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Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions

Inverse problems of recovering the coefficients of Sturm-Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra.

Necessary and sufficient conditions for the solvability of these inverse problems are obtained.

Introduction

In this paper we consider inverse eigenvalue problems for the equation ℓy := -y ′′ (x) + q(x)y(x) = λy(x), x ∈ [0, π]

(1.1)

with the boundary conditions y ′ (0) -hy(0) = 0, (1.2)

λ(y ′ (π) + Hy(π)) = H 1 y ′ (π) + H 2 y(π), (1.3) 
where q(x) ∈ L 2 (0, π) is a real-valued function, h, H, H 1 , H 2 ∈ R and

ρ := HH 1 -H 2 > 0. (1.4)
Let us denote this problem by P(q, h, H, H 1 , H 2 ). Problems with the eigenvalue parameter linearly contained in the boundary conditions have been studied extensively. In [START_REF] Fulton | Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[END_REF][START_REF] Walter | Regular eigenvalue problems with eigenvalue parameter in the boundary condition[END_REF] an operator-theoretic formulation of the problems of the form (1.1)-(1.3) has been given. It has been shown that one can associate a self-adjoint operator in adequate Hilbert space with such problems whenever the condition (1.4) holds. Oscillation and comparison results have been obtained in [START_REF] Binding | Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions[END_REF][START_REF] Binding | Sturm-Liouville problems with eigenparameter dependent boundary conditions[END_REF][START_REF] Kapustin | Oscillation properties of solutions to a nonselfadjoint spectral problem with spectral parameter in the boundary condition Differential[END_REF]. Basis properties and eigenfunction expansions have been considered in [START_REF] Kapustin | Spectral problems with the spectral parameter in the boundary condition Differential[END_REF][START_REF] Kapustin | A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition Differential[END_REF][START_REF] Kerimov | On the basis properties of one spectral problem with a spectral parameter in a boundary condition Siberian[END_REF][START_REF] Wray | Absolutely convergent expansions associated with a boundary-value problem with the eigenvalue parameter contained in one boundary condition[END_REF]. Problems with various singularities have been analyzed in [START_REF] Altinisik | Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary conditions[END_REF][START_REF] Fulton | Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions[END_REF]. In the case ρ < 0 the problem (1.1)-(1.3) can be associated with a self-adjoint operator in Pontryagin space and not all eigenvalues are necessarily real (see [START_REF] Amara | Asymptotics of eigenvalues and eigenfunctions of the Sturm-Liouville problem with a small parameter and a spectral parameter in the boundary condition Math[END_REF][START_REF] Ben | The Sturm-Liouville problem with physical and spectral parameters in the boundary condition Math[END_REF][START_REF] Binding | Application of two parameter eigencurves to Sturm-Liouville problems with eigenparameter-dependent boundary conditions[END_REF]).

Inverse problems involving linear dependence on the spectral parameter in the boundary conditions have also been investigated. In [START_REF] Mamedov | Determination of a second order differential equation with respect to two spectra with a spectral parameter entering into the boundary conditions (Russian) Izv[END_REF] sufficient conditions for two sequences of real numbers to be the spectra of the problems P(q, h, 0, H 1 , H 2 ) and P(q, h, 0, H 1 , H 2 ) are provided, where H 1 H 2 = H 1 H 2 , H 2 , H 2 > 0 and H 1 = H 1 . Various uniqueness theorems are proved in [START_REF] Binding | Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions[END_REF][START_REF] Browne | A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems[END_REF][START_REF] Mccarthy | Eigenparameter dependent inverse Sturm-Liouville problems[END_REF]26]. We shall provide in this paper another proof of the unique solvability. Numerical techniques are discussed in [START_REF] Mccarthy | Eigenparameter dependent inverse Sturm-Liouville problems[END_REF]. In [START_REF] Binding | A hierarchy of Sturm-Liouville problems Math[END_REF][START_REF] Binding | Transformations between Sturm-Liouville problems with eigenvalue dependent and independent boundary conditions[END_REF] so called "almost isospectral" transformations (i.e., transformations preserving all but finitely many eigenvalues) are studied and using these transformations many direct and inverse results for problems with the spectral parameter in one of the boundary conditions are derived from those for classical Sturm-Liouville problems.

