
HAL Id: hal-01704793
https://hal.science/hal-01704793v1

Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetric indefinite triangular factorization revealing
the rank profile matrix

Jean-Guillaume Dumas, Clément Pernet

To cite this version:
Jean-Guillaume Dumas, Clément Pernet. Symmetric indefinite triangular factorization reveal-
ing the rank profile matrix. ISSAC’18, Jul 2018, New York, United States. pp.151-158,
�10.1145/3208976.3209019�. �hal-01704793�

https://hal.science/hal-01704793v1
https://hal.archives-ouvertes.fr

Symmetric indefinite triangular factorization

revealing the rank profile matrix∗

Jean-Guillaume Dumas† Clément Pernet†

February 26, 2018

Abstract

We present a novel recursive algorithm for reducing a symmetric ma-
trix to a triangular factorization which reveals the rank profile matrix.
That is, the algorithm computes a factorization PTAP = LDLT where
P is a permutation matrix, L is lower triangular with a unit diagonal and
D is symmetric block diagonal with 1×1 and 2×2 antidiagonal blocks.
The novel algorithm requires O(n2rω−2) arithmetic operations. Further-
more, experimental results demonstrate that our algorithm can even be
slightly more than twice as fast as the state of the art unsymmetric Gaus-
sian elimination in most cases, that is it achieves approximately the same
computational speed. By adapting the pivoting strategy developed in the
unsymmetric case, we show how to recover the rank profile matrix from the
permutation matrix and the support of the block-diagonal matrix. There
is an obstruction in characteristic 2 for revealing the rank profile matrix
which requires to relax the shape of the block diagonal by allowing the
2-dimensional blocks to have a non-zero bottom-right coefficient. This re-
laxed decomposition can then be transformed into a standard PLDLTPT

decomposition at a negligible cost.

1 Introduction

Computing a triangular factorization of a symmetric matrix is a commonly
used kernel to solve symmetric linear systems, or to compute the signature of
symmetric bilinear forms. Besides the fact that it is expected to save half of the
arithmetic cost of a standard (non-symmetric) Gaussian elimination, it can also
recover invariants, such as the signature, specific to symmetric matrices, and
thus, e.g., be used to certify positive or negative definite or semidefiniteness [13,
Corollary 1].

∗This work is partly funded by the OpenDreamKit Horizon 2020 European Research In-
frastructures project (#676541).
†Université Grenoble Alpes. Laboratoire Jean Kuntzmann, CNRS, UMR 5224. 700 avenue

centrale, IMAG - CS 40700, 38058 Grenoble, cedex 9 France. {firstname.lastname}@univ-
grenoble-alpes.fr

1

http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr

It is a fundamental computation in numerical linear algebra, and is therefore
most often presented in the setting of real matrices. When the matrix is positive
definite, the Cholesky factorization can be defined: A = LLT , where L is lower
triangular for which square roots of diagonal elements have to be extracted. Al-
ternatively, gathering the diagonal elements in a central diagonal matrix yields
the LDLT factorization A = LDLT which no longer requires square roots. Sim-
ilarly as for the LU decomposition, it is only defined for matrices with generic
rank profile, i.e. having their r = rank(A) first leading principal minors non-
zero. For arbitrary matrices, symmetric permutations may lead to the former
situations: PAPT = LDLT . However, this is unfortunately not always the
case. For instance there is no permutation P such that [0 1

1 0] has a LDLT fac-
torization with a diagonal D. This lead to a series of generalizations where the
matrix D was replaced first by a tridiagonal symmetric matrix by Parlett and
Reid [14], improved by Aasen [1], achieving half the arithmetic cost of Gaussian
elimination. Bunch and Kaufman then replaced this tridiagonal matrix by a
block diagonal composed of 1 or 2-dimensional diagonal blocks.

Pivoting In numerical linear algebra, the choice of the permutation matrix
is mainly driven by the need to ensure a good numerical quality of the de-
composition. Bunch and Parlett [5] use a full pivoting technique, requiring a
cubic number of tests. Bunch and Kaufman pivoting strategy, implemented in
LAPACK, uses a partial pivoting requiring only a quadratic number of tests.

In the context of exact linear algebra, for instance when computing over a
finite field, numerical stability is no longer an issue. However, the computation
of echelon forms and rank profiles, central in many applications, impose further
constraints on the pivoting. A characterization of the requirements for the piv-
oting strategy is given in [10, 11] so that a PLUQ decomposition can reveal these
rank profiles and echelon forms in the non-symmetric case. In particular, it is
shown that pivot selection minimizing the lexicographic order on the coordinate
of the pivot, combined with row and column rotations to move the pivot to the
diagonal, enable the computation of the rank profile matrix, an invariant from
which all rank profile information, the row and the column echelon form can be
recovered.

Recursive algorithms As in numerical linear algebra, we try to gather arith-
metic operations in level 3 BLAS operations (matrix multiplication based), for
it delivers the best computation throughput. Numerical software often use tiled
implementations, especially when the pivoting is more constrained by the sym-
metry [16, 12], or in order to define communication avoiding variants [4]. In
exact linear algebra sub-cubic matrix multiplication, such as Strassen’s algo-
rithm, can be extensively used with no numerical instability issues. This led to
the design of recursive algorithms, which was proven successful in the unsym-
metric case, including for shared memory parallel computations [9].

