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COMPACTNESS AND LOWER SEMICONTINUITY IN GSBD

ANTONIN CHAMBOLLE AND VITO CRISMALE

Abstract. In this paper, we prove a compactness and semicontinuity result in GSBD

for sequences with bounded Griffith energy. This generalises classical results in (G)SBV
by Ambrosio [1, 2, 3] and SBD by Bellettini-Coscia-Dal Maso [9]. As a result, the static
problem in Francfort-Marigo’s variational approach to crack growth [27] admits (weak)
solutions. Moreover, we obtain a compactness property for minimisers of suitable Ambrosio-
Tortorelli’s type energies [6], which have been shown to Γ-converge to Griffith energy in [16].

1. Introduction

The variational approach to fracture was introduced by Francfort and Marigo in [27] in
order to build crack evolutions in brittle materials, following Griffith’s laws [32], without a
priori knowledge of the crack path (or surface in higher dimension). It relies on successive
minimisations of the Griffith energy :

u 7→
ˆ

Ω\K

Ce(u) : e(u)dx+ γHn−1(K)

where Ω ⊂ Rn is a bounded open set, the reference configuration, u : Ω→ Rn is an (infinitesi-
mal) displacement, e(u) its symmetrised gradient (the infinitesimal elastic strain) and C the
Cauchy stress tensor defining the Hooke’s law (in particular, Ca : a defines a positive definite
quadratic form of the n × n symmetric tensor a). The symmetrised gradient e(u) is defined
out of a crack set K, which is in the theory a compact (n−1)-dimensional set and is penalised
by its surface (multiplied by a coefficient γ called the toughness).

The minimisation of the energy is under the constraint that K should contain a previously
computed crack, and that u should satisfy a Dirichlet condition u = u0 on a subset ∂DΩ \K
of ∂Ω, where ∂DΩ is a regular part of the boundary and u0 a sufficiently regular displacement.
Hence an important question in the theory is whether the problem

min
u=u0 on ∂DΩ\K

ˆ

Ω\K

Ce(u) : e(u)dx+ γHn−1(K) (1.1)

has a solution.
This problem however is not easy to analyse, since the energy controls very little of the

function u: for instance if K almost cuts out a connected component of Ω, the function u may
have any (arbitrarily large) value in this component at small cost.

For this reason, most of the “sound” approaches to problem (1.1) consider additional as-
sumptions. In particular, a global L∞ bound on the displacements ensures one may work
in the class SBD of Special functions with Bounded Deformation [4], provided one considers
a weak formulation of the problem where K is replaced with the intrinsic jump set Ju of u
(which needs not to be closed anymore): in this space minimising sequences are shown to be
compact [9], and the energy to be lower semicontinuous. Another possible assumption is, in
2d, that the crack set K is connected [23, 12].

The natural space for studying (1.1), in fact, is not SBD(Ω) (which assumes that the
symmetrised gradient of u is a measure and hence u is in L

n/(n−1)
loc (Ω;Rn)) but the space

GSBD(Ω), introduced by G. Dal Maso in [21]. This space, defined by the slicing properties
of the functions, is designed in order to contain “all” displacements u for which the energy
is finite. No compactness result was available in GSBD for minimizing sequences until very
recently.
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2 ANTONIN CHAMBOLLE AND VITO CRISMALE

The first existence result for (1.1) without further constraint has been proven indeed in [31],
in dimension two. It relies on a delicate construction showing a piecewise Korn inequality, in
[28] (for approximated Korn and Korn-Poincaré inequalities see also e.g. [17, 14, 30]). In the
antiplane case, namely when the displacement u is assumed vertical and depending only on
the horizontal components (this provides a control on the absolutely continuous part of the full
gradient of u) the existence of minimisers has been proven in [1, 2, 3] in combination with [25],
passing through the corresponding weak formulation, and in [22, 34], taking the discontinuity
set as main variable (these results consider indeed the minimisation of the Mumford-Shah
functional [35], closely related to antiplane Griffith energy and which inspired this variational
theory).

We remark that [31] also proves existence of quasistatic evolutions in dimension two, ex-
tending in that case the result in [26], obtained in the antiplane case (see [8] for the exis-
tence of strong quasistatic evolutions in dimension two). Moreover, we mention the works
[33, 29, 19, 18, 16, 15] that employ or give further insight on the space GSBD.

In this paper, we prove the following general compactness result for sequences bounded in
energy, in the space GSBD(Ω), in any dimension.

Theorem 1.1. Let φ : R+ → R+ be a non-decreasing function with

lim
t→+∞

φ(t)

t
= +∞ , (1.2)

and let uh be a sequence in GSBD(Ω) such thatˆ

Ω

φ
(
|e(uh)|

)
dx+Hn−1(Juh) < M , (1.3)

for some constant M independent of h. Then there exists a subsequence, still denoted by uh,
such that A := {x ∈ Ω: |uh(x)| → +∞} has finite perimeter, and u ∈ GSBD(Ω) with u = 0
on A for which

uh → u in L0(Ω \A;Rn) , (1.4a)

e(uh) ⇀ e(u) in L1(Ω \A;Mn×n
sym ) , (1.4b)

Hn−1(Ju ∪ ∂∗A) ≤ lim inf
h→∞

Hn−1(Juh) . (1.4c)

The proof of this theorem is in our opinion simpler than [31], even if a fundamental tool is a
quite technical Korn-Poincaré inequality for functions with small jump set, proved in [14]. We
combine this inequality with arguments in the spirit of Rellich’s type compactness theorems.