The present paper is devoted to the study of inverse problems by (i) one spectrum and a sequence of norming constants; (ii) two spectra. We obtain necessary conditions for eigenvalues and norming constants in Section 2. In Section 3 we prove that the kernel of the operator transforming the function cos √ λx to the corresponding solution of the equation (1.1) satisfies the Gel'fand-Levitan-Marchenko type integral equation. In Section 4 we show that the boundary-value problem (1.1)-(1.3) can be uniquely determined from its spectrum and norming constants. Reconstruction of the coefficients of the problem from these spectral characteristics is realized in Section 5 using the method analogous to that of Gel'fand and Levitan [START_REF] Gel | On the determination of a differential equation from its spectral function[END_REF] (see also [START_REF] Marchenko | The Sturm-Liouville operators and their applications (Russian) (Kiev: Naukova Dumka) English transl[END_REF][START_REF] Yurko | Inverse spectral problems and their applications (Russian) (Saratov: Izd-vo Saratovskogo pedinstituta) See also: Freiling G and Yurko V A 2001 Inverse Sturm-Liouville problems and their applications[END_REF]).

Sections 6 and 7 are devoted to the study of inverse problems by two spectra. In Section 6 we consider the problems P(q, h, H, H 1 , H 2 ) and P(q, h, H, H 1 , H 2 ) with h = h. It's proved that the eigenvalues of two such problems interlace and norming constants of first problem are expressed by these eigenvalues. We use these expressions in Section 7 to solve the inverse problem by two spectra, similarly to the work of Gasymov and Levitan [START_REF] Levitan | Determination of a differential equation by two of its spectra (Russian) Uspekhi Mat[END_REF] for the classical Sturm-Liouville problems.

Preliminaries

Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1.1) satisfying the initial conditions

ϕ(0, λ) = 1, ϕ ′ (0, λ) = h, ψ(π, λ) = -λ + H 1 , ψ ′ (π, λ) = λH -H 2 .
(2.1)

We define

χ(λ) := ϕ(x, λ)ψ ′ (x, λ) -ϕ ′ (x, λ)ψ(x, λ), which is independent of x ∈ [0, π].
The function χ(λ) is entire and has zeros at the eigenvalues of the problem (1.1)- (1.3). The set of eigenvalues is countable, consists of real numbers and for each eigenvalue λ n there exists such a number k n that

ψ(x, λ n ) = k n ϕ(x, λ n ), k n = 0. (2.2)
In the Hilbert space H = L 2 (0, π) ⊕ C let an inner product be defined by

(F, G) := π 0 F 1 (x)G 1 (x)dx + 1 ρ F 2 G 2 for F = F 1 (x) F 2 , G = G 1 (x) G 2 ∈ H.
We define operator (see [START_REF] Fulton | Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[END_REF])

A(F ) := -F ′′ 1 (x) + q(x)F 1 (x) H 1 F ′ 1 (π) + H 2 F 1 (π) with D(A) = {F ∈ H|F 1 (x), F ′ 1 (x) ∈ A C [0, π], ℓF 1 ∈ L 2 (0, π), F ′ 1 (0) -hF 1 (0) = 0, F 2 = F ′ 1 (π) + HF 1 (π)} . Then Φ n := ϕ(x, λ n ) ϕ ′ (π, λ n ) + Hϕ(π, λ n ) are orthogonal eigenelements of A: (Φ n , Φ m ) = 0, n = m.
We also define norming constants by

γ n := Φ n 2 = π 0 ϕ 2 (x, λ n )dx + (ϕ ′ (π, λ n ) + Hϕ(π, λ n )) 2 ρ .
The numbers {λ n , γ n } n≥0 are called the spectral data of the problem (1.1)-(1.3).

Lemma 2.1. The following equality holds:

χ(λ n ) = k n γ n , (2.3) 
where χ(λ) = d dλ χ(λ). Proof. Using (2.1) and (2.2) in the equality

(λ -λ n ) π 0 ψ(x, λ)ϕ(x, λ n )dx = (ψ(x, λ)ϕ ′ (x, λ n ) -ψ ′ (x, λ)ϕ(x, λ n ))| π 0 we obtain: χ(λ) λ -λ n = π 0 ψ(x, λ)ϕ(x, λ n )dx + ρ k n .
As λ → λ n this equality leads to (2.3).

Remark. Simplicity of the eigenvalues of (1.1)-(1.3) also follows from this lemma.