2

Contribution The contribution here is to propose a recursive algorithm pro-
ducing a symmetric factorization PLDLTPT over any field, from which the rank
profile matrix of the input can be recovered. This algorithm is a recursive vari-
ant of Bunch and Kaufman’s algorithm [6] where the pivoting strategy has been
replaced by the one developped previously by the authors in the unsymmetric
case [11]. Compared to the recursive adaptation of Aasen’s algorihtm in [15],
our algorithm leads to a similar data partitionning but does not suffer from an
arithmetic overhead compared to Aasen’s algorithm. Our algorithms has time
complexity O(n2rω−2) where ω is an admissible exponent for matrix multipli-
cation and r is the rank of the input matrix. With ω = 3, the leading constant
in the time complexity is 1/3, matching that of the best alternative algorithms
based on cubic time linear algebra.

In Section 2 we show that in characteristic two the rank profile matrix can
not always be revealed by a symmetric factorization with antidiagonal blocks:
sometimes antitriangular blocks are also required. Then we recall in Section 3
the main required level 3 linear algebra subroutines. In Section 4 we present the
main recursive algorithm. An alternative iterative Crout variant is presented
in Section 5 to be used as a base case in the recursion. We finally show, in
Section 6, experiments of the resulting implementation over a finite field. They
demonstrate the efficiency of cascading the recursive algorithm with the base
case variant, especially with matrices involving a lot of pivoting. They finally
confirm a speed-up by a factor of about 2 compared to the state of the art
unsymmetric Gaussian elimination.

2 The symmetric rank profile matrix

2.1 The pivoting matrix

Theorem 1 recalls the definition of the rank profile matrix.

Theorem 1 ([10]). Let A ∈ Fm×n. There exists a unique m× n {0, 1}-matrix
RA with r 1’s in rook placement of which every leading sub-matrix has the same
rank as the corresponding leading sub-matrix of A. This matrix is called the
rank profile matrix of A.

Lemma 1. A symmetric matrix has a symmetric rank profile matrix.

Proof. Otherwise, the rank of some leading submatrix of A and the same leading
submatrix of AT would be different which is absurd.

Also, any symmetric matrix has a triangular decomposition A = PLDLTPT

where L is unit lower triangular, D is block diagonal, formed by 1-dimensional
scalar blocks or 2-dimensional blocks of the form [0 x

x 0] and P a permutation
matrix.

We here further define Ψ as the support matrix of D: namely, a block
diagonal {0, 1}-matrix such that D = ΨD, with D a diagonal matrix.

3

Definition 1. The pivoting matrix of a PLDLTPT decomposition is the matrix
Π = PΨPT .

Definition 2. A PLDLTPT reveals the rank profile matrix of a symmetric
matrix A if its pivoting matrix equals the rank profile matrix of A.

2.2 Antitriangular blocks in characteristic two

In zero or odd characteristic, we show next that one can always find such a
PLDLTPT decomposition revealing the rank profile matrix. In characteristic
two, however, this is not always possible.

Lemma 2. In characteristic 2, there is no symmetric indefinite elimination

revealing the rank profile matrix of A =

[
0 1
1 1

]
.

Proof. Let J be the 2×2 anti-diagonal identity matrix. This is also the rank

profile matrix of A. Now, we let L =

[
1 0
x 1

]
, D =

[
y 0
0 z

]
. As the permutation

matrices involved, P and Ψ, can only be either the identity matrix or J, there
are then four cases:

1. A = L·D·LT =

[
y xy
xy x2y + z

]
, but y = 0 and rank(D) = rank(A) = 2 are

incompatible.

2. A = J·L·D·LT ·JT =

[
x2y + z xy
xy y

]
, but J·I·J 6= J = RA.

3. A = L·D·J·LT =

[
0 y
z xy + xz

]
, but we need y = z for the symmetry and

then 2xy = 0 6= 1 in characteristic 2.

4. A = J·L·D·J·LT ·JT =

[
xy + xz z

y 0

]
but the bottom right coefficient of A

is non zero.

However, one can generalize the PLDLTPT decomposition to a block diago-
nal matrix D having 2-dimensional blocks of the form [0 c

c d] (lower antitriangu-
lar). Then the support matrix Ψ of D is the block diagonal {0, 1} matrix such
that D = ΨD, with D an upper triangular bidiagonal matrix (or equivalently
such that D = DΨ, with D lower triangular bidiagonal).

With these generalized definitions, we show in Section 4, that there exists
RPM-revealing PLDLTPT decompositions.

4

2.3 Antitriangular decomposition

Then, such a generalized decomposition can always be further reduced to a strict
PLDLTPT decomposition by eliminating each of the antitriangular blocks. For
this, the observation is that in characteristic two, a symmetric lower antitri-
angular 2×2 block is invariant under any symmetric triangular transformation:[

1
x 1

] [
c

c d

] [
1 x

1

]
=

[
c

c 2cx+ d

]
≡
[

c
c d

]
mod 2 =

[
1

1

] [
c

c d

] [
1

1

]
. Thus

for each 2×2 block in a tridiagonal decomposition, the corresponding 2×2 diag-
onal block in L can be replaced by I2, via a multiplication by

[
1
−x 1

]
.

Further, we have that: [c
c d] = J

[
1

c/d 1

] [d
−c2/d

] [
1 c/d

1

]
J. Now J com-

mutes with the identity I2 matrix. Therefore we have that: [1x 1]
[

1
−x 1

]
J
[

1
c/d 1

]
=

J [1x 1]
[

1
−x 1

] [
1

c/d 1

]
.

