider a weighted and oriented graph

G = (V , E) where V = P ∪{s, t} is the set of nodes (s and t are named terminal

nodes) and E = N ∪{(s, p)}p∈P∪{(p, t)}p∈P is the set of edges (edges connecting

s or t are named t-links while remaining edges are named n-links). Then, we

assign a non-negative capacity to any edge (p, q) ∈ E as follows:
cs,p = (Up(lk)− Up(lk−1))−, ∀p ∈ P ,

cp,t = (Up(lk)− Up(lk−1))+, ∀p ∈ P ,

cp,q = λwp,q, ∀(p, q) ∈ N ,

(11)

where (a)− = max {−a, 0}. For any S ⊆ P , we define the value of the s-t cut

(S ∪ {s}, (P \ S) ∪ {t}) in the graph G by

valG(S) =
∑

p∈(S∪{s})
q 6∈(S∪{s})

cp,q.

For any S ⊂ P , we also define for every p ∈ P

xSp =

 0 if p ∈ (S ∪ {s}),

1 if p 6∈ (S ∪ {s}).

There is a one-to-one correspondence between the sets S and the elements of

{0, 1}P . Using the edge capacities (11) as well as the definitions (9) and (5), it is230

also straightforward to see that valG(S) is equal to E(xS), up to a constant that

is independent of x. If (S∗∪{s}, (P \S∗)∪{t}) is a minimum s-t cut (s-t cut of

minimum weight) in the graph G, xS∗ is thus a minimizer of Elk . This minimizer

can be efficiently computed using a maximum-flow/minimum-cut algorithm such

as [16]. Although it has a pseudo-polynomial worst-case complexity depending235

on the value of the minimum s-t cut, its near-linear behavior still makes it

attractive for typical vision tasks.
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More generally, the minimization of the functional (3) requires the computa-

tion of precisely K̃ s-t minimum cuts, which is time-consuming when K̃ is large.

Due to the monotone condition (10), binary solutions are nested. The divide-240

an-conquer process proposed in [18] takes advantage of this property and allows

one to drastically decrease the number of s-t minimum cuts until blog2(K̃)c.

3.3. Data-driven decomposition

The dyadic splitting allows for an optimal decomposition for a given set of

labels L̃, requiring blog2(K̃)c different graph cuts instead of the K̃ binary prob-245

lems. Although dyadic splitting provides a deterministic number of iterations

(for a given label resolution), it does not necessarily reach optimal reconstruc-

tions for intermediate depth maps. Indeed, intermediate results (derived consid-

ering less than blog2(K̃)c iterations) may be significantly suboptimal, depending

on the actual depth map itself. Then, in this section, we investigate automatic250

decompositions that are data-driven.

The idea is to base the choice of the split values (used at each iteration)

on the depth histogram. Then, instead of thresholds corresponding to dyadic

splitting of the whole depth interval, we will derive adaptive values based on the

depth histogram. Let us denote by τ ij the split values used at iteration i, with255

iend the final number of iterations, i ∈ {1, . . . , iend − 1)}, j ∈
{

1, . . . , 2i−1
}
.

Note that the label values are within the intervals defined by the τ ij set.

Without loss of generality, we consider depth interval equal to [0, 1] (linear

transformation is trivial for other interval bounds). Considering the dyadic

splitting, extending threshold notation so that τ i0 = 0,∀i ∈ {0, . . . , iend}, the set260

of τ ij values at iteration i is
{
τkj + 1

2i ,∀0 ≤ k < i
}
. Focusing on a data-driven

approach, the most prevalent depths should drive the splitting strategy, in order

to provide more details (and therefore a more accurate depth map) for the main

objects of the scene. Two adaptive splitting ways have been considered, namely:

• the median splitting, where chosen thresholds correspond to median values265

of the depth histogram restricted to the interval to split. Specifically,

τ1
1 is the median of the whole histogram interval, τ2

1 is the median of
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the histogram restricted to
[
0, τ1

1

]
and τ2

2 is the median of the histogram

restricted to
[
τ1
1 , 1
]
, and so on.