Theorem 1.1 gives the existence of minimisers for Griffith energy with Dirichlet boundary
conditions in the weak formulation (see Theorem 4.1), which by results in [19, 15] satisfy the
properties of strong solutions in the interior of Ω. We believe it is possible to prove existence
of solutions for the strong formulation of (1.1) by extending the regularity theorems in [19, 15]
up to the boundary (which has to be sufficiently regular), this is the subject for future study.

We deduce also a suitable compactness property (Theorem 5.2) for sequences of minimisers
for some Ambrosio-Tortorelli’s type energies [6], which have been shown to Γ-converge to
Griffith energy (see [16] for a proof in GSBD, cf. also Theorem 5.1 below). This provides a
theoretical basis to the numerical simulations in [10] and many subsequent works.

Our paper is organised as follows: we first fix the notation and recall basic properties
of the functional spaces employed (Section 2), then we prove, in Section 3, Theorem 1.1.
Section 4 is devoted to the existence of minimisers, while in Section 5 we consider the problem
of compactness for minimisers of the approximating energies.

2. Notation and preliminaries

For every x ∈ Rn and % > 0 let B%(x) be the open ball with center x and radius %. For x,
y ∈ Rn, we use the notation x · y for the scalar product and |x| for the norm. We denote by
Ln and Hk the n-dimensional Lebesgue measure and the k-dimensional Hausdorff measure.
For any locally compact subset B of Rn, the space of bounded Rm-valued Radon measures
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on B is denoted by Mb(B;Rm). For m = 1 we write Mb(B) for Mb(B;R) and M+
b (B) for

the subspace of positive measures of Mb(B). For every µ ∈ Mb(B;Rm), its total variation
is denoted by |µ|(B). We write χE for the indicator function of any E ⊂ Rn, which is 1 on
E and 0 otherwise. We use also the symbol L0(B;Rm) for the space of measurable functions
from B to Rm with the topology of the convergence in measure, while Lp(B;Rm), with p ≥ 1
is as usual the space of p-integrable functions with respect to Ln.

Definition 2.1. Let A ⊂ Rn, v : A→ Rm an Ln-measurable function, x ∈ Rn such that

lim sup
%→0+

Ln(A ∩B%(x))

%n
> 0 .

A vector a ∈ Rn is the approximate limit of v as y tends to x if for every ε > 0

lim
%→0+

Ln(A ∩B%(x) ∩ {|v − a| > ε})
%n

= 0 ,

and then we write
ap lim
y→x

v(y) = a . (2.1)

Remark 2.2. Let A, v, x, and a be as in Definition 2.1 and let ψ be a homeomorphism between
Rm and a bounded open subset of Rm. Then (2.1) holds if and only if

lim
%→0+

1

%n

ˆ

A∩B%(x)

|ψ(v(y))− ψ(a)|dy = 0 .

Definition 2.3. Let U ⊂ Rn open, and v : U → Rm be Ln-measurable. The approximate
jump set Jv is the set of points x ∈ U for which there exist a, b ∈ Rm, with a 6= b, and
ν ∈ Sn−1 such that

ap lim
(y−x)·ν>0, y→x

v(y) = a and ap lim
(y−x)·ν<0, y→x

v(y) = b .

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of
sign of ν, and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the function defined by
[v](x) := v+(x)− v−(x) for every x ∈ Jv. Moreover, we define

J1
v := {x ∈ Jv : |[v](x)| ≥ 1} . (2.2)

Remark 2.4. By Remark 2.2, Jv and J1
v are Borel sets and [v] is a Borel function. By Lebesgue’s

differentiation theorem, it follows that Ln(Jv) = 0.

BV and BD functions. If U ⊂ Rn open, a function v ∈ L1(U) is a function of bounded
variation on U , and we write v ∈ BV (U), if Div ∈ Mb(U) for i = 1, . . . , n, where Dv =
(D1v, . . . ,Dnv) is its distributional gradient. A vector-valued function v : U → Rm is in
BV (U ;Rm) if vj ∈ BV (U) for every j = 1, . . . ,m. The space BVloc(U) is the space of
v ∈ L1

loc(U) such that Div ∈Mb(U) for i = 1, . . . , n.
A Ln-measurable bounded set E ⊂ Rn is a set of finite perimeter if χE is a function of

bounded variation. The reduced boundary of E, denoted by ∂∗E, is the set of points x ∈
supp |DχE | such that the limit νE(x) := lim%→0+

DχE(B%(x))
|DχE |(B%(x)) exists and satisfies |νE(x)| = 1.

The reduced boundary is countably (Hn−1, n − 1) rectifiable, and the function νE is called
generalised inner normal to E.

A function v ∈ L1(U ;Rn) belongs to the space of functions of bounded deformation if its
distributional symmetric gradient Ev belongs toMb(U ;Rn). It is well known (see [4, 36]) that
for v ∈ BD(U), Jv is countably (Hn−1, n− 1) rectifiable, and that

Ev = Eav + Ecv + Ejv , (2.3)

where Eav is absolutely continuous with respect to Ln, Ecv is singular with respect to Ln and
such that |Ecv|(B) = 0 if Hn−1(B) <∞, while Ejv is concentrated on Jv. The density of Eav
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with respect to Ln is denoted by e(v), and we have that (see [4, Theorem 4.3] and recall (2.1))
for Ln-a.e. x ∈ U

ap lim
y→x

(
v(y)− v(x)− e(v)(x)(y − x)

)
· (y − x)

|y − x|2
= 0 . (2.4)

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0, while for
p ∈ (1,∞)

SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(Ω;Mn×n
sym ), Hn−1(Jv) <∞} .

Analogous properties hold for BV , as the countable rectifiability of the jump set and the
decomposition of Dv, and the spaces SBV (U ;Rm) and SBV p(U ;Rm) are defined similarly,
with ∇v, the density of Dav, in place of e(v). For a complete treatment of BV , SBV functions
and BD, SBD functions, we refer to [5] and to [4, 9, 7, 36], respectively.

GBD functions. We now recall the definition and the main properties of the space GBD of
generalised functions of bounded deformation, introduced in [21], referring to that paper for a
general treatment and more details. Since the definition of GBD is given by slicing (differently
from the definition of GBV , cf. [24, 2]), we introduce before some notation.

Fixed ξ ∈ Sn−1 := {ξ ∈ Rn : |ξ| = 1}, for any y ∈ Rn and B ⊂ Rn let

Πξ := {y ∈ Rn : y · ξ = 0}, Bξy := {t ∈ R : y + tξ ∈ B} ,

and for every function v : B → Rn and t ∈ Bξy let

vξy(t) := v(y + tξ), v̂ξy(t) := vξy(t) · ξ .

Definition 2.5 ([21]). Let Ω ⊂ Rn be bounded and open, and v : Ω→ Rn be Ln-measurable.
Then v ∈ GBD(Ω) if there exists λv ∈ M+

b (Ω) such that the following equivalent conditions
hold for every ξ ∈ Sn−1:

(a) for every τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1, the partial derivative
Dξ

(
τ(v · ξ)

)
= D

(
τ(v · ξ)

)
· ξ belongs toMb(Ω), and for every Borel set B ⊂ Ω∣∣Dξ

(
τ(v · ξ)

)∣∣(B) ≤ λv(B);

(b) v̂ξy ∈ BVloc(Ωξy) for Hn−1-a.e. y ∈ Πξ, and for every Borel set B ⊂ Ωˆ

Πξ

(∣∣Dv̂ξy∣∣(Bξy \ J1
v̂ξy

)
+H0

(
Bξy ∩ J1

v̂ξy

))
dHn−1(y) ≤ λv(B) , (2.5)

where J1
ûξy

:=
{
t ∈ Jûξy : |[ûξy]|(t) ≥ 1

}
.

The function v belongs to GSBD(Ω) if v ∈ GBD(Ω) and v̂ξy ∈ SBVloc(Ωξy) for every ξ ∈ Sn−1

and for Hn−1-a.e. y ∈ Πξ.

GBD(Ω) and GSBD(Ω) are vector spaces, as stated in [21, Remark 4.6], and one has the
inclusions BD(Ω) ⊂ GBD(Ω), SBD(Ω) ⊂ GSBD(Ω), which are in general strict (see [21,
Remark 4.5 and Example 12.3]). For every v ∈ GBD(Ω) the approximate jump set Jv is still
countably (Hn−1, n− 1)-rectifiable (cf. [21, Theorem 6.2]) and can be reconstructed from the
jump of the slices v̂ξy ([21, Theorem 8.1]). Indeed, for every C1 manifold M ⊂ Ω with unit
normal ν, it holds that for Hn−1-a.e. x ∈ M there exist the traces v+

M (x), v−M (x) ∈ Rn such
that

ap lim
±(y−x)·ν(x)>0, y→x

v(y) = v±M (x) (2.6)

and they can be reconstructed from the traces of the one-dimensional slices (see [21, Theo-
rem 5.2]). Every v ∈ GBD(Ω) has an approximate symmetric gradient e(v) ∈ L1(Ω;Mn×n

sym ),
characterised by (2.4) and such that for every ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ

e(v)ξyξ · ξ = ∇v̂ξy L1-a.e. on Ωξy . (2.7)



COMPACTNESS AND LOWER SEMICONTINUITY IN GSBD 5

By these properties of slices it follows that, if v ∈ GSBD(Ω) with e(v) ∈ L1(Ω;Mn×n
sym ) and

Hn−1(Jv) < +∞, then for every Borel set B ⊂ Ω

Hn−1(Jv ∩B) = (2ωn−1)−1

ˆ

Sn−1

(ˆ
Πξ

H0(Jvξy ∩B
ξ
y) dHn−1(y)

)
dHn−1(ξ) (2.8)

and the two conditions in the definition of GSBD for v hold for λv ∈M+
b (Ω) such that

λv(B) ≤
ˆ
B

|e(v)|dx+Hn−1(Jv ∩B) , (2.9)

for every Borel set B ⊂ Ω (cf. also [29, Theorem 1] and [33, Remark 2]).
We now recall the following result, proven in [14, Proposition 2]. Notice that the proposition

is therein stated in SBD, but the proof, which is based on the Fondamental Theorem of
Calculus along lines, still holds for GSBD, with small adaptations.

Proposition 2.6 ([14]). Let Qr = (−r, r)n, v ∈ GSBD(Q), p ∈ [1,∞). Then there exist a
Borel set ω ⊂ Qr and an affine function a : Rn → Rn with e(a) = 0 such that

Ln(ω) ≤ crHn−1(Jv)

and ˆ

Qr\ω

|v − a|p dx ≤ crp
ˆ

Qr

|e(v)|p dx . (2.10)

The constant c depends only on p and n.

3. The main compactness and lower semicontinuity result

In this section we prove Theorem 1.1, the main result of the paper.