Theorem 2.1. Following asymptotics hold:

s n := λ n = n -1 + ω nπ + ζ n n , {ζ n } ∈ l 2 , (2.4 
)

γ n = π 2 + ζ ′ n n , {ζ ′ n } ∈ l 2 , (2.5) 
where

ω = h + H + 1 2 π 0 q(x)dx.
Proof. We denote s := √ λ. Then from the asymptotic estimates (see [START_REF] Marchenko | The Sturm-Liouville operators and their applications (Russian) (Kiev: Naukova Dumka) English transl[END_REF][START_REF] Yurko | Inverse spectral problems and their applications (Russian) (Saratov: Izd-vo Saratovskogo pedinstituta) See also: Freiling G and Yurko V A 2001 Inverse Sturm-Liouville problems and their applications[END_REF])

ϕ(x, λ) = cos sx + h + 1 2 x 0 q(t)dt sin sx s + 1 2 x 0 q(t) sin s(x -2t) s dt +O e | Im sx| |s| 2 , ϕ ′ (x, λ) = -s sin sx + h + 1 2
x 0 q(t)dt cos sx + 1 2

x 0 q(t) cos s(x -2t)dt +O e | Im sx| |s| using (2.1) we have:

χ(λ) = -s 3 sin sπ + h + H + 1 2 π 0 q(x)dx s 2 cos sπ + I(s)s 2 , (2.6) 
where

I(s) = 1 2 π 0 q(t) cos s(π -2t)dt + O e | Im sπ| |s| .
Now using Bessel's inequality it's easy to obtain (2.4) and (2.5).

Since the function χ(λ) is entire of order 1/2, from Hadamard's theorem(see [18, Section 4.2]), using (2.6) we obtain:

χ(λ) = -π(λ -λ 0 )(λ -λ 1 ) ∞ n=2 λ n -λ (n -1) 2 .

Main Equation

Theorem 3.1. Let f (x) ∈ A C [0, π]. Then f (x) = ∞ n=0 1 γ n π 0 f (t)ϕ(t, λ n )dt ϕ(x, λ n ) with uniform convergence in [0, π]. Proof. We denote G(x, t, λ) := 1 χ(λ) ϕ(x, λ)ψ(t, λ), 0 ≤ x ≤ t ≤ π ψ(x, λ)ϕ(t, λ), 0 ≤ t ≤ x ≤ π
and consider the function

Y (x, λ) := π 0 G(x, t, λ)f (t)dt = 1 χ(λ) ψ(x, λ) x 0 ϕ(t, λ)f (t)dt + ϕ(x, λ) π x ψ(t, λ)f (t)dt .
Using (2.2) and (2.3) we obtain:

Res λ=λn Y (x, λ) = 1 χ(λ n ) ψ(x, λ n ) x 0 ϕ(t, λ n )f (t)dt + ϕ(x, λ n ) π x ψ(t, λ n )f (t)dt = k n χ(λ n ) ϕ(x, λ n ) π 0 ϕ(t, λ n )f (t)dt = 1 γ n ϕ(x, λ n ) π 0 ϕ(t, λ n )f (t)dt.
Noting that ϕ(x, λ) and ψ(x, λ) are solutions of (1.1) and integrating by parts we can write:

Y (x, λ) = f (x) λ + Z(x, λ) λ ,
where

Z(x, λ) = 1 χ(λ) ψ(x, λ) x 0 ϕ ′ (t, λ)f ′ (t)dt + ϕ(x, λ) π x ψ ′ (t, λ)f ′ (t)dt +hf (0)ψ(x, λ) -(λH -H 2 )f (π)ϕ(x, λ) + ψ(x, λ) x 0 ϕ(t, λ)q(t)f (t)dt + ϕ(x, λ) π x ψ(t, λ)q(t)f (t)dt .
Using asymptotic estimates for the functions ϕ(x, λ), ψ(x, λ) and χ(λ) the following equality can be proved:

lim |s|→∞ s∈G δ max 0≤x≤π |Z(x, λ)| = 0,
where G δ = {s : |s -n| ≥ δ, n = 0, ±1, ±2, . . .} for some small fixed δ > 0. Now consider the contour integral

I N (x) = 1 2πi C N Y (x, λ)dλ,
where

C N = {λ : |λ| = (N -1/2) 2 }.
From the above equalities we have:

I N (x) = f (x) + ε N (x), lim N →∞ max 0≤x≤π |ε N (x)| = 0.
On the other hand, using the residue calculus we obtain:

I N (x) = N n=0 1 γ n π 0 f (t)ϕ(t, λ n )dt ϕ(x, λ n ).
From last two equalities we obtain the statement of the theorem. 

a(x) := ∞ n=1 cos s n x γ n - cos(n -1)x α 0 n-1
, where

α 0 n = π 2 , n ≥ 1, π, n = 0. Then a(x) ∈ W 1 2 (0, 2π).
We denote

F (x, t) = cos s 0 x cos s 0 t γ 0 + ∞ n=1 cos s n x cos s n t γ n - cos(n -1)x cos(n -1)t α 0 n-1 . (3.1) Since F (x, t) = cos s 0 x cos s 0 t γ 0 + a(x + t) + a(x -t) 2 , Lemma 3.1 implies that F (x, t) is continuous and d dx F (x, x) ∈ L 2 (0, π).
Using the transformation operators ( [START_REF] Marchenko | The Sturm-Liouville operators and their applications (Russian) (Kiev: Naukova Dumka) English transl[END_REF][START_REF] Yurko | Inverse spectral problems and their applications (Russian) (Saratov: Izd-vo Saratovskogo pedinstituta) See also: Freiling G and Yurko V A 2001 Inverse Sturm-Liouville problems and their applications[END_REF]), we can write equalities

ϕ(x, λ) = cos sx + x 0 K(x, t) cos stdt, (3.2) 
cos sx = ϕ(x, λ) + x 0 H(x, t)ϕ(t, λ)dt, (3.3) 
where K(x, t) and H(x, t) are real-valued continuous functions and

K(x, x) = h + 1 2 x 0 q(t)dt. (3.4)
Theorem 3.2. For each fixed x ∈ (0, π] the kernel K(x, t) satisfies the following equation:

F (x, t) + K(x, t) + x 0 K(x, τ )F (τ, t)dτ = 0, 0 < t < x. (3.5) 
Proof. Using equalities (3.2) and (3.3) we obtain:

N n=0 ϕ(x, λ n ) cos s n t γ n = N n=0 cos s n x cos s n t γ n + cos s n t γ n x 0 K(x, τ ) cos s n τ dτ , N n=0 ϕ(x, λ n ) cos s n t γ n = N n=0 ϕ(x, λ n )ϕ(t, λ n ) γ n + ϕ(x, λ n ) γ n t 0 H(t, τ )ϕ(τ, λ n )dτ .
Therefore we can write:

Φ N (x, t) = I N (x, t) + I ′ N (x, t) + I ′′ N (x, t) + I ′′′ N (x, t), where Φ N (x, t) = N n=0 ϕ(x, λ n )ϕ(t, λ n ) γ n - N -1 n=0 cos nx cos nt α 0 n , I N (x, t) = N n=0 cos s n x cos s n t γ n - N -1 n=0 cos nx cos nt α 0 n , I ′ N (x, t) = N -1 n=0 cos nt α 0 n x 0 K(x, τ ) cos nτ dτ, I ′′ N (x, t) = x 0 K(x, τ ) N n=0 cos s n t cos s n τ γ n - N -1 n=0 cos nt cos nτ α 0 n dτ, I ′′′ N (x, t) = - N n=0 ϕ(x, λ n ) γ n t 0 H(t, τ )ϕ(τ, λ n )dτ.
Let f (x) be an absolutely continuous function. Then using Theorem 3.1 we obtain (uniformly on x ∈ [0, π]):

lim N →∞ π 0 f (t)Φ N (x, t)dt = 0, lim N →∞ π 0 f (t)I N (x, t)dt = π 0 f (t)F (x, t)dt, lim N →∞ π 0 f (t)I ′ N (x, t)dt = x 0 f (t)K(x, t)dt, lim N →∞ π 0 f (t)I ′′ N (x, t)dt = π 0 f (t) x 0 K(x, τ )F (τ, t)dτ dt, lim N →∞ π 0 f (t)I ′′′ N (x, t)dt = - π x f (t)H(t, x)dt,
We put K(x, t) = H(x, t) = 0 for x < t. Since f (x) can be chosen arbitrarily, we have

F (x, t) + K(x, t) + x 0 K(x, τ )F (τ, t)dτ -H(t, x) = 0.
When t < x this equation implies (3.5).