• Otsu’s splitting, where chosen split values correspond to Otsu algorithm [21]270

applied to the depth histogram restricted to the interval to split. Simi-

larly to the median splitting case, τ1
1 is the Otsu threshold of the whole

histogram interval, τ2
1 is the Otsu threshold of the histogram restricted to[

0, τ1
1

]
and so on.

Now, five comments have to be made.275

• Firstly, the way to choose the split value do not impact the graph cut

minimization algorithm presented in Section 3.2.

• Secondly, since the actual depth histogram is unknown, we use the blind

depth map to derive an approximation of the depth histogram. Indeed,

even if the blind depth map has numerous errors, we assume that it is280

sufficiently correct in terms of statistics to allow for the choice of adaptive

thresholds more appropriated than the dyadic splitting.

• Thirdly, the choice of Otsu’s algorithm stems from the fact that, theo-

retically, it yields the best results in terms of RMSE (Root Mean Square

Error). However, both due to discretization of the labels, iterative process285

and regularization step, achieved RMSE value cannot be predicted.

• Fourthly, to compute RMSE values, we need the depth value (label) as-

sociated to each interval defined by two consecutive split values. To min-

imize RMSE, rather than the interval centers, we propose to consider the

interval centroids (i.e. mean) values.290

• Fifthly, in the absence of a stopping criterion based on the number of pixels

per interval, the number of iterations of the adaptive approaches may be

greater than blog2(K̃)c since the length of intervals is unbalanced so that

some ‘small’ intervals cannot be further split and some ‘large’ intervals will

require more iterations to reach the chosen depth resolution. Therefore,295
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adaptive splitting is mainly relevant for low numbers of iterations, while

the ‘cost’ of being optimal for the first iterations is either a stopping test

(interval occupancy) or a higher total number of iterations.

(a) Dyadic

(b) Median

(c) Otsu

Figure 2: Illustration of the different splitting strategies, for λ = 0.025; 1st column: tree of
the centroids, also showing the split values versus the iteration number, 2nd column: 4-valued
depth map achieved at iteration 2. Median or Otsu’s splitting strategies outperform the dyadic
one in the earliest iterations.

Figure 2 illustrates the different splitting strategies: dyadic, median or Otsu’s

way as proposed. The trees (below the blind histogram of the image) show the300

split values (squares) and the centroids (crosses) versus the iterations. The

centroid set provides the depth values used for depth map estimation. On the

right part of the figure, the four-labels image corresponds to the second graph

cut iteration. According to this example, we clearly see that Otsu’s and median

splitting strategies efficiently retrieve the main objects in the earliest iterations.305
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4. Numerical experiments

4.1. Data and evaluation measures

The dataset on which we focused for our experiments is derived from the

Middlebury college dataset from 2005 and 2006 [22]. This dataset provides, for

various realistic scenes, accurate depth maps as well as colored all-in-focus im-310

ages (here, M = 3), with several available exposures and illumination settings.

Among them, we have selected the intermediate exposure and the lowest illumi-

nation and smallest image resolution, for both views 1 and 5. Since the depth

maps are recovered from stereo matching, depth information is not available for

some pixels due to occlusions. To overcome this problem, the unknown depth315

values have been estimated by the median value of the surrounding depths.

From this patched dataset, we generate the sequence of focused images for

each scene using the code provided by Pertuz 1 with default values of parameters.

Each pixel of the all-in-focus image is blurred depending on the distance between

the depth map and the image focal plane, thus giving rise to a sequence of K320

images. In the following experiments, we present the results obtained from

datasets simulated with this software adapted to the usage of a depth map and

a colored all-in-focus image, with K = 30 and K = 50 images. We furthermore

add noise on the images obtained by adding normally distributed random values

(centered on 0, of standard deviation σ ∈ {σ0 = 0, σ1 = 0.005, σ2 = 0.01}) to325

the float intensity images scaled to [0, 1]. Please note that the noise images are

uncorrelated along the depth dimension.