Thus, to eliminate the antitriangular blocks, create a triangular matrix LJ

that starts as the identity and where its i, i+ 1 blocks corresponding to a [1x 1]
block in L is a

[
1

c/d−x 1

]
block (associated to an antitriangular [c

c d] block, with

d 6=0, in D). Then replace the triangular matrix L by L̃ = L·LJ . Also, modify
the diagonal matrix D, to D̃ such that the [c

c d] blocks of D are replaced by[
d
−c2/d

]
blocks in D̃. Finally, create a permutation matrix PJ , starting from

the identity matrix, where each identity block at position i, i+ 1 corresponding
to an antitriangular block in D is replaced by J. Then P̃ = P·PJ .

From this we have now a symmetric PLDLTPT factorization, A = P̃L̃D̃L̃T P̃T ,
with purely 1×1 and 2×2 antidiagonal blocks in D̃ (but then a direct access to
the rank profile matrix, PΨPT , might not be possible from P̃ and D̃).

In the following we present some building blocks and then algorithms com-
puting RPM-revealing symmetric indefinite triangular factorization.

3 Building blocks

We recall here some of the standard algorithms from the BLAS3 [7] and LA-
PACK [2] interfaces and generalization thereof [3], which will be used to define
the main block recursive symmetric eliminating algorithm.

GEMM (C,A,B): general matrix multiplication. Computes C← C−AB.

TRMM (U,B): multiply a triangular and a rectangular matrix in-place. Com-
putes B← UB where B is m× n and U is upper or lower triangular.

TRMM (C,U,B): multiply a triangular and a rectangular matrix. Computes
C ← C −UB where B and C are m × n and U is upper or lower trian-
gular. This is an adaptation of the BLAS3 TRMM to leave the B operand
unchanged.

TRSM (U,B): solve a triangular system with matrix right hand-side. Computes
B← U−1B where B is m× n and U is upper or lower triangular.

5

SYRDK (C,A,D): symmetric rank k update with diagonal scaling. Computes
the upper or lower triangular part of the symmetric matrix C ← C −
ADAT where A is n× k and D is diagonal or block diagonal.

SYRD2K (C,A,D,B): symmetric rank 2k update with diagonal scaling. Com-
putes the upper or lower triangular part of the symmetric matrix C ←
C−ADBT −BDAT where A and B are n× k, B and D is diagonal or
block diagonal.

In addition, we need to introduce the TRSSYR2K routine solving Problem 1.

Problem 1. Let F be a field of characteristic different than 2. Given a sym-
metric matrix C ∈ Fn×n and a unit upper triangular matrix U ∈ Fn×n, find an
upper triangular matrix X ∈ Fn×n such that XTU + UTX = C.

In characteristic 2, the diagonal of XTU+UTX is always zero for any matrix
X and U, hence Problem 1 has no solution as soon as C has a non-zero diagonal
element.

However in characteristic zero or odd, Algorithm 1 presents a recursive im-
plementation of this routine, and is in the same time a constructive proof of the
existence of such a solution. Note that it performs a division by 2 in line 2, and
therefore requires that the base field has not characteristic two.

Algorithme 1 TRSSYR2K (U,C)

Require: U, n× n full-rank upper triangular
Require: C, n× n, symmetric
Ensure: C← X where X is n×n upper triangular, such that XTU + UTX =

C.
1: if m = 1 then
2: C1,1 ← 1

2C1,1·U−11,1 ; return
3: end if
4: Splitting C =

[
C1 C2

CT
2 C3

]
, U =

[
U1 U2

U3

]
where C1 and U1 are

⌊
n
2

⌋
×
⌊
n
2

⌋
.

5:

6: Find X1 s.t. XT
1 U1 + UT

1 X1 = C1 {TRSSYR2K (U1,C1)}
7: D2 ← C2 −XT

1 U2 {TRMM (XT
1 ,U2)}

8: X2 ← U−T1 D2 {TRSM (UT
1 ,D2)}

9: D3 ← C3 − (XT
2 U2 + UT

2 X2) {SYRD2K (X2,U2)}
10: Find X3 s.t. XT

3 U3 + UT
3 X3 = D3 {TRSSYR2K (U3,D3)}

Remark 1. Note that algorithm 1 computes the solution X in place on the
symmetric storage of C: by induction X1 and X3 overwrite C1 and C3, and
X2 overwrites C2 according to the specifications of the generalized TRMM routine.

Lemma 3. Algorithm TRSSYR2K is correct and runs in O(nω) arithmetic oper-
ations.

6

Proof. Using the notations of Algorithm 1, let X =

[
X1 X2

X3

]
. Then exanding

XTU + UTX gives

[
XT

1 U1 + UT
1 X1 XT

1 U2 + UT
1 X2

(XT
1 U2 + UT

1 X2)T XT
2 U2 + UT

2 X2 + XT
3 U3 + UT

3 X3

]
=

[
C1 C2

CT
2 C3 −D3 + XT

3 U3 + UT
3 X3

]
= C.

which proves the correctin by induction. The arithmetic cost satisfy a recurrence
of the form T (n) = 2T (n/2) + Cnω and is therefore T (n) = O(nω).

4 A block recursive algorithm

4.1 Sketch of the recursive algorithm

The design of a block recursive algorithm is based on the generalization of the
2 × 2 case into a block 2 × 2 block algorithm. While scalars could be either 0
or invertible, the difficulty in elimination algorithms, is that a submatrix could
be rank defficient but non-zero. We start here an overview of the recursive
algorithm by considering that the leading principal block is either all zero or
invertible. We will later give the general presentation of the algorithm where
its rank could be arbitrary.

Let M ∈ F(m+n)×(m+n) be the symmetric matrix to be factorized. Consider

its block decomposition M =

[
A B
BT C

]
where A ∈ Fm×m and C ∈ Fn×n are

also symmetric.
If A is full rank, then a recursive call will produce A = PLDLTPT , and M

can thus be decomposed as:

M =

[
P 0
0 I

] [
L 0
G I

] [
D 0
0 Z

] [
LT GT

0 I

] [
PT 0
0 I

]
,

where G is such that PLDGT = B and Z = C − GDGT . Thus G can be
computed as the transpose of D−1L−1P−1B which can be obtained by a call to
TRSM, some permutations and a diagonal scaling. Then Z is computed by a call
to SYRDK. A second recursive call will then decompose Z and lead to the final
factorization of M.

Now if A is the zero matrix, one is reduced to factorize the matrix N =[
0 B

BT C

]
. In order to recover the rank profile matrix, one has to first look for

pivots in B before considering the block C. Therefore diagonal pivoting is not an
option here. Then the matrix B, which we assume has full rank for the moment,
can be decomposed in a PLDUQ factorization (P and Q permutation matrices,
L and U respectively unit lower and unit upper triangular, D is diagonal). We
then need to distinguish two cases depending on whether the field characteristic
is two or not.

7

4.1.1 Zero or odd characteristic case

If the characteristic zero or odd, N can thus be decomposed as:

N =

[
P 0
0 QT

] [
L 0
G UT

] [
0 D
D 0

] [
LT GT

0 U

] [
PT 0
0 Q

]
,

where G is such that QT (GDU + UTDGT)Q = C. To compute G, one can
first permute C to get C ′ = QCQT (which remains symmetric) and then use a
call to TRSSYR2K.

4.1.2 Characteristic two case

In characteristic two, the equation GDU + UTDGT = QCQT in unknown G
has in general no solution (as soon as C has a non-zero diagonal element).

However, one can still relax Problem 1 and allow the elimination to leave a
diagonal of elements not zeroed out. Following Lemma 2, the idea is then to
decompose N into a block tridiagonal form:

N =

[
P 0
0 QT

] [
L 0
G UT

] [
0 D
D ∆

] [
LT GT

0 U

] [
PT 0
0 Q

]
,

where ∆ is a diagonal matrix and now G is such that QT (GDU + UTDGT +
UT ∆U)Q = C. Therefore ∆ can be chosen such that the diagonal of C ′′ =
QCQT − UT ∆U = C ′ − UT ∆U is zero. As U is unit upper triangular, a
simple pass over its coefficients is sufficient to find such a ∆: let ∆ii = C′ii −∑i−1

j=1 ∆jjU
2
j,i. The algorithm is thus to permute C to get C′; then compute

∆ with the recursive relation above and update C′′ = C′ − UT ∆U with a
SYRDK. C′′ remains symmetric but with a zero diagonal and now TRSSYR2K can
be applied.

4.2 The actual recursive algorithm

4.2.1 First phase: recursive elimination

In the general case, the leading matrices are not full rank, and we have to
consider intermediate steps. For the symmetric matrix M ∈ F(m+n)×(m+n) of
Section 4.1, its leading principal block A ∈ Fm×m is of rank r≤m. Thus its
actual recursive decomposition is of the form:

A = P1

[
L1

M1

] [
D1

] [
LT
1 MT

1

]
PT

1 ,

where L1 ∈ Fr×r is full rank unit lower triangular, D1 ∈ Fr×r is block diago-
nal with 1 or 2-dimensional diagonal blocks, and M1 ∈ F(m−r)×r. Therefore,
forgetting briefly the permutations, the decomposition of M becomes:

M =

L1 0 0
M1 I 0
G 0 I

D1 0 0
0 0 Y
0 YT Z

LT
1 MT

1 GT

0 I 0
0 0 I

 ,
8

where Y is such that B =

[
L1

M1

]
D1G

T +

[
0
Y

]
.

From this point on, there remains to factorize the submatrix
[

0 Y
YT Z

]
. This

will be carried out by the algorithm described in the next section, working on
a matrix with a zero leading principal submatrix. Supposing for now that this
is possible, Algorithm 2 summarizes the whole procedure.

Algorithme 2 Recursive symmetric indefinite elimination

Require: A ∈ Fm×m and C ∈ Fn×n both symmetric, B ∈ Fm×n.
Ensure: P permutation, L unit lower triangular, D block diagonal, s.t.[

A B
BT C

]
= PLDLTPT .

1: Decompose A = P1

[
L1

M1

] [
D1

] [
LT
1 MT

1

]
PT

1 {Alg. 2}

2: let r = rank(B) s.t. L1,D1 and U1 are r × r.
3: B′ = PT

1 B {PERM (PT
1 ,B)}

4: Split B′ =

[
B′1
B′2

]
where B′1 is r × n.

5: X ← L−11 B′1 {TRSM (L1,B
′
1)}

6: Y ← B′2 −M1X {GEMM (B′2,M1,X)}
7: G← XTD−11 {SCAL (XT ,D−11)}
8: Z← C −GD1G

T {SYRDK (C,G,D1)}

9: Decompose

[
0 Y

YT Z

]
= P2L2D2L

T
2 PT

2 {Alg. 3}

10: P ←
[
P1 0
0 In

]
·
[
Ir 0
0 P2

]
11: N1 ← PT

2

[
M1

G

]
{PERM (PT

2 ,

[
M1

G

]
)}

12: L←
[
L1

N1 L2

]
13: D ←

[
D1

D2

]

4.2.2 Second phase: off-diagonal pivoting

Consider N =
[

0 B
BT C

]
, where B ∈ Fm×n, with m≤n, has now an arbitrary rank

r≤m. Then its PLDUQ decomposition is of the form

B = P

[
L1

M1

] [
D1

] [
U1 V1

]
Q,

with D1 diagonal, and L1 and U1 unit square triangular matrices, all three of

order r. Then consider a conformal block decomposition of QCQT =
[

C1 C2

CT
2 C3

]
where C1 is r × r. It remains to eliminate C1 and C2 with the pivots found in

9

B, which leads to the following factorization:

N =

[
P1

QT
1

]
L1 0 0
M1 0 0
G1 UT

1 0
G2 VT

1 I

 0 D1 0

D1 0 0
0 0 Z

×
LT

1 MT
1 GT

1 GT
2

0 0 U1 V1

0 0 0 I

[PT
1

Q1

] (1)

where G1 satisfies

UT
1 D1G

T
1 + G1D1U1 = C1 (2)

and G2 = (C2 −VT
1 D1G

T
1)U−11 D−11 and Z = C3 − (VT

1 D1G
T
2 + G2D1V1).

In order to produce a LDLT decomposition, there still remains to perform
permutations to

1. compact the leading elements of the lower triangular matrix into a 2r×2r
invertible leading triangular submatrix,

2. make the
[

D1

D1

]
matrix block diagonal with 1 or 2-dimensional diagonal

blocks.
The permutation matrix

Pc =

[
Ir 0 0 0
0 0 Im−r 0
0 Ir 0 0
0 0 0 In−r

]
, (3)

corresponding to a block circular rotation, takes care of condition 1, while pre-
serving precedence in the non-pivot rows. This is a requirement for the factor-
ization to reveal the rank profile matrix [11]. The decomposition becomes

N =

[
P1

QT
1

]
Pc

L1 0 0
G1 UT

1 0
M1 0 0
G2 VT

1 I

 0 D1 0

D1 0 0
0 0 Z

×
LT

1 GT
1 MT

1 GT
2

0 U1 0 V1

0 0 0 I

PT
c

[
PT

1

Q1

] (4)

In order to achieve Condition 2, we will transform the matrix
[

0 D1

D1 0

]
into

the block diagonal matrix Diag(
[

0 di

di 0

]
) where di is the ith diagonal element in

D1. To describe the process, we will focus on the matrix

N2 =

[
L1 0
G1 UT

1

] [
0 D1

D1 0

] [
LT
1 GT

1

0 U1

]
= L ·∆ · LT

,

10

and consider a splitting in halves of the matrix D1 =
[
D11

D12

]
where D11 has

order r1 and D12 order r2. This leads to the conformal decompostion
L11 0 0 0
L12 L13 0 0
G11 G14 UT

11 0
G12 G13 UT

12 UT
13

0 0 D11 0
0 0 0 D12

D11 0 0 0
0 D12 0 0

LT

11 LT
12 GT

11 GT
12

0 LT
13 GT

14 GT
13

0 0 U11 U12

0 0 0 U13

Then considering the permutation matrix

Pd =

 Ir1 0 0 0

0 0 Ir2 0

0 Ir1 0 0

0 0 0 Ir2

 ,
one can form PT

d ∆Pd =

[
0 D11 0 0

D11 0 0 0
0 0 0 D12

0 0 D12 0

]
and PT

d LPd =

[L11 0 0 0

G11 UT
11 G14 0

L12 0 L13 0

G12 UT
12 G13 UT

13

]
.

Applying this process recursively changes ∆ into the desired block diagonal
form. Then the transformation of L will remain lower triangular if and only if
all G14 matrices are zero: this means that G1 must be lower triangular in the
first place.

Finding G1 lower triangular satifying Equation (2), is an instance of Prob-
lem 1 for which the routine TRSSYR2K provides a solution.

Note that the actual permutation to transform
[

0 D1

D1 0

]
into a 2×2-blocks

diagonal matrix is a permutation matrix, Pi, resulting from the one by one
interleaving of the rows of [Ir 0] and [0 Ir]. If ei = [0...0 1 0...0]

T
is the i-th

canonical vector, then:

Pi =
[
e1 er+1 e2 er+2 . . . er e2r

]
. (5)

Similarly the triangular factor of the factorization is thus a one by one inter-
leaving of the rows of [L1 0] and [G1 UT

1] as well as a one by one interleaving of

the columns
[
L1

G1

]
and

[
0

UT
1

]
, which overall remains triangular.

Finally, a call to Algorithm 2 produces a factorization for the remaining Z
block and a final block rotation,I2r 0 0

0 0 Im−r
0 In−r 0

 ,
moves the intermediate zero rows and columns to the bottom right. The full
algorithm is presented in details in Algorithm 3 (for zero or odd characteristic,
the characteristic two case being presented afterwards in Section 4.3).

4.3 Characteristic two

The case of the characteristic two can be handled similarly, just computing
the extra diagonal and updating after the PLDUQ decomposition, as sketched in

11

Algorithme 3 Rank deficient and zero leading principal symmetric elimination

Require: C ∈ Fn×n symmetric and B ∈ Fm×n.
Ensure: P permutation, L unit lower triangular, D block-diagonal, s.t.[

0 B
BT C

]
= PLDLTPT .