Proof of Theorem 1.1. For every k ∈ N and z ∈ (2k−1)Zn we consider the cubes of center z

qk,z := z + (−k−1, k−1)n.

Then Ωk := Ω \
⋃
qk,z 6⊂Ω qk,z is essentially the union of the cubes which are contained in Ω.

We apply Proposition 2.6 with p = 1 in any qk,z ⊂ Ω, so for r = k−1. Then there exist sets
ωhk,z ⊂ qk,z with

Ln(ωhk,z) ≤ ck−1Hn−1(Juh ∩ qk,z) (3.1)

and affine functions ahk,z : Rn → Rn, with e(ahk,z) = 0, such thatˆ

qk,z\ωhk,z

|uh − ahk,z|dx ≤ c k−1

ˆ

qk,z

|e(uh)|dx . (3.2)

The functions (ahk,z)h≥1 belong to the finite dimensional space of affine functions. Consider
a component (ahk,z · ei)h (i = 1, . . . , n), of the sequence: one can either extract a subsequence
such that it converges to an affine function, otherwise, the sequence is unbounded and either it
converges globally, up to a subsequence, to +∞ or −∞, or one can find a hyperplane {x·ν = t}
(ν ∈ Rn, t ∈ R) and a subsequence such that ahk,z(x)·ei → +∞ if x·ν > t and ahk,z(x)·ei → −∞
if x · ν < t. If all components of ahk,z are bounded the limit, clearly, is also an infinitesimal
rigid motion (that is, an affine function with skew-symmetric gradient).

Let τ denote the function tanh (or any smooth, 1-Lipschitz increasing function from −1 to
1). As a consequence, we obtain that up to a subsequence, the function

ahk(x) :=
∑

qz,k⊂Ω

ahk,z(x)χqk,z (x)

is such that τ(ahk · ei) converges to some function in L1(Ωk), for any i = 1, . . . , n.
Clearly the subsequence could be extracted from a previous subsequence built at the stage

k − 1, hence by a diagonal argument, we may assume that for any k, (τ(ahk · ei))h converges
for all i = 1, . . . n, in L1(Ωk).
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We have that for each i = 1, . . . , n, k ≥ 1, and l,m ≥ 1,
ˆ

Ω

|τ(um · ei)− τ(ul · ei)|dx ≤ 2|Ω \ Ωk|+
ˆ

Ωk

|τ(um · ei)− τ(amk · ei)|dx

+

ˆ

Ωk

|τ(amk · ei)− τ(alk · ei)|dx+

ˆ

Ωk

|τ(ul · ei)− τ(alk · ei)|dx. (3.3)

By construction,

lim
l,m→+∞

ˆ

Ωk

|τ(amk · ei)− τ(alk · ei)|dx = 0.

On the other hand,ˆ

Ωk

|τ(um · ei)− τ(amk · ei)|dx =
∑

qk,z⊂Ω

ˆ

qk,z

|τ(um · ei)− τ(amk,z · ei)|dx

≤
∑

qk,z⊂Ω

(
2|ωmk,z|+

ˆ

qk,z\ωmk,z

|um − amk,z|dx
)

≤ 2c

k

(
Hn−1(Jum) +

ˆ

Ωk

|e(um)|dx
)
≤ C

k
.

Using that |Ω \ Ωk| → 0 as k → ∞, we deduce from (3.3) that (τ(uh · ei))h is a Cauchy
sequence (for each i) and therefore converges in L1(Ω) to some limit which we denote τ̃i. Up
to a subsequence, we also assume that the convergence occurs almost everywhere.

We define ū : Ω→ (R̃)n and u : Ω→ Rn such that

ū := (u1, . . . , un) , where ui = τ−1(τ̃i) ; u := ū χΩ\A , (3.4)

with the convention that τ−1(±1) = ±∞. (We observe that we could in fact assign any
constant value to u in A, and even, any infinitesimal rigid motion.)

The set {x ∈ Ω: ui(x) ∈ R for all i = 1, . . . , n} is measurable, since ui(x) ∈ R if and only if
|τ(ui)| < 1 and the functions τ̃i : Ω→ [−1, 1] are measurable. Moreover uh · ei converges in Ln
measure to ui on this set, for every i, while the norm of uh is unbounded outside. Therefore,

A = Ω \ {x ∈ Ω: ui(x) ∈ R for all i = 1, . . . , n} (3.5)

up to a set of null Ln measure, where

A := {x ∈ Ω: |uh(x)| is unbounded} . (3.6)

Since uh · ei → ui in L0(Ω \A) for every i, we have that

uh · ξ → u · ξ in L0(Ω \A) for every ξ ∈ Sn−1 . (3.7)

Notice that we have not extracted further subsequences depending on ξ, and that the limit
function u (equal to ū since we are in Ω \A) does not depend on ξ.

We claim that

|uh · ξ| → +∞ Ln-a.e. in A for Hn−1-a.e. ξ ∈ Sn−1 . (3.8)

On the sets Ai := {|uh · ei| → +∞} ∩
⋂
j 6=i{lim suph→∞(|uh · ej |/|uh · ei|) < +∞}, we have

that (3.8) holds for every ξ in {ξ ∈ Sn−1 : ξi 6= 0}, which is of full Hn−1 measure in Sn−1.
Let us thus consider the case when there are m components of uh, with 1 < m ≤ n, that

we may assume up to a permutation uh · e1, . . . , uh · em, such that uh·ei
uh·ej → ξi,j ∈ R∗ for

1 ≤ i < j ≤ m and | uh·eiuh·ej | → +∞ for i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . , n} (if m < n). In
this case (3.8) does not hold only for Sn−1 ∩ (1, ξ−1

1,2 , . . . , ξ
−1
1,m, 0 . . . , 0)⊥, which has dimension

n − 2. Notice now than for every m for which m components go faster to infinity than the
other ones, there is an at most countable collection of (ξ1,2, . . . , ξ1,m) ∈ (R∗)m−1 for which
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uh·e1
uh·ej → ξ1,j for j ∈ {2, . . . ,m} on a subset of Ω of positive Ln measure. Thus (3.8) holds for
every ξ except on an at most countable union of Hn−1-negligible sets of Sn−1.

We now follow the lines of the proof of [9, Theorem 1.1] (see also [21, Theorem 11.3]),
introducing

Iξy(uh) :=

ˆ

Ωξy

φ
(
|(u̇h)ξy|

)
dt , (3.9)

where (u̇h)ξy is the density of the absolutely continuous part of D(ûh)ξy, the distributional
derivative of (ûh)ξy ((ûh)ξy ∈ SBVloc(Ωξy) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ, since
uh ∈ GSBD(Ω)). Thus for any ξ ∈ Sn−1 it holds thatˆ

Πξ

Iξy(uh) dHn−1(y) =

ˆ

Ω

φ
(
|e(uh)(x)ξ · ξ|

)
≤
ˆ

Ω

φ
(
|e(uh)|

)
dx ≤M , (3.10)

by Fubini-Tonelli’s theorem and (1.3), recalling that φ is non-decreasing. Moreover, since
uh ∈ GSBD(Ω), Dξ

(
τ(uh · ξ)

)
∈M+

b (Ω) for every ξ ∈ Sn−1 andˆ

Πξ

|D
(
τ(uh · ξ)ξy

)
|(Ωξy) dHn−1(y) = |Dξ

(
τ(uh · ξ)

)
|(Ω) ≤M , (3.11)

by (2.9) and (1.3). We denote

IIξy(uh) := |D
(
τ(uh · ξ)ξy

)
|(Ωξy) . (3.12)

Let uk = uhk be a subsequence of uh such that

lim
k→∞

Hn−1(Juk) = lim inf
h→∞

Hn−1(Juh) < +∞ , (3.13)

so that, by (2.8), (3.10), and Fatou’s lemma, we have that for Hn−1-a.e. ξ ∈ Sn−1

lim inf
k→∞

ˆ

Πξ

[
H0
(
J(ûk)ξy

)
+ ε
(
Iξy(uk) + IIξy(uk)

)]
dHn−1(y) < +∞ , (3.14)

for a fixed ε ∈ (0, 1). Let us fix ξ ∈ Sn−1 such that (3.8) and (3.14) hold. Then there is a
subsequence um = ukm of uk, depending on ε and ξ, such that

lim
m→∞

ˆ

Πξ

[
H0
(
J(ûm)ξy

)
+ ε
(
Iξy(um) + IIξy(um)

)]
dHn−1(y)

= lim inf
k→∞

ˆ

Πξ

[
H0
(
J(ûk)ξy

)
+ ε
(
Iξy(uk) + IIξy(uk)

)]
dHn−1(y) .

(3.15)

Therefore, by (3.15), (3.7), and (3.8), employing Fatou’s lemma, we have that for Hn−1-a.e.
y ∈ Πξ

lim inf
m→∞

[
H0
(
J(ûm)ξy

)
+ ε
(
Iξy(um) + IIξy(um)

)]
< +∞ , (3.16)

(ûm)ξy → ûξy in L0
(
(Ω \A)ξy

)
|(ûm)ξy| → +∞ , L1-a.e. in Aξy , (3.17)

and
τ(um · ξ)ξy → τ̃ ξy in L1(Ωξy) , (3.18)

for a suitable τ̃ ξy ∈ L1(Ωξy). Now we employ (3.7), (3.8), and (3.17), (3.18) to get{
τ̃ ξy = τ(u · ξ)ξy L1-a.e. in (Ω \A)ξy
|τ̃ ξy | = 1 L1-a.e. in in Aξy .

(3.19)

Fixed y ∈ Πξ satisfying (3.16) and (3.17), and such that (ûm)ξy ∈ SBVloc(Ωξy) for every m,
we extract a subsequence uj = umj from um, depending also on y, for which

lim
j→∞

[
H0
(
J(ûj)

ξ
y

)
+ε
(
Iξy(uj)+II

ξ
y(uj)

)]
= lim inf

m→∞

[
H0
(
J(ûm)ξy

)
+ε
(
Iξy(um)+IIξy(um)

)]
. (3.20)
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By (3.18) we have that
τ(uj · ξ)ξy

∗
⇀ τ̃ ξy in SBV (Ωξy) . (3.21)

We claim that
∂Aξy ⊂ Jτ̃ξy . (3.22)

Indeed, up to consider a subsequence of (ûj)
ξ
y, we may assume that for every j there is a fixed

number Ny of jump points that tends to My ≤ Ny points t1, . . . tMy
. Then (recall that Iξy(uj)

is equibounded in j) for every l = 1, . . . ,My − 1

τ(uj · ξ)ξy ⇀ τ̃ ξy in W 1,1
loc (tl, tl+1) ,

and the convergence above is locally uniform for the precise representatives. Moreover, em-
ploying the Fundamental Theorem of Calculus and the bound for Iξy(uj), which is uniform in
j, for each interval (tl, tl+1) either (ûj)

ξ
y are pointwise bounded (in j) and then they converge

locally uniformly to ûξy ∈ W 1,1(tl, tl+1), or (ûj)
ξ
y are unbounded from above (from below) in

a.e. x ∈ (tl, tl+1), and then τ(ûj)
ξ
y = τ(uj · ξ)ξy converge to τ̃ ξy = 1 (τ̃ ξy = −1, respectively).