Uniqueness

Lemma 4.1. For each fixed x ∈ (0, π] equation (3.5) has a unique solution K(x, t) ∈ L 2 (0, x).

Proof. It suffices to prove that homogeneous equation

g(t) + x 0 F (τ, t)g(τ )dτ = 0
has only trivial solution g(t) = 0. Let g(t) be a solution of the above equation and g(t) = 0 for t ∈ (x, π). Then 

y(t, α) + b a A(t, τ, α)y(τ, α)dτ = f (t, α), a ≤ t ≤ b, (4.1) 
where A(t, τ, α) and f (t, α) are continuous functions. Assume that, for some fixed α = α 0 the homogeneous equation

z(t) + b a A 0 (t, τ )z(τ )dτ = 0, A 0 (t, τ ) := A(t, τ, α 0 )
has only trivial solution. Then in some neighbourhood of the point α = α 0 the solution y(t, α) of the equation (4.1) is continuous on t and α. Moreover, the function y(t, α) has the same smoothness as A(t, τ, α) and f (t, α).

Theorem 4.1. Let P(q, h, H, H 1 , H 2 ) and P( q, h, H, H 1 , H 2 ) be two boundary-value problems with one boundary condition depending linearly on the spectral parameter and

λ n = λ n , γ n = γ n , n ≥ 0.
Then q(x) = q(x) a.e. on (0, π), h

= h, H = H, H 1 = H 1 , H 2 = H 2 .
Proof. According to the formula (3.1) F (x, t) = F (x, t). Then from the main equation (3.5) we obtain K(x, t) = K(x, t). Equality (3.4) implies that h = h and q(x) = q(x) a.e. on (0, π). From (3.2) we have ϕ(x, λ n ) = ϕ(x, λ n ). In consideration of (2.6) we obtain χ(λ) ≡ χ(λ) and k n = k n . Finally, by using (2.1) and (2.2) the remaining part of the theorem can be proved.

Reconstruction by spectral data

Let two sequences of real numbers {λ n } and {γ n } (n ∈ Z + ) with the following properties be given:

s n = λ n = n -1 + ω nπ + ζ n n , γ n = π 2 + ζ ′ n n , {ζ n }, {ζ ′ n } ∈ l 2 , (5.1) 
λ n = λ m , n = m, γ n > 0, n ∈ Z + . (5.2) 
Using these numbers we construct F (x, t) by the formula (3.1) and determine K(x, t) from (3.5). Substituting t → tx, τ → τ x in (3.5) we obtain:

F (x, xt) + K(x, xt) + x 1 0 K(x, xτ )F (xτ, xt)dτ = 0, 0 ≤ t ≤ 1.
According to this equation and Lemmas 4.1 and 4.2 K(x, t) is determined uniquely and d dx K(x, x) ∈ L 2 (0, π). Now, let's construct the functions q(x), ϕ(x, λ), χ(λ) and the number h by q(x) := 2 d dx K(x, x), h := K(0, 0),

ϕ(x, λ) := cos sx + x 0 K(x, t) cos stdt, (5.3) 
χ(λ) = -π(λ -λ 0 )(λ -λ 1 ) ∞ n=2 λ n -λ (n -1) 2
and put

k n := χ(λ n ) γ n .
From (5.2) we have: k n = 0. 

u(z) = sin πz + Aπ 4z 4z 2 -1 cos πz + f (z) z , v(z) = cos πz -Bπ sin πz z + g(z) z ,
where

f (z) = π 0 f(t) cos ztdt, f (t) ∈ L 2 [0, π], π 0 f (t)dt = 0, g(z) = π 0 g(t) sin ztdt, g(t) ∈ L 2 [0, π],
it is necessary and sufficient to have the form

u(z) = πz ∞ n=1 n -2 (u 2 n -z 2 ), u n = n - A n + α n n , v(z) = ∞ n=1 n - 1 2 -2 (v 2 n -z 2 ), v n = n - 1 2 - B n + β n n ,
where α n and β n are arbitrary sequences that satisfy conditions

∞ n=1 |α n | 2 < ∞, ∞ n=1 |β n | 2 < ∞.
Lemma 5.2. The following equality holds:

∞ n=0 ϕ(x, λ n ) k n γ n = 0 (5.4)
Proof. Using the residue calculus we get:

N n=0 ϕ(x, λ n ) k n γ n = N n=0 ϕ(x, λ n ) χ(λ n ) = N n=0 Res λ=λn ϕ(x, λ) χ(λ) = 1 2πi C N ϕ(x, λ) χ(λ) dλ,
where

C N = {λ : |λ| = (N -1/2) 2 }. Lemma 5.1 implies that χ(λ) = -s 3 sin sπ + O |s| 2 e | Im sπ| .
We denote G δ = {s : |s -n| ≥ δ, n = 0, ±1, ±2, . . .} for some small fixed δ > 0 and recall that (see e.g. [25, p. 15])

| sin sπ| ≥ C δ e | Im sπ| , s ∈ G δ ,
where C δ does not depend on s. Therefore we obtain

|χ(λ)| ≥ C δ |s| 3 e | Im sπ| , s ∈ G δ , |s| ≥ s δ for sufficiently large s δ . Since |ϕ(x, λ)| = O e | Im sπ| , x ∈ [0, π],
we obtain (5.4).

As in the theory of classical Sturm-Liouville problems (see [25, Lemma 1.5.8 and Corollary 1.5.1]) the following lemmas can be proved:

Lemma 5.3. The following relations hold:

-ϕ ′′ (x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ), ϕ(0, λ) = 1, ϕ ′ (0, λ) = h.

Lemma 5.4. For any f (x), g(x) ∈ L 2 (0, π) the following equality holds:

π 0 f (x)g(x)dx = ∞ n=0 1 γ n π 0 f (t)ϕ(t, λ n )dt π 0 g(t)ϕ(t, λ n )dt . Proposition 5.1. ([25, Proposition 1.8.6]) Let numbers {ρ n } n≥0 , ρ 2 n = ρ 2 k (n = k) of the form ρ n = n + a n + ξ n n , {ξ n } ∈ l 2 , a ∈ C
be given. Then the sequence {cos ρ n x} n≥0 forms a Riesz basis in the space L 2 (0, π).

Corollary 5.1. For any fixed n 0 ∈ Z + the system {ϕ(x, λ n )}(n = n 0 ) forms a Riesz basis in the space L 2 (0, π).

Proof. According to Lemma 5.3 we can write representation of the form (3.3). Therefore, there is one-to-one correspondence between expansions in {cos s n x}(n = n 0 ) and {ϕ(x, λ n )}(n = n 0 ).

Lemma 5.5. For any f (x) ∈ W 2 2 (0, π), the expansion

f (x) = ∞ n=0 1 γ n π 0 f (t)ϕ(t, λ n )dt ϕ(x, λ n ) (5.5)
holds.

Proof. Consider the series

f * (x) = ∞ n=0 c n ϕ(x, λ n ), (5.6) 
where

c n := 1 γ n π 0 f (t)ϕ(t, λ n )dt.
Using Lemma 5.3 and integrating by parts we obtain:

c n = 1 γ n λ n π 0 f (t) (-ϕ ′′ (t, λ n ) + q(t)ϕ(t, λ n )) dt = 1 γ n λ n (hf (0) -f ′ (0) + f ′ (π)ϕ(π, λ n ) -f (π)ϕ ′ (π, λ n )) + 1 γ n λ n π 0 ϕ(t, λ n )(-f ′′ (t) + q(t)f (t))dt.
We can easily prove that as n → ∞

c n = O 1 n 2 , ϕ(t, λ n ) = O(1)
uniformly on t ∈ [0, π]. Therefore, the series (5.6) converges absolutely and uniformly on x ∈ [0, π]. According to Lemma 5.4

π 0 f (x)g(x)dx = ∞ n=0 c n π 0 g(t)ϕ(t, λ n )dt = π 0 g(t) ∞ n=0 c n ϕ(t, λ n )dt = π 0 g(t)f * (t)dt.
Since g(x) can be chosen arbitrarily, we conclude that f * (x) = f (x).