To evaluate the performance of our SFF algorithm, we propose to estimate

quantitatively the accurateness of our estimation x ∈ L̃P against the ground

truth y ∈ L̃P using four metrics: (i) the RMSE; then, computed from the his-

togram of the absolute error values, (ii) the median and (iii) the 90th percentile;

and (iv) the Universal Quality Index (UQI, [23]). To remove the dependency

1https://fr.mathworks.com/matlabcentral/fileexchange/55103-shape-from-focus
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on the dynamic of the scene (denoted by ∆x), we scale RMSE values by ∆x:

RMSE(x,y) = 100

√
1

]P∆2
x

∑
p∈P

(xp − yp)
2 ∈ [0, 100],

where ] denotes the cardinality of a set.

Considering absolute error distribution provides a complementary evaluation

(for instance it is less sensitive to outliers that the RMSE criterion). For these330

three metrics (i-iii), the lower the achieved values, the better the results are.

Finally, UQI is also complementary since it evaluates the correlation between

estimation and ground truth (ideal estimation). It is defined by:

UQI(x,y) =
1

]P ′
∑
p∈P ′

4σxΩ(p)yΩ(p)x̄Ω(p)ȳΩ(p)(
σ2
xΩ(p)

+ σ2
yΩ(p)

)(
x̄2

Ω(p) + ȳ2
Ω(p)

) ∈ [−1, 1] ,

where P ′ is the set of the centers p of the used windows Ω(p) of size 7 × 7,

x̄Ω(p), ȳΩ(p) are the means of xΩ(p), yΩ(p) respectively, and σxΩ(p)
, σyΩ(p)

, and335

σxΩ(p)yΩ(p) are the variances and covariance. For metric (iv), the higher the

achieved values, the better the results are.

In what follows, we first illustrate the benefit of the proposed energy model

against the state-of-the-art methods. Then, we present the interest of data-

driven splittings when seeking for early reconstructions.340

4.2. Benefit of proposed energy model

The aim of this subsection is to check the usefulness of the regularization pro-

cess based on the proposed energy model. Assuming that Moeller’s work [10]2

represents the state-of-art (of variational SFF methods), we compare it to three

variants of our method. Faced to the number of algorithm parameters to tune,345

we run [10] algorithm with its default value parameters (except λM parameter

2The CUDA/C++ code of the parallelized GPU version is publicly available on the webpage
https://github.com/adrelino/variational-depth-from-focus
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that was fitted, see Fig. 4), having checked that these default values provide

rather satisfying results. For our approach, three variants of the functional (3)

were implemented in OpenCV/C++ with a 8-neighbors graph connexity and

K̃ = K. Even though the introduced noise is Gaussian, we empirically observe350

that, it yields to a noise likened to impulsive noise on maximal sharpness val-

ues and blind estimated depths (see Fig. 3d). Based on this observation, we

therefore have chosen to set α = 1 in Eq. (4).

The three variants only differ by the data fidelity term, namely either based

on the polynomial interpolation of MLAP sharpness profile (that is also the355

blind estimate of [10]), or on the Gaussian filtering of MLAP sharpness profile,

or on the proposed Gaussian filtering of SMLAP sharpness profile (see Eq. (1)

with Ω window of size 7× 7). These three variants are called ‘Graph cut PM’,

‘Graph cut GM’ and ‘Graph cut GS’, respectively. For the the ‘Graph cut

GM/GS’ variants, the standard deviation of the Gaussian filter is determined360

empirically by the relation σ(k) = 0.2k + 1, where k is the index of the focused

image in the sequence. For each of the above variants, the blind estimation is

derived considering λ = 0 whereas the regularized ones correspond to λ > 0.

We vary the parameter λ within a fixed interval where the RMSE values are

then sampled. This allows us to observe the behavior of the algorithm versus365

the regularization parameter as well as to get the λ value achieving the minimal

RMSE value (denoted by λ∗) in this sampled interval.