Therefore, in view of (3.19), the inclusion (3.22) is proven and Aξy is a finite union of intervals
where τ̃ ξy is 1 or −1.

By (3.20), (3.21), (3.22), and since the jump sets of τ(uj · ξ)ξy and (ûj)
ξ
y coincide, we deduce

that
H0
(
Jûξy ∩ (Ω \A)ξy

)
+H0

(
∂Aξy

)
≤ H0(Jτ̃ξy )

≤ lim inf
m→∞

[
H0
(
J(ûm)ξy

)
+ ε
(
Iξy(um) + IIξy(um)

)]
.

(3.23)

We now integrate over y ∈ Πξ and use Fatou’s lemma with (3.15) to getˆ

Πξ

[
H0
(
Jûξy ∩ (Ω \A)ξy

)
+H0

(
∂Aξy

)]
dHn−1(y)

≤ lim inf
k→∞

ˆ

Πξ

[
H0
(
J(ûk)ξy

)
+ ε
(
Iξy(uk) + IIξy(uk)

)]
dHn−1(y)

(3.24)

for Hn−1-a.e. ξ ∈ Sn−1. In particular we deduce that A has finite perimeter (cf. [5, Re-
mark 3.104]).

We integrate (3.24) over ξ ∈ Sn−1; by (2.8), (3.10), (3.11), and (3.13) we get

Hn−1(Ju ∩ (Ω \A)) +Hn−1(∂∗A) ≤ CMε+ lim inf
h→∞

Hn−1(Juh) , (3.25)

for a universal constant C. By the arbitrariness of ε we obtain (1.4c) (the property follows
immediately also for the extension of u with the value 0 in A).

Employing (2.9) and recalling (1.3), we have that there exist λuh ∈ M
+
b (Ω) such that for

every ξ ∈ Sn−1

|Dξ

(
τ(uh · ξ)

)
|(B) ≤ λuh(B) ,

and
λuh(Ω) ≤M .

Let λu ∈M+
b (Ω) be a weak∗ limit of a subsequence of λuh , so that λu(Ω) ≤M . Notice that

Dξτ(u · ξ) ∈Mb(Ω) for every ξ ∈ Sn−1 (3.26)

and
|Dξτ(ũ · ξ)|(B) ≤ λu(B) (3.27)

for every open set B ⊂ Ω, where λu has been defined above. This follows by a slicing procedure
and the use of Fatou’s lemma for every ξ, to reconstruct at the end |Dξ(τ(u · ξ))|(Ω) from
IIξy(u) := |D

(
τ(u · ξ)ξy

)
|(Ωξy) (see (3.12)), as in (3.11). The important point here is to get the

semicontinuity
IIξy(u) ≤ lim inf

j→∞
IIξy(uj) = lim inf

j→∞
|D
(
τ(uj · ξ)ξy

)
|(Ωξy) ,
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for the slices, which follows from (3.21). Indeed IIξy(u) ≤ |D
(
τ̃ ξy )
)
|(Ωξy) because τ(u · ξ)ξy = τ̃ ξy

in (Ω \ A)ξy by (3.19) and τ(u · ξ) = 0 in Aξy, so we employ (3.22). Moreover, it is immediate
that ûξy ∈ SBVloc(Ωξy). Therefore ũ ∈ GSBD(Ω).

Now the property (1.4b) follows by an adaptation of the arguments in [9, Theorem 1.1] as
in [21, Theorem 11.3] (which follow Ambrosio-Dal Maso’s [1, Prop. 4.4]). �

4. Existence for minimisers of Griffith energy

Employing Theorem 1.1, we deduce in this section the existence of weak solutions to the
minimisation problem of Griffith energy with Dirichlet boundary conditions.

4.1. Existence of weak solutions. Assume Ω ⊂ Rn be an open, bounded domain for which

∂Ω = ∂DΩ ∪ ∂NΩ ∪N ,

with ∂DΩ and ∂NΩ relatively open, ∂DΩ ∩ ∂NΩ = ∅, Hn−1(N) = 0, ∂DΩ 6= ∅, and ∂(∂DΩ) =
∂(∂NΩ). Let u0 ∈W 1,p(Rn;Rn) andW : R×Mn×n

sym → [0,∞) be convex in the second argument
and lower semicontinuous, with

c1 s |·|p ≤W (s, ·) ≤ c2 (1 + s |·|p) for every s ∈ R (4.1)

for some 0 < c1 < c2. Let K ⊂ Ω∪∂DΩ be (n−1)-countably rectifiable with Hn−1(K) < +∞,
and consider the minimisation problem:

min
u∈GSBDp(Ω)

{ˆ
Ω

W (e(u)) dx+Hn−1
(
Ju ∪ (∂DΩ ∩ {trΩ u 6= trΩ u0}) \K

)}
. (4.2)

Notice that, defining Ω̃ := Ω ∪ U , where U is an open bounded set with U ∩ ∂Ω = ∂DΩ, we
can recast the problem as

min
u∈GSBDp(Ω̃)

{ˆ
Ω̃

W (e(u)) dx+Hn−1(Ju \K) : u = u0 in Ω̃ \ (Ω ∪ ∂DΩ)

}
. (4.3)

Then we have the following existence result.

Theorem 4.1. Problem (4.3) admits solutions.

Proof. Let uh ∈ GSBDp(Ω̃) with u = u0 in Ω̃ \ (Ω∪ ∂DΩ) be a minimising sequence for (4.3).
Observe that the infimum of problem (4.3) is finite, since the functional is nonnegative and u0

is an admissible competitor.
Assume for the moment that K is compact. Then the functions uh satisfy the hypotheses of

Theorem 1.1 with Ω = Ω̃ \K, and φ = W , so that there exist A ⊂ Ω̃ \K with finite perimeter
and a measurable function u : Ω̃ \K → Rn with u = 0 in A such that (up to a subsequence)

A = {x ∈ Ω̃ \K : |uh(x)| → ∞}, uh → u in L0(Ω̃ \K;Rn) (4.4)

(since Ln(K) = 0 we could consider just Ω̃ above, but we keep Ω̃ \K to indicate the set where
we apply Theorem 1.1) andˆ

Ω̃

W (e(u)) dx+Hn−1(Ju \K) ≤ lim inf
h→∞

ˆ

Ω̃

W (e(uh)) dx+Hn−1(Juh \K) ,

Moreover, by (4.4) it follows that u = u0 in Ω̃\(Ω∪∂DΩ), and in particular A does not intersect(
Ω̃ \ (Ω ∪ ∂DΩ)

)
. Then u solves (4.3) (this holds for any other function which coincides with

u in Ω \ A and is any fixed infinitesimal rigid motion in A.) This proves the theorem if K is
compact.

If K is not compact, for any ε > 0 consider K̂ ⊂ K with Hn−1(K \ K̂) < ε. Then, arguing
as above for the open set Ω̃ \ K̂ ⊃ Ω̃ \K, we get stillˆ

Ω̃

W (e(u)) dx ≤ lim inf
h→∞

ˆ

Ω̃

W (e(uh)) dx ,
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and
Hn−1(Ju \K) ≤ Hn−1(Ju \ K̂) ≤ lim inf

h→∞
Hn−1(Juh \ K̂)

≤ lim inf
h→∞

Hn−1(Juh \K) +Hn−1(K \ K̂) < lim inf
h→∞

Hn−1(Juh \K) + ε ,

since Ju \K ⊂ Ju \ K̂ and Juh \ K̂ ⊂ (Juh \K) ∪ (K \ K̂) (cf. also [31, Theorem 2.5]). We
conclude since ε > 0 is arbitrary. �

Remark 4.2. Since, as observed in the proof, a family of minimisers is obtained by adding any
fixed infinitesimal rigid motion in A to a given minimiser, we conclude thatHn−1(∂∗A∩{tru =
a}) = 0 for every infinitesimal rigid motion a (a(x) = a · x+ b, a + aT = 0), where tr denotes
here the trace of u on ∂∗A (which is (n−1)-countably rectifiable) from Ω \A.

4.2. Existence of strong solutions. In recent works, Chambolle, Conti, Focardi, and Iurlano
have shown more regularity for the solutions (assuming their existence, which has been proven
above) to (4.3) (or (4.2)) if W (ξ) = Ce(ξ) : e(ξ) (in [15]), or n = 2 and

W (ξ) = fµ(ξ) :=
1

p

(
(Cξ : ξ + µ)p/2 − µp/2

)
(4.5)

(in [19]), requiring that C : Mn×n
sym →Mn×n

sym is a symmetric linear map with

C(ξ − ξT ) = 0 and Cξ · ξ ≥ c0|ξ + ξT |2 for all ξ ∈Mn×n
sym .

This corresponds to the following theorem.

Theorem 4.3 (Density lower bound and internal regularity, [19, 15]). Let u ∈ GSBD2(Ω\K)
(or u ∈ GSBDp(Ω \K), if Ω ⊂ R2) be a minimiser ofˆ

Ω

Ce(u) : e(u) dx+Hn−1
(
Ju ∪ (∂DΩ ∩ {trΩ u 6= trΩ u0}) \K

)
(a minimiser of (4.3) with (4.5), respectively). Then there exist θ0 and R0, depending only on
n and C (W respectively) such that if x ∈ Ju, % ∈ (0, R0), and B%(x) ⊂ Ω \K, then

Hn−1(Ju ∩B%(x)) ≥ θ0%
n−1 ,

and
Hn−1

(
(Ω \K) ∩ (Ju \ Ju)

)
= 0 , u ∈ C1

(
Ω \ (K ∪ Ju)

)
.

The extension of this result up to the boundary is the subject for future study.

5. An approximation result

In this section we show a compactness property for sequences of minimisers of suitable phase-
field elliptic energies approximating the Griffith fracture energy à la Ambrosio-Tortorelli. The
Γ-convergence has been proved in [16, Theorem 5.4] for general energies with p-growth of the
bulk energy in e(u). In particular the following “Ambrosio-Tortorelli” [6] type approximation
result holds (cf. [16, Theorem 1.2]):

Theorem 5.1 ([16]). Let u0 ∈ H1(Rn;Rn), and Ω ⊂ Rn be an open, bounded, Lipschitz
domain for which ∂Ω = ∂DΩ∪ ∂NΩ∪N , with ∂DΩ and ∂NΩ relatively open, ∂DΩ∩ ∂NΩ = ∅,
Hn−1(N) = 0, ∂DΩ 6= ∅, and ∂(∂DΩ) = ∂(∂NΩ). Assume that there exist δ and x0 ∈ Rn such
that