We can write (5.4) as

ϕ(x, λ n 0 ) γ n 0 = - n =n 0 k n 0 ϕ(x, λ n ) k n γ n
for any n 0 ∈ Z + . Let m = n 0 be any fixed number and f (x) = ϕ(x, λ m ). Then using the above equality in (5.5), we have:

ϕ(x, λ m ) = n =n 0 c mn ϕ(x, λ n ),
where

c mn = 1 γ n π 0 ϕ(t, λ m ) ϕ(t, λ n ) - k n 0 k n ϕ(t, λ n 0 ) dt.
Corollary 5.1 implies c mn = δ mn . Here δ mn is the Kronecker delta. In other words, denoting a mn := π 0 ϕ(t, λ m )ϕ(t, λ n )dt, we have:

a mm - k n k m a mn = γ m , m = n.
It's clear (from definition) that a mn = a nm . Using these relations we calculate:

k 2 m (γ m -a mm ) = -k m k n a mn = -k n k m a nm = k 2 n (γ n -a nn ), m = n. Therefore k 2 n (γ n -a nn ) = const.
Let's denote this constant by ρ. Then we have:

π 0 ϕ 2 (t, λ n )dt = γ n - ρ k 2 n , π 0 ϕ(t, λ m )ϕ(t, λ n )dt = - ρ k m k n , m = n.
Now using the equality

ϕ(π, λ)ϕ ′ (π, µ) -ϕ ′ (π, λ)ϕ(π, µ) = (λ -µ) π 0 ϕ(t, λ)ϕ(t, µ)dt
we write:

k n ϕ(π, λ n )k m ϕ ′ (π, λ m ) -k n ϕ ′ (π, λ n )k m ϕ(π, λ m ) λ n -λ m = -ρ, n = m. Denoting A n := k n ϕ(π, λ n ), B n := k n ϕ ′ (π, λ n )
we can write the above equality as

A n B m -B n A m = ρ(λ m -λ n ), n = m. (5.7) 
Let i, j, m and n be pairwise distinct nonnegative integers. By summing the equalities

A n B m -B n A m = ρ(λ m -λ n ), A m B i -B m A i = ρ(λ i -λ m ), A i B n -B i A n = ρ(λ n -λ i ),
we have:

A n (B m -B i ) + B n (A i -A m ) = B m A i -A m B i .
Writing this equality again, but this time with n replaced by j and subtracting them we finally obtain:

(A n -A j )(B m -B i ) = (A m -A i )(B n -B j ).
If B n = B j for some n, j ∈ Z + , then B n = const. In this case (5.7) implies A n = κ 1 λ n + κ 2 with some constants κ 1 and κ 2 . Continuing this procedure for the case

B n = B j we obtain A n = κ 1 λ n + κ 2 and B n = κ 3 λ n + κ 4 .
So in both cases

k n ϕ(π, λ n ) = κ 1 λ n + κ 2 , k n ϕ ′ (π, λ n ) = κ 3 λ n + κ 4 .
Using (5.1), (5.3) and Lemma 5.1 we calculate:

k n = (-1) n n 2 + O(n), ϕ(π, λ n ) = (-1) n-1 + O( 1 n ), λ n = n 2 + O(n).
Therefore κ 1 = -1. Denoting H 1 := κ 2 , H := -κ 3 , H 2 := κ 4 we obtain:

λ n (ϕ ′ (π, λ n ) + Hϕ(π, λ n )) = H 1 ϕ ′ (π, λ n ) + H 2 ϕ(π, λ n ), n ∈ Z + (5.8)
for some constants H, H 1 and H 2 . From (5.7) we have:

HH 1 -H 2 = ρ.
Hence we have proved 

λ 0 = 0, λ 1 = 1 4 , λ n = (n -1) 2 , n ≥ 2, γ 0 = π, γ n = π 2 , n ≥ 1.
Then from (3.1) we have:

F (x, t) = 2 π cos x 2 cos t 2 .
Solving the equation (3.5) and then using the relation (3.4) we obtain:

K(x, t) = - 2 cos x 2 cos t 2 π + x + sin x , q(x) = 2(π + x) sin x + 4(1 + cos x) (π + x + sin x) 2 , h = - 2 π .
In order to reconstruct the second boundary condition, we construct the solution ϕ(x, λ) using (5.3):

ϕ(x, λ) =        cos sx - 4s sin sx(1 + cos x) -cos sx sin x (4s 2 -1)(π + x + sin x) , λ = 1 4 , π cos x 2 π + x + sin x , λ = 1 4 .
Then from (5.8) we have:

8πHn 4 -(2πH + 8πH 2 + 1)n 2 + H 1 + 2πH 2 = 0, n = 0, 1, . . . .
From these equalities we finally calculate the coefficients of the second boundary condition:

H = 0, H 1 = 1 4 , H 2 = - 1 8π . 