1: Decompose B = PB

[
L1

M1

] [
D1

] [
U1 V1

]
Q {PLDUQ }

2: C′ ← QCQT =

[
C′1 C′2
C′2

T
C′3

]
{C′1 first r = rk(B) rows/columns: PERM }

3: if characteristic (F) = 2 then
4: for i = 1 to r do
5: ∆ii = (C′1)ii −

∑i−1
j=1 ∆jj (U1)

2
j,i

6: end for
7: C′1 ← C′1 −UT

1 ∆U1 {SYRDK (C′1,U1,∆)}
8: end if
9: XTU1 + UT

1 X = C′1 {TRSSYR2K (U1,C
′
1)}

10: G1 ← XTD−11 {SCAL (XT ,D−11)}
11: if characteristic(F) = 2 then X← X + ∆U1 end if {DADD (X,∆,U1)}
12: C′′2 ← C′2 −XTV1 {TRMM (XT ,V1)}
13: Y ← U−T1 C′′2 {TRSM (UT

1 ,C
′′
2)}

14: Z← C′3 − (YTV1 + VT
1 Y) {SYRD2K (Y,V1)}

15: if characteristic(F) = 2 then Z← Z− (VT
1 ∆V1) end if {SYRDK

(Z,V1,∆)}
16: G2 ← YTD−11 {SCAL (YT ,D−11)}
17: Decompose Z = P3L3D3L

T
3 PT

3 {Alg. 2}
{With Pc from (3), and Pi from (5):}

18: P ←
[
PB 0

0 QT

] [
Pc 0
0 In−r

] [
Pi 0
0 Im+n−2r

] [
Im+r 0

0 P3

] [I2r 0 0
0 0 Im−r

0 In−r 0

]

19: L←

PT
i

[
L1

G1 UT
1

]
Pi

G2 VT
1

M1 0
L3

0

20: D ←

[
PT

i

[
0 D1

D1 0

]
Pi

D3

]

12

Section 4.1.2. Indeed, the only issue is the division by 2 in TRSSYR2K, which is
removed if the diagonal of C′1 is zero. Therefore, Algorithm 2 is unchanged,
the block diagonal matrix just has lower symmetric antitriangular 2×2 blocks
instead of only antidiagonal ones. The only few additional operations appear in
Algorithm 3 and are the contents of the ”ifcharacteristic(F) = 2. . .” branchings.

Then the tridiagonal form with symmetric antitriangular 2×2 blocks thus
obtained by Algorithm 3 can be used to either reveal the rank profile matrix (via
computing Ψ, the support matrix of D, and the pivoting matrix R = PΨPT) or
a PLDLTPT factorization, both at an extra linear cost, as shown in Section 2.3.

Overall, we have proven:

Theorem 2. Algorithm 2 correctly computes a symmetric indefinite PLDLTPT
factorization revealing the rank profile matrix.

5 Base case iterative variant

The recursion of Algorithm 2 should not be performed all the way to a dimen-
sion 1 in practice. For implementations over a finite field, it would induce an
unnecessary large number of modular reductions and a significant amount of
data movement for the permutations. Instead, we propose in Algorithm 4 an
iterative algorithm computing a PLDLTPT revealing the rank profile matrix to
be used as a base case in the recursion.

This iterative algorithm has the following features:
1. it uses a pivot search minimizing the lexicographic order (following the

caracterization in [11]): if the diagonal element of the current row is 0,
the pivot is chosen as the first non-zero element of the row, unless the row
is all zero, in which case, it is searched in the following row;

2. the pivot is permuted with cyclic shifts on the row and columns, so as to
leave the precedence in the remaining rows and columns unchanged.

3. the update of the unprocessed part in the matrix is delayed following the
scheme of a Crout elimination schedule [8]. It does not only improves
efficiency thanks to a better data locality, but it also reduces the amount
of modular reductions, over a finite field, as shown for the unsymmetric
case in [9].

We denote by ρi,n the cyclic shift permutation of order n moving element i
to the first position: ρi,n = (i, 0, 1, . . . , i−1, i+1, . . . n−1). Indices are 0 based,
index ranges are excluding their upper bound. For instance, Ai,0..r denotes the
r first elements of the i+1st row of A, and A0..r,0..r is the 0-dimensional matrix
when r = 0.

6 Experiments

We now report on experiments of an implementation of these algorithms in
the FFLAS-FFPACK library [17], dedicated to dense linear algebra over finite
fields. We used the version committed under the reference e12a998 of the master

13

https://github.com/linbox-team/fflas-ffpack/commit/e12a9989f07a9e128d9b4dd59681e8f62e8fe3b1

Algorithme 4 SYTRF Crout iterative base case

Require: A ∈ Fn×n symmetric
Ensure: P, a permutation, L, unit lower triangular and D, block diagonal,

such that A = PLDLTPT

1: r ← 0; D← 0 {Denote W = A the working matrix}
2: for i = 0..n do

3: Here W =

L
M 0 0
N 0 Ai..n,i Ai..n,i+1..n

 with L ∈ Fr×r

4: v← N0,0..r ×D−10..r,0..r

5: c← Ai..n,i −N× vT

6: if c = 0 then Loop to next iteration end if
7: Let j be the smallest index such that x = cj 6= 0
8: if j = 0 then {Denote c = [0 x k]T }
9: [MN]← ρj,n−r × [MN]

10: Wr..n,r ← x−1 × ρj,n−r × [0c]
11: P← P× ρTj,n−r
12: Dr,r ← x
13: r ← r + 1
14: else {Crout update of the row i+ j}
15: w← Nj,0..r ×D−10..r,0..r