Figure 3 gives a qualitative comparison of some results obtained in the case

of the Art image example. Specifically, the first line shows the all-in-focus image

(last column), the depth ground truth (first column) and ‘optimal’ result of [10]370

(middle column). The three following lines allows us to compare the ‘Graph cut

PM’, ‘Graph cut GM’ and ‘Graph cut GS’ results with the blind estimations

shown on first column, the λ∗-regularized results shown on second column and

examples of over-regularized results on last column. We can draw the following

comments:375

• The benefit of the proposed data fidelity term (SMLAP, Gaussian) is vis-

19



ible when comparing Fig. 3d, Fig. 3g and Fig. 3j: Firstly, conversely to

polynomial interpolation, Gaussian filtering avoids oscillations and sec-

ondly, SMLAP allows for early 2D-spatial filtering of high frequencies of

depth map. Besides, Fig. 3e, Fig. 3h and Fig. 3k show that the data380

fidelity term also impacts the result obtained after regularization.

• The regularization allows for the removal of noise in blind estimation.

Using the optimal regularization parameter, proposed model allows for

much better preservation of details and fine structures than with [10] (that

may seem a little bit too regularized even though it is the best result385

achieved when varying the weight of the regularization term).

• Increasing furthermore the regularization parameter (beyond its optimal

value), spatial details are wiped out whereas the overall shape of objects

in the scene is well preserved and remains visible.

To evaluate quantitatively the usefulness of the proposed method, on Fig. 4,390

we plot the RMSE values versus the regularization parameter λ. As previously,

the considered SFF methods are [10], ‘Graph cut PM’, ‘Graph cut GM’ and

‘Graph cut GS’. RMSE values are averaged over all the images of the consid-

ered dataset. On the first line of Fig. 4, the subgraphs correspond to the two

considered datasets with either K = 30 or K = 50 images with a given noise395

level (intermediate) whereas on the second line the noise level varies for a given

dataset (K = 30). In the presented graphs, the λ scale is those used for the

models ‘Graph cut PM/GM/GS’, whereas regularization parameter λM of [10]

is derived using λM = 103+3×log10(λ). From Fig. 4, we observe that:

• The RMSE curves are consistent with qualitative results depicted in Fig. 3:400

whatever the variational method (among the considered ones), increasing

λ until λ∗ allows for RMSE decrease (by removing blind estimation noise)

but when increasing λ beyond λ∗, the RMSE value increases (by removing

relevant thin structures of the scene).

• The minimal average RMSE value depends on the noise level (see Fig. 4a,405
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(a) Ground truth (b) Approach [10] (c) All-in-focus

(d) MLAP, polynomial (e) λ∗-regularized (f) Over-regularized

(g) MLAP, Gaussian (h) λ∗-regularized (i) Over-regularized

(j) SMLAP, Gaussian (k) λ∗-regularized (l) Over-regularized

Figure 3: Examples of SFF depth maps associated to all-in-focus (c) and ground truth (a) im-
ages; Shown results correspond to: [10] algorithm (b) and our model (see Eq. (3)) when varying
the blind estimation (from MLAP polynomial interpolation to proposed SMLAP Gaussian fil-
tering) and the regularization parameter. The optimal fitting of our model (k) outperforms
the alternative approaches.
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4c and 4d).

• In terms of averaged RMSE, the best results are achieved by the proposed

‘Graph cut GS’ algorithm (or in one case by its variant ‘Graph cut GM’)

for the three considered noise levels and the two datasets. The curves

obtained when varying the dataset (see Fig. 4a and 4b) are quite similar410

(also for not shown noise levels).