Oδ,x0
(∂DΩ) ⊂ Ω

for δ ∈ (0, δ), where Oδ,x0
(x) := x0 + (1 − δ)(x − x0). Moreover let εk, ηk > 0 with εk → 0,

ηk
εk
→ 0 as k → ∞. Then, for H1

u0
(Ω;Rn) := {u ∈ H1(Ω;Rn) : trΩ u = trΩ u0 on ∂DΩ} and

V 1
k := {v ∈ H1(Ω): ηk ≤ v ≤ 1 , trΩ v = 1 on ∂DΩ}, the functionals

D2
k(u, v) :=


ˆ

Ω

(
vCe(u) : e(u) +

(1− v)2

4εk
+ εk|∇v|2

)
dx in H1

u0
(Ω;Rn)×V 1

k ,

+∞ otherwise,
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Γ-converge as k →∞ to

D2(u, v) :=


ˆ

Ω

Ce(u) : e(u) dx+Hn−1
(
Ju ∪

(
∂DΩ ∩ {trΩ u 6= trΩ u0}

))
in GSBDp(Ω)×{v = 1},

+∞ otherwise,

with respect to the topology of the convergence in measure for u and v.

We now show an important relation between minimisers of D2
k and of D2.

Theorem 5.2. Let (uk, vk) ∈ H1
u0

(Ω;Rn)×V 1
k be minimisers of D2

k (or “almost” minimisers,
up to an error ζk with ζk → 0). Then, for a subsequence (uh, vh), we have that vh converges
to 1 in L1(Ω), the set A := {x ∈ Ω: |uh(x)| → +∞} has finite perimeter, there exists u ∈
GSBD(Ω) minimiser of D2 with u = 0 in A, and uh → u in L0(Ω \ A;Rn). Moreover
∂∗A ⊂ Ju and ˆ

Ω

Ce(u) : e(u) dx = lim
h→∞

ˆ

Ω

vh Ce(uh) : e(uh) dx , (5.1a)

Hn−1(Ju) = lim
h→∞

ˆ

Ω

( (1− vh)2

4εh
+ εh|∇vh|2

)
dx . (5.1b)

Proof. Since D2
k(u0, 1) = C0, where C0 :=

´
Ω
Ce(u0) : e(u0) dx, we have that vk → 1 in L2(Ω)

and that (cf. [13, Theorem 4])

C0 ≥ D2
k(uk, vk) ≥

ˆ 1

0

(ˆ
{vk>s}

2sCe(uk) : e(uk) dx+ (1− s)Hn−1(∂∗{vk > s})
)

ds ,

by the coarea formula and the Cauchy inequality:
(1− vk)2

4εk
+ εk|∇vk|2 ≥ |1− vk||∇vk| .

By Fatou’s lemma we have that lim infk→∞Hn−1(∂∗{vk > s}) is bounded for L1-a.e. s ∈ (0, 1),
so we fix s satisfying this property and up to a subsequence Hn−1(∂∗{vk > s}) ≤ C. By the
minimality of vk we deduce also

Ln({vk > s}) ≤ 4 εk C0 . (5.2)

Therefore the sequence ũk := ukχΩ\{vk>s} satisfies the hypotheses of Theorem 1.1, and so
there are A = {x ∈ Ω: |ũk(x)| → ∞}, with finite perimeter, and u ∈ GSBD(Ω) with u any
(fixed) infinitesimal rigid motion on A such that ũk → u in L0(Ω \ A;Rn), and e(ũk) ⇀ e(u)
in L2(Ω \A;Mn×n

sym ). In particular, employing (5.2), we have that

A = {x ∈ Ω: |uk(x)| → ∞} , uk → u in L0(Ω \A;Rn) . (5.3)

Since now we have determined the pointwise limit of uk, we can follow standard arguments,
employing a slicing technique as in [16, Theorem 5.1] or [33, Theorem 8] (cf. also [11]) to
obtain that ˆ

Ω

Ce(u) : e(u) dx ≤ lim inf
k→∞

ˆ

Ω

vk Ce(uk) : e(uk) dx , (5.4a)

Hn−1
(
Ju ∩ (Ω \A)

)
+Hn−1(∂∗A) ≤ lim inf

k→∞

ˆ

Ω

( (1− vk)2

4εk
+ εk|∇vk|2

)
dx . (5.4b)

In particular, observing Ju ⊂ Ju ∩ (Ω \A) ∪ ∂∗A, we have

D2(u, 1) ≤ lim inf
k→∞

D2
k(uk, vk) = lim inf

k→∞
minD2

k . (5.5)

Since D2
k Γ-converges to D with respect to the topology of the convergence in measure we

obtain (cf. [20, Proposition 7.1]) that

inf
GSBD2(Ω)

D2 ≥ lim inf
k→∞

minD2
k = lim inf

k→∞
D2
k(uk, vk) .
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Therefore we have that u is a minimiser for D2 (independently of the rigid motion assigned to
u in A, see Remark 4.2) and that, up to considering a subsequence uh = uhk of uk,

D2(u, 1) = lim
h→∞

D2
h(uh, vh) .

In particular the conditions (5.4) hold as equalities on (uh, vh), so we get that ∂∗A ⊂ Ju and
deduce (5.1). �

Remark 5.3. Theorem 5.1 holds under more general assumptions on the growth of the bulk
energy with respect to e(u) and on the Modica-Mortola term in the approximating functionals
(in particular for W as in (4.1), see [16, Theorem 5.4]). It is not difficult to prove the version
of Theorem 5.2 corresponding to these assumptions.
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