16: d← Ai..n,j+i −N×wT (=
[
0 x g y h

]T
)

17: Here W =

L
M 0 0 0 0 0

N

0 0 0 x kT

0 0 F g JT

0 x gT y hT

0 k J h ∗

18: if characteristic(F) = 2 then
19: y′ ← 0
20: h′ ← h− yx−1k

21: Dr..r+2,r..r+2 ←
[

0 x
x y

]
22: else
23: y′ ← y/2
24: h′ ← h− y′x−1k

25: Dr..r+2,r..r+2 ←
[

0 x
x 0

]
26: end if
27: Perform cyclic symmetric row and column rotations to bring W to the

form W =

L

n′
1

x−1y′ 1
M 0 0 0 0 0

N′
x−1g 0 0 F JT

x−1h′ x−1k 0 J ∗

28: Update P accordingly
29: r ← r + 2
30: end if
31: end for

14

branch. It was compiled with gcc-5.4 and was linked with the numerical library
OpenBLAS-0.2.18. Experiments are run on a single core of an an Intel Haswell
i5-4690, @3.5GHz.

Computation speed are normalized as effective Gfops, an estimate of the
number of field operations that an algorithm with classic matrix arithmetic
would perform per second, divided by the computation time. For a matrix of
order n and rank r, we defined this as:

Effective Gfops = (r3/3 + n2r − r2n)/(109 × time).

All experiments are over the 23-bits finite field Z/8388593Z.
Figure 1 compares the computation speed of the pure recursive algorithm,

the base case algorithm and a cascade of these two, with a threshold set to
its optimum value from experiments on this machine. Remark that the pure
recursive variant performs rather well with generic rank profile matrices, while
matrices with uniformly random rank profile matrix make this variant very
slow, due to an excessive amount of pivoting. As expected, the base case Crout
variant speeds up these instances for small dimensions, but then its performance
stagnate on large dimensions, due to poor cache efficiency. Lastly the cascade
algorithm combines the benefits of the two variants and therefore performs best
in all settings. We here used a threshold n = 128 for the experiments with
random RPM matrices, but of only n = 48 for generic rank profile matrices,
since the recursive variant becomes competive much earlier. In most cases, the
rank profile structure of given matrices is unknown a priori, making the setting
of this threshold speculative. One could instead implement an introspective
strategy, updating the threshold from experimenting with running instances.

n
Gen. rank prof. Random RPM Random RPM

r = n r = n r = n/2
PLUQ LDLT PLUQ LDLT PLUQ LDLT

100 5.81e-4 4.95e-4 6.71e-4 5.95e-4 3.79e-4 3.69e-4
200 2.29e-3 1.25e-3 3.05e-3 1.82e-3 1.81e-3 1.23e-3
500 1.99e-2 6.57e-3 3.07e-2 1.05e-2 2.04e-2 7.54e-3
1000 0.104 2.58e-2 1.15e-1 4.25e-2 6.98e-2 3.14e-2
2000 0.507 0.134 0.551 0.199 0.308 0.148
5000 4.651 1.720 4.502 2.003 2.813 1.419
10000 26.59 11.94 26.08 15.88 12.04 8.265

Table 1: Comparing computation time (s) of the symmetric (LDLT) with un-
symmetric (PLUQ) triangular decompositions. Matrices with rank r, and rank
profile matrix uniformly random.

Table 1 compares the computation time of the symmetric decomposition
algorithm with that of the unsymmetric case (running the PLUQ algorithm
of [11]). These experiments confirm a speed-up factor of about 2 between these
routines, which is the expected gain in the constant in the time complexity. Note

15

Figure 1: Computation speed of the Base Case, the pure recurisve and the
cascading variant for a rank profile matrix revealing PLDLTPT decomposition.
Matrices with rank half the dimension and random RPM (top), full rank with
random RPM (center) or full rank with generic rank profile (bottom)

16

that on large instances, the PLUQ elimination performs better with random
RPM instances than generic rank profiles, contrarily to the LDLT routine. This
is due to the lesser amount of arithmetic operations when the RPM is random
(some intermediate submatrices being rank deficient). On the other hand, these
matrices generate more off-diagonal pivots, which cause more pivoting in LDLT
than in PLUQ, explaining the slow down for the symmetric case.

References

[1] Jan Ole Aasen. On the reduction of a symmetric matrix to tridiagonal
form. BIT Numerical Mathematics, 11(3):233–242, Sep 1971. doi:10.

1007/BF01931804.

[2] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven
Hammarling, Alan McKenney, et al. LAPACK Users’ guide. SIAM, 1999.
URL: http://www.netlib.org/lapack/lug/lapack_lug.html.

[3] Marc Baboulin, Dulceneia Becker, and Jack Dongarra. A Parallel Tiled
Solver for Dense Symmetric Indefinite Systems on Multicore Architectures.
In IEEE 26th International Parallel & Distributed Processing Symposium
(IPDPS), pages 14–24. IEEE, May 2012. URL: http://ieeexplore.ieee.
org/document/6267820/, doi:10.1109/IPDPS.2012.12.

[4] G. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled,
O. Schwartz, S. Toledo, and I. Yamazaki. Communication-Avoiding
Symmetric-Indefinite Factorization. SIAM Journal on Matrix Analysis and
Applications, 35(4):1364–1406, January 2014. URL: http://epubs.siam.
org/doi/abs/10.1137/130929060, doi:10.1137/130929060.

[5] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric in-
definite systems of linear equations. SIAM Journal on Numerical Analysis,
8(4):639–655, December 1971. doi:10.1137/0708060.

[6] James R. Bunch and Linda Kaufman. Some stable methods for calculating
inertia and solving symmetric linear systems. Mathematics of Computation,
31(137):163–179, 1977. URL: http://www.jstor.org/stable/2005787,
doi:10.2307/2005787.

[7] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A
Set of Level 3 Basic Linear Algebra Subprograms. ACM TOMS, 16(1):1–
17, March 1990. URL: http://doi.acm.org/10.1145/77626.79170, doi:
10.1145/77626.79170.

[8] Jack J. Dongarra, Lain S. Duff, Danny C. Sorensen, and Henk A. Vander
Vorst. Numerical Linear Algebra for High Performance Computers. SIAM,
1998.

17

http://dx.doi.org/10.1007/BF01931804
http://dx.doi.org/10.1007/BF01931804
http://www.netlib.org/lapack/lug/lapack_lug.html
http://ieeexplore.ieee.org/document/6267820/
http://ieeexplore.ieee.org/document/6267820/
http://dx.doi.org/10.1109/IPDPS.2012.12
http://epubs.siam.org/doi/abs/10.1137/130929060
http://epubs.siam.org/doi/abs/10.1137/130929060
http://dx.doi.org/10.1137/130929060
http://dx.doi.org/10.1137/0708060
http://www.jstor.org/stable/2005787
http://dx.doi.org/10.2307/2005787
http://doi.acm.org/10.1145/77626.79170
http://dx.doi.org/10.1145/77626.79170
http://dx.doi.org/10.1145/77626.79170

[9] Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, Jean-Louis
Roch, and Ziad Sultan. Recursion based parallelization of exact dense lin-
ear algebra routines for gaussian elimination. Parallel Computing, 57:235
– 249, 2016. doi:10.1016/j.parco.2015.10.003.

[10] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Computing
the rank profile matrix. In Proceedings of the 2015 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 149–
156, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.
1145/2755996.2756682, doi:10.1145/2755996.2756682.

[11] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Fast compu-
tation of the rank profile matrix and the generalized Bruhat decomposi-
tion. Journal of Symbolic Computation, 83:187–210, November–December
2017. URL: http://hal.archives-ouvertes.fr/hal-01251223, doi:

10.1016/j.jsc.2016.11.011.

[12] Erik Elmroth, Fred G. Gustavson, Isak Jonsson, and Bo K̊agström. Re-
cursive blocked algorithms and hybrid data structures for dense ma-
trix library software. SIAM Review, 46(1):3–45, 2004. doi:10.1137/

S0036144503428693.

[13] Erich L. Kaltofen, Michael Nehring, and B. David Saunders. Quadratic-
time certificates in linear algebra. In Anton Leykin, editor, ISSAC’2011,
Proceedings of the 2011ACM International Symposium on Symbolic and
Algebraic Computation, San Jose, California, USA, pages 171–176.
ACM Press, New York, June 2011. URL: http://www.math.ncsu.edu/

~kaltofen/bibliography/11/KNS11.pdf.

[14] B. Parlett and J. K. Reid. On the solution of a system of linear equations
whose matrix is symmetric but not definite. BIT, 10(3):386–397, 1970.
doi:10.1007/BF01934207.

[15] Miroslav Rozložńık, Gil Shklarski, and Sivan Toledo. Partitioned triangular
tridiagonalization. ACM Trans. Math. Softw., 37(4):38:1–38:16, February
2011. doi:10.1145/1916461.1916462.

[16] Gil Shklarski and Sivan Toledo. Blocked and recursive algorithms for
triangular tridiagonalization. 2007. URL: http://www.cs.tau.ac.il/

~stoledo/Bib/Pubs/ShklarskiToledo-Aasen.pdf.

[17] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear
Algebra Subroutines / Package, 2018. v2.3.2. https://github.com/

linbox-team/fflas-ffpack.

18

http://dx.doi.org/10.1016/j.parco.2015.10.003
http://doi.acm.org/10.1145/2755996.2756682
http://doi.acm.org/10.1145/2755996.2756682
http://dx.doi.org/10.1145/2755996.2756682
http://hal.archives-ouvertes.fr/hal-01251223
http://dx.doi.org/10.1016/j.jsc.2016.11.011
http://dx.doi.org/10.1016/j.jsc.2016.11.011
http://dx.doi.org/10.1137/S0036144503428693
http://dx.doi.org/10.1137/S0036144503428693
http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf
http://dx.doi.org/10.1007/BF01934207
http://dx.doi.org/10.1145/1916461.1916462
http://www.cs.tau.ac.il/~stoledo/Bib/Pubs/ShklarskiToledo-Aasen.pdf
http://www.cs.tau.ac.il/~stoledo/Bib/Pubs/ShklarskiToledo-Aasen.pdf
https://github.com/linbox-team/fflas-ffpack
https://github.com/linbox-team/fflas-ffpack

	Introduction
	The symmetric rank profile matrix
	The pivoting matrix
	Antitriangular blocks in characteristic two
	Antitriangular decomposition

	Building blocks
	A block recursive algorithm
	Sketch of the recursive algorithm
	Zero or odd characteristic case
	Characteristic two case

	The actual recursive algorithm
	First phase: recursive elimination
	Second phase: off-diagonal pivoting

	Characteristic two

	Base case iterative variant
	Experiments