• In the case of Fig. 4c (and visually with the pencils in Fig. 3h), avoiding

the spatial averaging of the SMLAP allows for retrieving thin details in

the depth map. However, for noisy data, ‘Graph cut GS’ outperforms

‘Graph cut GM’ thanks to noise filter included in SMLAP.415

Table 2 shows the values of the four metrics (see Section 4.1), averaged over

the two considered datasets with K = 30 and K = 50 images, for λ∗GS = 0.025

and λ∗M = 0.001. We note that, as seen on Fig. 4, ‘Graph Cut GS’ achieved

lower RMSE values than [10] and that both mean and standard deviation values

increase with noise level. For a given dataset, the histogram of the absolute420

errors have been computed on all the included images, with ground truth depths

scaled in [0, 100]. As usual, the noise has a much stronger impact on the 90th

percentile values than on the median ones. We notice that the effect of K

(number of used images) is more visible on median criterion than on RMSE

or 90th ones. Again, according to these two new criteria (ii-iii), our approach425

outperforms [10]. Finally, considering UQI, we see that [10] provides slightly

better performance than graph cut approach. Indeed, [10] algorithm provides

smooth edges and rather homogeneous regions (see Fig. 3b) compared to the

obtained results (see Fig. 3e, 3h and 3k). Besides, in [10], handled depths are

continuous values whereas our approach considers a finite number of labels.430

4.3. Benefit of data-driven decomposition

Let us now investigate the behavior of the proposed data-driven splitting,

either according to the median value (of the considered interval) or to Otsu’s

criterion. For doing so, we mainly compare the results obtained during the first
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(a) Dataset K = 30, σ1 noise (b) Dataset K = 50, σ1 noise

(c) Dataset K = 30, σ0 noise (d) Dataset K = 30, σ2 noise

Figure 4: RMSE between the recovered depth maps and the ground truths (average value on
the whole dataset), versus λ (points for λ = 0 correspond to blind estimation), for the four
variants of our approach; three levels of noise: σ0 = 0, σ1 < σ2. In every case, as expected, the
curves vary smoothly with a minimum RMSE value achieved for some value of regularization
parameter λ. Proposed approach ‘Graph Cut GS’ outperforms alternative methods.

iterations of the algorithms (since at the end, whatever the splitting criterion,435

the same full-resolution depth map will be achieved). Figure 5 illustrates some

recovered depth maps either after two iterations (first line) or after three iter-

ations (three remaining lines). The first column shows the all-in-focus image

(Aloe, Flowerpots andMoebius examples of the database); the following columns

shows the depth maps achieved using the dyadic splitting, the median one and440

Otsu’s splitting strategies, respectively. From Fig. 5, we may notice that:

• In the case of the dyadic splitting, there are some unused grey levels (i.e.
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depth values), e.g. only 3 labels used instead of 4 for Aloe at second

iteration, or 5 labels actually used instead of 8 for Flowerpots. Note that

unused labels occur only for specific depth histograms, e.g. empty bins445

either at the histogram bounds or between main modes.

• Concerning median or Otsu’s splitting, the labels distribution follows the

histogram features, so that each of the labels (either 4 or 8 depending on

the iteration) represent significant numbers of pixels. In the case of the

median strategy, although theoretically the numbers of pixels per label450

should be equal, practically these numbers are close due to the regulariza-

tion and to the quantification from labels discretization.

• The median splitting seems to provide more detailed depth maps in the

background whereas the Otsu’s splitting gives more details in the fore-

ground. Indeed, Otsu’s criterion is sensitive to the global dynamic of the455

histogram (difference between depth bounds of the considered interval) so

that, even a few pixels at interval border can attract the split value. In the

presented examples (but the Flowerpots), most pixels are located around

intermediate depths with few pixels very close to the camera (foreground),

hence explaining those behaviors.460

To evaluate the benefit of data-driven splitting, RMSE values (averaged over

the considered dataset) are plotted against the number of iterations for three

noise levels and two datasets and for driven/non-driven splitting strategies in

Fig. 6. On the first line, the noise level is fixed while the considered datasets are

either for K = 30 or K = 50. Conversely, the second line shows subgraphs for465

distinct noise levels and for the dataset with K = 30. As expected, all splitting

strategies converge towards depth maps having the same RMSE value and for

all splitting strategies, RMSE values grow with the noise level. Additionally, it

can be observed that globally (i.e. for a large number of scenes with various

depth histograms), the data-driven strategies allows for a smaller RMSE for470

small iteration numbers compared to usual dyadic splitting. On Fig. 6, the

curves named Dyadic+ correspond to the dyadic splitting followed except that
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the labels (interval centroids represented by crosses on Fig. 2) are estimated as

the average values of the depths over the interval (knowing blind histogram)

rather than as the interval center. This allows for a decrease of the RMSE475

values (under dyadic strategy) and a fair comparison with data-driven strategies

that also use interval-averaged values for label value estimation. Comparing all

strategies for intermediate iterations, Otsu’s splitting clearly offers the fastest

RMSE decrease when noise is absent. In the other cases, all data-driven splitting

strategies perform equally well and still outperforms dyadic splitting.480

(a) Dataset K = 50, σ1 noise (b) Dataset K = 30, σ1 noise

(c) Dataset K = 50, σ0 noise (d) Dataset K = 50, σ2 noise

Figure 6: RMSE between the recovered depth maps and the ground truths (average on the
whole dataset), versus the number of graph cuts (iteration), for four splitting strategies; three
levels of noise: σ0 = 0, σ1 < σ2. There is no significant influence of the number of images,
whereas the presence of noise induces higher RMSEs. Whatever the noise level, dyadic+
strategy offers intermediate performances among the other splitting strategies. For small
iteration numbers, median and Otsu’s splitting strategies exhibit the best results, with a clear
advantage for the latter when the level of simulated noise is null.
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Dyadic Median Otsu

Figure 5: Regularized depth maps obtained after two (top row) or three iterations (three
remaining rows) of our approach, each column representing a splitting strategy. It illustrates
how the data-driven splitting strategies allow for the maximization of the information recov-
ered (at each step) and how the obtained depth maps focus on different image parts depending
on the considered strategy.
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5. Conclusion and perspectives

In this paper, we present a new Shape-From-Focus method based on varia-

tional formulation using a convex functional. Thanks to its convexity property,

the functional can be minimized exactly using graph cuts. More precisely, the

multi-labels problem is decomposed into a sequence of independent binary sub-485

problems, that can be solved in an efficient way using the graph cut optimization

framework. We explore different strategies for decomposition, namely the clas-

sic dyadic splitting, and two data-driven strategies either median value splitting

or using Otsu’s algorithm. Their benefit relies in the early reconstruction of the

main parts of the scene.490

The proposed data-driven strategies can be applied to several other prob-

lems designed for the ‘divide-and-conquer’ approach. In particular, the problems

dealing with the estimation of a unknown variable taking values in an ordered

set can formulated in terms of a leveled-energy, for which the data-driven de-

composition may be relevant, such as image denoising or half-toning.495

RMSE Median 90th percentile UQI
λ = λ∗GS ‘Graph cut GS’

K
=

3
0 σ0 2.71 0.78 1.96 0.27

σ1 5.47 1.18 9.80 0.22
σ2 8.51 1.57 18.0 0.17

K
=

50 σ0 2.46 0.39 1.57 0.32
σ1 4.93 0.78 7.45 0.28
σ2 7.83 0.78 15.7 0.22

λ = λ∗M Approach [10]

K
=

30 σ0 3.52 1.57 3.92 0.37
σ1 6.94 1.96 15.7 0.29
σ2 10.2 2.35 23.5 0.21

K
=

50 σ0 3.40 1.57 4.31 0.37
σ1 7.03 2.35 16.9 0.28
σ2 9.11 2.75 23.9 0.22

Table 2: Results of the four evaluation metrics, averaged over the two considered datasets
with λ∗GS = 0.025 for ‘Graph cut GS’ and λ∗M = 0.001 for [10]. Best results between the two
approaches are shown in bold. The proposed one behaves better for three metrics out of four.
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