On two problems with common parameter dependent boundary condition

Consider two eigenvalue problems for the equation -y ′′ (x) + q(x)y(x) = λy(x) (6.1)

with boundary conditions

y ′ (0) -hy(0) = 0, λ(y ′ (π) + Hy(π)) = H 1 y ′ (π) + H 2 y(π), (6.2) 
y ′ (0) -hy(0) = 0, λ(y ′ (π) + Hy(π)) = H 1 y ′ (π) + H 2 y(π), (6.3) 
where q(x) ∈ L 2 (0, π) is a real-valued function, h, h, H, H 1 , H 2 ∈ R and

ρ := HH 1 -H 2 > 0.
We can assume without loss of generality that h < h. Denote by λ 0 < λ 1 < λ 2 < . . . and µ 0 < µ 1 < µ 2 < . . . the eigenvalues of the problems (6.1), (6.2) and (6.1), (6.3), respectively. Let ϕ(x, λ) and ψ(x, λ) be the solutions of equation (6.1) satisfying

ϕ(0, λ) = 1, ϕ ′ (0, λ) = h, ψ(0, λ) = 1, ψ ′ (0, λ) = h.
Eigenvalues of the problems (6.1), (6.2) and (6.1), (6.3) coincide with the zeros of the functions

Φ(λ) := λ(ϕ ′ (π, λ) + Hϕ(π, λ)) -H 1 ϕ ′ (π, λ) -H 2 ϕ(π, λ), Ψ(λ) := λ(ψ ′ (π, λ) + Hψ(π, λ)) -H 1 ψ ′ (π, λ) -H 2 ψ(π, λ),
respectively. We denote f (x, λ) = ψ(x, λ) + m(λ)ϕ(x, λ) and choose m(λ) such that

λ(f ′ (π, λ) + Hf (π, λ)) -H 1 f ′ (π, λ) -H 2 f (π, λ) = 0. Then m(λ) = - Ψ(λ) Φ(λ) .
Using Green's formula, we can write

π 0 f (x, λ)f (x, µ)dx = - ρf (π, λ)f (π, µ) (H 1 -λ)(H 1 -µ) + (h -h) m(λ) -m(µ) λ -µ .
From here when µ → λ it follows that:

π 0 f 2 (x, λ)dx + ρf 2 (π, λ) (H 1 -λ) 2 = (h -h) ṁ(λ).
Since the left-hand side of the last equality is always positive, the function m(λ) monotonically decreases in the set R \ {λ n |n ∈ Z + }. Therefore, zeros and poles of m(λ) interlace and according to (2.4) we obtain: λ 0 < µ 0 < λ 1 < µ 1 < λ 2 < µ 2 < . . . . Now we use Green's formula again:

(λ -λ n ) π 0 f (x, λ)ϕ(x, λ n )dx = (f (x, λ)ϕ ′ (x, λ n ) -f ′ (x, λ)ϕ(x, λ n ))| π 0 = - ρ(λ -λ n )f (π, λ)ϕ(π, λ n ) (H 1 -λ n )(H 1 -λ) -(h -h) = - ρ(λ -λ n )ψ(π, λ)ϕ(π, λ n ) (H 1 -λ n )(H 1 -λ) + ρ(λ -λ n )ϕ(π, λ)ϕ(π, λ n ) (H 1 -λ n )(H 1 -λ) Ψ(λ) Φ(λ) -(h -h).
On the other hand According to Theorem 5.1 we can uniquely construct such a real-valued function q(x) ∈ L 2 (0, π) and numbers h, H, H 1 , H 2 ∈ R that the numbers {λ n } and {γ n } are the eigenvalues and the norming constants of problem P(q, h, H, H 1 , H 2 ). We put: h := h + σ and denote by τ n the eigenvalues of problem P(q, h, H, H 1 , H 2 ). Let ϕ(x, λ) and ψ(x, λ) be the solutions of equation ( 6 
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When λ n → λ from these two equalities we obtain:

Thus we expressed norming constants by two spectra. We shall use this expression to solve the problem of reconstruction of differential operator by two of its spectra. Using Theorem 2.1 and Lemma 5.1 from the last equality we obtain the following asymptotic estimation:

Reconstruction by two spectra

Let two sequences of real numbers {λ n } and {µ n } (n ∈ Z + ) with the following properties be given:

We define functions

and put:

Since zeros of Φ(λ) are simple, we get:

Using Lemma 5.1 again we calculate: