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Abstract

Materials with coarse inner architecture being easily made with modern additive or folding

processes, the question of their overall behavior rises. Do they behave like classical elastic

continua, or do they exhibit additional higher-order effects ? Further, if present are those

effects stable with respect to imperfections (geometry, constitutive material, ...) ? In

this view, the current work is an experimental investigation for the need, in static, of a

higher-order overall description. It comes from noticing that such behaviors are up to now

nearly exclusively studied from a theoretical and numerical point of view. In the present

study a non-centro symmetric sample has been manufactured, based on an industrial

honeycomb geometry used for aeronautic/aerospace composite materials. The geometrical

anisotropy of the elementary cell and the scale separation ratio have been chosen in order

to detect non-classical couplings. Samples are obtained by Fused Deposition Modeling

(FDM), one of the most widespread 3D printing techniques. Simple experiments based

on load controlled tests with full-field kinematic measurement have been performed. A

distributed load control reveals that the overall behavior of the architectured material

cannot be described within the realm of Cauchy elasticity.

Keywords: strain-gradient elasticity, Anisotropy, Boundary Conditions, Full-field

measurement, Architectured materials, Non-centrosymmetric lattices, Generalized

continua.

1. Introduction

Several scales are often use to model a material:
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• The macroscale, which is fundamentally defined by the characteristic scale of the

considered loading. Its characteristic length is thereafter written M .

• The microscale, which is an arbitrary cut-off below which matter will be supposed

continuous (and modelled as such). Its characteristic length is thereafter written µ.

Below this scale, from a physical point of view, the matter is still organized, but the

precise details of this organization are ‘forgotten’ in the modelling.

• The mesoscale(s) which lie(s) between the micro and the macro ones. One may

found several mesoscales. In the case of a single mesoscale, its characteristic length

is thereafter written m.

Based on these definitions, a material is said to be architectured if:

1. it presents, between its microstructure and its macrostructure, one or more other

scales of organization of matter;

2. the intermediate scales of organization are comparable with those of the macrostruc-

ture, but separate with the one of the microstructure.

As a consequence the overall physical properties of architectured materials are defined by

the choice of constitutive materials, and of an inner structure. From a design point of view,

it is often valuable to substitute the original architectured material by an homogeneous

equivalent one. The interests are the emergence of relevant design parameters and gains

in time computations, resulting in an easier exploration of their design space.

If the different scales are well-separated i.e. µ�M (Fig. 1(a)), the determination of

the overall elastic continuum is direct within the classical theory of homogenization1 [7].

In this situation, the overall homogeneous medium is a classical elastic continuum (a.k.a

Cauchy continuum), meaning that most of the structural effects are lost going from the

scale of the architecture to the one of the sample.

1Even if this point will not be discussed further in this paper, the situation is a bit more complex.

Classical theorems in the mathematical theory of homogenization holds for a vanishing small scale sepa-

ration ratio (ε→ 0) and provided the elasticity tensor field is strictly positive definite almost everywhere

(and its inverse) [3]. Porous materials, having voids as phases, do not fit into these hypotheses. Further

it can be proved that the homogenization limit can be, in such a case, non-classical, even under the scale

separation hypothesis [28, 9].
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(a) Standard material with 2

well-separated scales: macro-

scopic scale M and microscopic

scale (constitutive material) µ.

M

m

µ

(b) Architectured material with weak

scale separation: macroscopic scale M ,

mesoscopic (inner structure) scale m and

microscopic scale (constitutive material)

µ.

Figure 1: The different scales of materials. The red magnification lens shows the microscopic scale which

is modeled with a constitutive law, while the blue shows the mesoscape which is described by its geometry.

On the contrary, in case of weak scale separation i.e. µ� m . M (Fig. 1(b)), struc-

tural effects cannot be neglected at the macro level and the classical Cauchy continuum

has to be enriched in some way for the overall elastic behaviour to be well-described. In

literature there are numerous references dealing with this issue from a theoretical point

of view [11, 19, 23, 16, 1]. But, what about the practical needs for such enrichment ?

In elastodynamics, the insufficiency of Cauchy elasticity are rather clear [23, 27, 32, 33].

Considering wave propagation in lattices, the influence of the architecture is revealed

by the band structure of the dispersion diagram. As well known, the classical Cauchy

elasticity can not reproduce these effects. This motivates, in the 70’, the development of

generalized continuum theories [23, 25]. In a recent contribution [32], it has been shown

that Cauchy elasticity is unable to reproduce the hexagonal wave propagation that has

been observed both numerically and experimentally in honeycomb structures. In the

same reference, it is shown that an extension of classical elasticity, called strain-gradient

elasticity, is able to model the observed phenomenon. In [33], the validity range of this

enrichment is studied. It results that the use of a strain-gradient continuum as an overall

medium improves the continuous description for scale separation ratios (ε = m
M

) between

1/6 and 1/20. For ratios less than 1/20 the standard Cauchy description is sufficient,

while for ratios greater than 1/6 strain-gradient elasticity is no more satisfactory.

If the need for generalized continua in elastodynamics is clear, its relevance for static

situations is still open. So the question is, can we find situations for which classical
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elasticity fails to correctly describe the observed phenomenon ? Hence, the aim of the

present contribution is double:

1. identify a non-fictitious situation for which an overall Cauchy description would fail;

2. verify, for this situation, if the predicted discrepancy can be experimentally evi-

denced.

The non-fictitious feature stands for a situation that may be found in everyday life or

industrial domain as opposed to a purely academic case. For example, the interesting

pantograph structure [2, 1, 31, 29] has already been studied in a static way, but is still

considered as an exotic illustration of the theory. The possibility of an experimental

observation is questioned because of the multiple sources of dispersions: geometry, ma-

terial parameters, boundary conditions and mechanical loading. So the goal is to check

whether the higher-order effects evidenced on theoretical/numerical grounds do emerge

in experimental testing or if they are hidden by the numerous dispersions.

Such a situation might be the following. It is well known that classical elasticity

is non sensitive to the lack of centro-symmetry of the microstructure. It can be shown

that extending classical elasticity by considering higher-gradients of the displacement field

into the energetic formulation will make the behavior sensitive to centro-symmetry. The

establishment of strain-gradient elasticity from asymptotic expansion [8, 38] shows that

the fifth-order tensor responsible for this coupling is of order ε in the expansion, and

hence dominant when compared to the second-order elasticity tensor which is ε2 in the

expansion. Hence, as an Ockham razor, a sample of a non centro-symmetric architectured

material with weak scale separation will be tested in homogeneous tension.

If the resulting strain field is homogeneous the overall continuum is of Cauchy type, if

not, a generalized continuum should be considered. This test will first be considered nu-

merically and then checked experimentally. Concerning the experimental procedure two

samples of architectured materials having different symmetry classes (centro and non-

centro-symmetric) will be made by Rapid Prototyping Technology (RPT). The use of a

Fused Deposition Modeling (FDM) technique will lead to a rather fine (external) shape

accuracy but poor (inner) constitutive matter quality because of its highly non uniform

porosity. This realistic but far-from-perfect state is considered interesting to test the

high-order behavior sensitivity to defects. Last, as we aim at ”observing” the constitutive

law, samples will be loaded in force in order to observed, via Digital Image Correlation
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(DIC), the associated kinematic fields.

Organization of the paper

The paper is organized as follows. In a first section, §.2, the conceptual setting of an

experiment to probe the relevance of overall Cauchy elastic modeling is introduced. Some

notions concerning generalized continuum are presented before detailing the anisotropic

formulation of strain-gradient elasticity. For our need the constitutive law is introduced in

its compliance form. The anisotropic systems producing coupling between strain-gradient

and stress are identified, and the symmetry class for our architectured material decided.

At the end, two patterns are chosen. One is centro-symmetric, with an expected classical

response under uniaxial tension, the other is non-centro-symmetric, with an expected

non-standard response. A weak-scale separation ratio (ε = m
M

= 1
8
) is considered for

producing both the numerical and the experimental sample. This ratio lies between the

bounds identified in [33] and is chosen so as to magnify the higher-order kinematics. For

both materials, numerical uniaxial tension tests are performed in order to design the real

experiment.

It is shown, numerically, that Cauchy elasticity cannot serve as an overall elastic

continuum to describe the considered experiment. To validate this result, in §.3, an

experiment is set up. Two 3D printed architectured materials are tested with a load control

in the elastic regime. An integrated DIC setup allows to capture the displacement fields

and highlights the failure of the homogenized Cauchy model in the second experiment.

Before getting into the core our object, let us introduce some notations:

Notations

In this work tensors of order ranking from 0 to 6 are denoted, respectively, by a, a,

a
∼

, a
'

, a
≈

, a
u

and a∼∼∼
. The simple, double, third and fourth contractions are written ·, :, ∴

and :: respectively. In index form with respect to an orthonormal Cartesian basis, these

notations correspond to

a · b = aibi, a
∼

: b
∼

= aijbij, a
'
∴ b
'

= aijkbijk, a
≈

:: b
≈

= aijklbijkl

where repeated indices are summed up. More generally p-order contraction between two

tensors A and B of respective orders n and m (p ≤ min(n,m))

(A�p B)i1...in−pjp+1...jm
:= Ai1...in−pq1...qpBq1...qpjp+1...jm
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where �p is the generalized dot product which reduces to ·, :, ∴ and :: , for p = {1, 2, 3, 4}.

For forthcoming use, the following definition for the transposition of a fifth-order tensor

will be retained:

(MT )ijklm := Mklmij

Spatial derivative will classically be denoted, in index form, by a comma

Grad a = (a⊗∇)ij = ai,j ; Div a = (∇ · a) = ai,i

The following groups will be considered:

• O(2): the orthogonal group, that is the group of all isometries of R2 i.e. Q ∈ O(2)

if det(Q) = ±1 and Q−1 = QT , where the superscript T denotes the transposition.

As a matrix group O(2), can be generated by:

R(θ) =

cos θ − sin θ

sin θ cos θ

 , 0 ≤ θ < 2π, and My =

−1 0

0 1


in which R(θ) is a rotation of θ angle and My is the reflection across the y axis;

• Id, the identity group;

• SO(2): the special orthogonal group, i.e. the subgroup of O(2) of elements satisfying

det(Q) = 1. This is the group of 2D rotations generated by R(θ);

• Zk, the cyclic group with k elements generated by R(2π/k), a rotation angle 2π/k

(Fig. 2(a));

• Zπ2 , is the cyclic group generated by the mirror operation My. The exponent π is

used to differentiate2 this group from the one generated by R(π);

• Dk, the dihedral group with 2k elements generated by R(2π/k) and My (Fig. 2(b)).

Zk is thus a subgroup of Dk.

2It has to be noted that Zπ2 and Z2 are isomorphic as group but not conjugate.
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(a) A Z3-invariant fig-

ure

(b) A D3-invariant figure

Figure 2: Difference between Zk- and Dk-invariant patterns

2. Cauchy probing

To probe Cauchy elasticity, it is needed to:

1. embed Cauchy elasticity into a generalized elastic continuum;

2. define experiments having identical solutions for Cauchy elasticity that differ for the

generalized model.

2.1. Elastic embedding

There are two ways to extend the classical continuum mechanics [39, 23, 24, 16, 25]:

Higher-order continua: the number of degrees of freedom is extended. The Cosserat

model (also known as micropolar), in which local rotations are added as degrees

of freedom, belongs to this family [11]. Timoshenko theory for beams or Reisner-

Mindlin theory for plates are examples of higher order continua.

Higher-grade continua: the degrees of freedom are kept identical but higher-order gra-

dients of the displacement field are involved in the elastic energy. Mindlin’s Strain-

Gradient Elasticity (SGE) model [23, 25, 24] belongs to this family. Euler-Bernoulli

theory for beams or Kirchhoff-Love theory for plates are examples of higher-grade

continua.

The difference between those two approaches is mainly manifest in dynamics where

the first approach allows to produce optical branches, while the other not. For the static

applications we are interested in3 there is no obvious reasons for adding new degrees of

3Higher-order continua can find interesting applications for the static description of liquid-crystals

[13, 15].
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freedom. Hence the second approach will be preferred and followed since it requires, also,

less material parameters. In this case, the simplest case of higher-grade continua, that is

the Strain-Gradient Elasticity (SGE for now on), is considered. Within this framework,

experiments having identical solutions in the classical case but differing within SGE can

be conceived. To that aim the following subsections will be devoted to shortly introduce

this model.

But before, let us formulate two important remarks:

1. We use generalized continua to describe, in continuum fashion, mechanical behavior

in situations where we do not have scale separation. Hence we do not use SGE as

a fundamental constitutive law, but rather as an accommodating intermediate to

extend, a bit, the validity range of classical homogenization [33];

2. What is investigated here is not the accuracy of SGE, but the insufficiency of Cauchy

elasticity. SGE is here regarded as a representative model for higher-grade continua

considered as a class of behavior that presents features that can not be described

by classical elasticity.

2.2. Strain-gradient elasticity: constitutive equations

Experiments have to be conceived in order to be experimentally feasible. Since the

only field that can be directly measured is the displacement one, we decide to performed

load-controlled tests that enhance kinematic response, instead of constraining it. Hence

SGE [23, 25] is considered here in its compliance form. In this situation the following

kinematic quantities:

• the infinitesimal strain tensor: ε
∼

;

• the strain-gradient tensor: η
'

= ε
∼
⊗∇;

are linear functions (L) of the symmetric Cauchy stress tensor σ
∼

and the hyperstress

tensor τ
'

: (
ε
∼
, η
'

)
= L

(
σ
∼
, τ
'

)
In matrix form the linear constitutive law L reads:ε∼

η
'

 =

 S
≈

W
u

W
u
T V∼∼∼


σ∼
τ
'

 (1)

Above,
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• S
≈

is the classical fourth-order compliance tensor complying with the following index

symmetries:

Sijlm = Sjilm = Sjiml = Sijml = Slmij = Smlij = Smlji = Slmji

• W
u

is the fifth-order coupling compliance (CC) tensor complying with the following

index symmetries:

Wijklm = Wjiklm = Wjilkm = Wijlkm

• V∼∼∼
is the sixth-order second-order compliance (SOC) tensor complying with the fol-

lowing index symmetries:

Vijklmn = Vjiklmn = Vjikmln = Vijkmln = Vlmnijk = Vmlnijk = Vmlnjik = Vlmnjik

2.3. Pattern class selection

It can be observed on the matrix form of the constitutive law (1) that the tensor W
u

induces gradient of strain η
'

from the Cauchy stress σ
∼

. This coupling is interesting because

it allows higher-order effects to be directly read off from the displacement field. This point

is illustrated analytically in the case of a 1D rod in the appendix B.

The question is then to determine for which microstructures this coupling is activated.

It is a classical result that odd-order tensors vanish for centro-symmetric microstructures

[12, 41, 4]. It has been demonstrated in [4] that 14 anisotropic systems exist in the specific

situation of bidimensionnal SGE. The detail of each situation is provided in appendix A.

It appears that the fifth-order compliance tensor W
u

is non null in the following systems4

[Gcoupl
L ] = {[Id], [Zπ2 ], [Z3], [D3], [Z5], [D5]}

which are thus the candidates for choosing the symmetry of the pattern for our sample.

The natural idea is to retain the anisotropic system having the minimum number of

parameters. But, in 2D, we face the following difficulties:

• [Z5] and [D5]-invariances are not compatible with any translational invariance. It is

worth noting that a kind of [Z5]-invariance can be found in quasi-crystallographic

tilings such as the Penrose tilings (c.f. Fig.3). In order to have a simple pattern this

possibility will be discarded;

4Since in 2D, the central inversion is equivalent to a rotation of π, odd-order tensors are null for any

pattern having Z2 as a subgroup of their symmetry group.
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• if a material is both [Z3] (resp.[D3]) and invariant by translation, it is automati-

cally [Z6]-invariant (resp.[D6]). This restriction can be avoided by using different

materials in the pattern (c.f. Fig. 4(a) and Fig. 4(b)). This solution is technically

possible, especially with dual-extruders Fused Deposition Modeling machines. In

order to ease the specimen manufacturing, ensure the shape accuracy and avoid any

potential debonding at the interface between the two constitutive materials, this

possibility will be however discarded;

Figure 3: Penrose quasi-crystallographic tiling

(a) Mono-material: hexachiral (b) Bi-material: trichiral,

Figure 4: Mono- and bi- material patterns, which belong to the [Z6] and [Z3] respectively

Hence, in our case, the most simple situation is to consider the [Zπ2 ]-anisotropy. To

evidence the effect due to the lack of centrosymmetry, the same experiment will also be

conducted on a material having centrosymmetric architecture. The anisotropic class of
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the unit cell of the reference sample will be of type [D2] and its geometry will be taken

similar to the one of the principal sample.

2.4. Particular pattern selection

Finding a [D2]-architectured material among industrial honeycomb standards is easy,

but a [Zπ2 ] one is more challenging. We choose a pattern (Fig. 5(a)) similar to the Flexcore R©

honeycomb produced by Hexcel, which was designed to enable single and compound cur-

vatures of sandwich panels. Based on this pattern5, a [D2] one is proposed (Fig. 5(b)) for

the purpose of this study.

t

h

w

t

h

w

(a) Non-Centro symmetric pat-

tern

t

h

w
t

h

w

(b) Centro symmetric pattern

Figure 5: Non-centro and centro-symmetric patterns, which belong to the [Zπ2 ] and [D2] respectively. In

the figure, w, h and t denote, respectively, the width, the height and the thickness of the pattern.

In order to validate the choice of the patterns some prior FEM computations have

been conducted. We consider two specimens made out of 9 × 8 tiling of the [Zπ2 ] and

[D2] patterns with w = 18 mm, h = 22 mm and t = 2 mm. For this configuration, the

scale separation ratio ε = m/M = 1/8. Therefore the inner scale can not be considered

infinitely small compared to that of the sample. This point is important since for ε → 0

classical homogenization result is retrieved with the lost of architectured effects [3]

The specimens are submitted to a 1 N uniform tensile force along x axis, as shown

Fig. 6. The constitutive material used for numerical simulations is a linear elastic isotropic

material, with parameters (Young’s modulus E = 2400 MPa, Poisson’s ratio ν = 0.4)

5The curve generating the non centro-symmetric pattern is given by f(x) =

h
8

(
cos
(
4πx
w

)
− 2 cos

(
2πx
w

))
.
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corresponding to solid ABS plastic (i.e. not homogenized ABS plastic material obtained

by FDM). Computations are performed using Abaqus for CATIA V5 with a mesh size

equal to 0.15 mm.

1
7

8
.9

8
0

.3
1 6

Vue de face
Echelle :   1:1

ex

ey

Figure 6: Boundary conditions used for the FEM computation: uniformly distributed tensile force along

ex for the left and right ends. Fixed ux and uy displacement for the upper left node, fixed ux for the

lower left node to ensure solution unicity.

The resulting deformed geometries for the [D2] and [Zπ2 ] architectures are plotted

Fig.7(a) & 7(b). The displacement fields for the [D2] architecture is detailed Fig.8(a)

& 8(b) while the same fields for the [Zπ2 ] architecture are plotted on Fig.9(a) & 9(b):

• For the [D2] situation the displacement field is classical, the macroscopic strain is

homogeneous. The displacement magnitude reveals the low stiffness of the specimen:

along ex (resp. ey) the mean displacement at the right end of the specimen (i.e. the

unconstrained end) is equal to 4.74 µm (2.28 µm).

• The situation for the [Zπ2 ] architecture is very different: a flexure-like displacement

is superimposed to the elongation. The mean displacement at the right end of the

specimen along ex (resp. ey) is equal to 5.59 µm (resp. 1.16 µm), i.e. of the

same order of magnitude than the corresponding one for the [D2] situation. The

magnitude of the flexure-like heterogeneity is non-negligible: along ex (resp. ey) the

difference of displacement at the right end of the specimen is equal to 0.85 µm (resp.

1.45 µm).
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(a) D2 pattern (b) Z2 pattern

Figure 7: Unloaded (light blue) and deformed geometries (deep blue) under 1 N uniform tensile force

along ex for the centrosymmetric and non centrosymmetric patterns (magnification ×5000).

ux(mm)

(a) Displacement field ux for D2 pattern

uy(mm)

(b) Displacement field uy for D2 pattern

Figure 8: Displacement fields under 1 N uniform tensile force along ex for the centrosymmetric pattern

specimen.
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ux(mm)

(a) Displacement field ux for Zπ2 pattern

uy(mm)

(b) Displacement field uy for Zπ2 pattern

Figure 9: Displacement fields under 1 N uniform tensile force along ex for the non centrosymmetric

pattern specimen.

It is thus obvious that in the case of the [Zπ2 ] architecture, the associated theoretical

strain field can not be homogeneous. From a continuum point of view, in the case of

classical Cauchy elasticity, such an homogeneous force loading can, of course, not produce

an heterogeneous strain field. As discussed before, this situation can, at the opposite, be

predicted and explained by higher-gradient theories of elasticity.

These numerical examples advocate for the need of generalized continuum for the

overall modeling of architectured materials. The question is now to validate this need

with respect to real materials and not just numerically. In the experimental case, sources

of dispersions are multiple: geometrical defects, material parameters, boundary conditions

and mechanical loading... So the question is to check either the higher-order effects

evidenced on numerical simulations do emerge in experimental testings or are they not-

visible, hidden by the multiple dispersions.

3. Experimental approach

The idea is to propose a test very close to the numerical simulations previously pre-

sented. To do so, one has to chose a coherent combination of specimen/RPT/loading

setup/measurement technique such that:

1. the specimen enables a distributed load to be applied to its boundaries;

2. the loading setup ensures a uniformly distributed tensile force;

3. the measurement setup allows for a macroscopic analysis of the displacement field.

These three key points will be briefly presented before the obtained results.

14



3.1. Specimen geometry and manufacturing

First, one wants to choose a usual FDM machine, so that manufacturing defects are

representative of the ones obtained with such type of RPT. The Stratasys Dimension

SST 768 FDM is selected because it is at the same time an industrial grade device and

a rather widespread machine. Due to its stiff frame and good temperature control, this

machine is considered to be reliable, allowing dimensional error around 0.1 mm as for

several industrial FDM machines [18]. The slice thickness and ABS thread diameter in

the present case is 0.254 mm and the production space is equal to 200×200×250 mm3. The

average porosity of the obtained ABS is around 10% [17] and its mechanical properties are

slightly anisotropic (e.g. according to [36], the apparent Young’s modulus varies around

10% in the plane of manufacturing).

Based on this first choice, the specimen requirements are the following:

• for manufacturing: small enough to fit in the machine, with mesoscale details and

wall thickness t large enough to be accurately printed. Specimens out-of-plane

thickness must contain several slices;

• for full-field measurement: sufficiently compliant to enable accurate kinematic mea-

surement without requiring large forces, and minimizing the out-of-plane displace-

ment under load;

• for distributed loading : providing fixtures for the loading setup, ensuring no failure

in the ends of the specimen.

A specimen satisfying these requirements is presented Fig. 10 (the specimen with the

[D2]-invariant pattern is similar).
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1
7
8
.
9
8

2
.
3
5

0
.
3

1 6

18

2
2

Vue de face
Echelle :  1:1

Figure 10: Specimen geometry for [Zπ2 ] pattern.

The rectangular flat gauge zone is 162 × 179 mm2, made of 9 × 8 cells as in the

previous computations. Its out-of-plane thickness is 20 mm corresponding to around 78

slices. The thickness of the walls t is 2 mm so that theoretically up to 7 threads could

fit. A tomography of a cell (Fig. 11(a) & 11(b) ) shows that only 3 threads are filling

the walls in each slice, leaving around 5.5% of unfilled space. It can be observed that

the configuration of the threads is inverted with respect to the symmetry axis ey of the

cell at each slice. Hence, even if, due to microstructural defects, a slice of matter is not

rigorously [Zπ2 ]-invariant, the global invariance is restored ”in average” sense by this out-

of-plane alternance. Being only [Zπ2 ]-invariant in an approximated sense only induced a

small, and hence neglectable, perturbation to the result. What is more important is that

around 0.8% of the cell section is never filed by any slice. These empty spaces are mainly

located in the critical joint area. The resulting material quality being rather poor, an

influence on the macroscopic behavior is expected.
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2 mm 2 mm

(a) .

2 mm 2 mm

(b) .

Figure 11: Tomographic images of a [Zπ2 ] cell obtained by FDM, corresponding to two successive slices of

the process. The 1048× 1223× 1121 voxels images are obtained with the LMT X-ray lab-CT.

The onset of plasticity has been roughly assessed with an FEM simulation considering

a solid material instead of the real porous one. It happens at around 500 N if one

considers a 17 MPa elastic limit. The computation gives a corresponding average extension

along ex axis equal to 2.5 mm, while the heterogeneity of extension along ey axis is

around 0.345 mm. Such supposed displacement fields are compatible with standard full-

field measurements and cameras. A global Digital Image Correlation (DIC)[5] procedure

enables a measurement uncertainty around a centipixel [20], i.e. lower than the sought

displacement heterogeneity.

The gauge zone is completed by a series of clamps at each lateral ends. They are

40 mm-thick to transmit load from setup to gauge zone without breaking. For each

clamps, two M4 bolts with washers will be used to grip the loading setup.

3.2. Loading setup

The loading setup is simple even though very rare for material testing. It is based

on a steel whippletree distributing the main force to several points by use of geometrical

relationship (Fig. 12). To the author’s knowledge the first appearance of such mechanism

was during the 12th century for horse or ox carriages [40]. This principle is used in

mechanical testing for decades (e.g. for aircraft’s wing testing), but nearly never used in

the case of material testing (a rare counterexample is [30]).
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Figure 12: Used linkage tree configuration with the 8 boundary conditions Fn for the designed sample.

It combines several features:

• it does not constrain the specimen to any transverse displacement. This problem

of unwanted displacement induced by clamping the specimen has already been ad-

dressed by [26], who concludes that transmitting the load through a slitted end (i.e.

parallel beams), has to be preferred;

• it does not constrain the specimen to any displacement along the loading axis, only

a distributed load is applied. This enables for example free rotation of the ends

(or even more complex motions), which is necessary for anisotropic material studies

where a homogeneous gauge zone is sought [6];

• last, it distributes the load in a predefined manner on every clamping points, such

that there is a proportional relationship between each clamping point force Fi and

the main force F . It is distributed equally in the present case, but nearly any possi-

bilities exist because of a continuous adaptable setting of the geometric parameters

(even with n 6= 2m with m the number of tree stage). Considering small displace-

ments, that means that as soon as any Fi is equal to zero (because of specimen

local failure or clamp failure), every other Fi are equal to zero because of the force

balance of the linkage.

The whippletree linkages are 200 mm long for each stage, to ensure that the reorientation

of the applied forces due to the specimen lateral strain under load is negligible. A whip-

pletree is fixed to each end of the specimen. One is related to a fix part and the other to
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a 100 kN servo-hydraulic actuator equipped with a 500 N load cell. The complete setup

is around 1800 mm. Consequently, to avoid any out-of-plane bending due to the setup

own weight, the specimen and the whippletree are sliding on a horizontal plate.

3.3. Measurement protocol

The goal of the experiment being to differentiate a Cauchy elasticity behaviour from

a more complex one, a full-field kinematic measurement is mandatory.

Since the lattice has thin walls (around a tenth of the cell size, and a hundredth of

the specimen size), there is a relatively small area to carry kinematic informations over

the wall width t. Two procedures of the Image Correlation techniques family could be of

interest. Roughly speaking, these are full-field measurement methods that characterizes

quantitatively [20] the displacement on the surface of a sample by comparing a deformed

image of it to a reference one. A first method, called Virtual Image Correlation (VIC)

technique6 [37], is dedicated to very thin ‘objects’ (wires, liquid interfaces ...), but displace-

ment along the main axis of these objects is not obtained. A second method, nowadays

well-known in the experimental mechanics field, is the Digital Image Correlation (DIC)

[35]. Contrary to the previous one, it relies on two measured images. With global-DIC [5],

the motion is directly captured on a finite element mesh that enables a dialogue between

measured results and simulation. In the present case where the walls are thin, it however

requires high resolution images or a tailored kinematics (such as a beam theory DIC [21],

that could be here extended to a lattice one).

One proposes to circumvent this difficulty by ‘spreading’ the kinematic informations

from the walls to the void of the cell. To this aim a speckled sheet of elastomer (dental

dam by 4D Rubber R©) is stretched and glued to the gauge zone (Fig. 13). Because of the

low Young’s modulus (1.3 MPa) of the elastomer sheet and its small thickness (0.2 mm)

in comparison with the gauge zone, a weak coupling occurs: the specimen imposes its

displacement to the sheet without being constrained by the stiffness of the latter. One

takes care to apply a small initial tension so that the elastomer sheet is prevented from

buckling under low magnitude compression.

One will use both a global (for measuring the displacement field without any a priori

knowledge except continuity) and, for measuring Cauchy elasticity kinematic, an Inte-

6Briefly speaking, it consists in the comparison between the object silhouette and a theoretical one.
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grated DIC techniques [34]. With this last technique the searched kinematic is expressed

on a model basis (generally composed of very few parameters compared with global DIC).

It allows models to be identified and discriminated and can be applied for the (in)validation

of Cauchy elasticity.
1

7
8

.9
8

0
.3

1 6

Vue de face
Echelle :   1:1

Figure 13: Illustration of the measurement principle: specimen clamps (gray parts with bolts) are visible

on both sides, rubber sheet (light blue) is over the gauge zone. For clarity purpose, the theoretical

geometry of the specimen (black lines) and an image obtained by backlighting (red-line surround) are

presented.

A series of displacement-controlled loading-unloading is applied to each specimen, up

to around 500 N in order to stay in the elastic regime. First loading-unloading is done for

setup self-alignment, second and third to verify the repeatability. Images are at different

steps of actuator displacement. The camera is a DSLR one (Canon 60D, 5184 × 3456

pix.) equipped with a 105-mm fixed focal lens, leading to a physical pixel size equal to

65.5 µm.

Images at maximum load and mid-load are then post-processed (mid-load images

are used instead of minimum load since they ensure that the specimen is already well

aligned and that the load is well distributed). The Correli 3.0 DIC algorithm [22] is used

to perform the measurement computation. It relies on the registration of an image f(x),

defined for every pixels of the selected region of interest x in the reference configuration and

a series of pictures g(x) in the deformed configurations. The registration operation consists

of minimizing the sum of squared differences between the deformed image corrected for
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its displacement and the reference image. Hence

u(x) = Arg min
u∈E

∑
x

(f(x)− g(x + u(x)))2 (2)

with E, a subspace composed of a predefined and constrained kinematic basis. For a

global DIC procedure [5], rich in degrees of freedom, the basis can be chosen as a finite

element mesh kinematic, using standard shape functions. For an integrated approach [34],

the displacement field is constrained by a model. It is proposed here a kinematic basis

composed of 6 displacement fields:

• rigid body motion: translations along ex and ey , and rotation along ez,

• Cauchy elasticity solution for a homogeneous test: displacement fields from uniform

tensile strains εxx and εyy, and uniform shear strain εxy.

It can be noted that a material that does not follow the Cauchy elasticity model would

not be completely corrected by the previous chosen basis. Hence a difference between the

constrained fields (integrated) and the global one would not be composed only of noise

and would highlight the failure of the Cauchy elasticity model.

3.4. Results

One subtracts the rigid body motion to the displacement field obtained by a global DIC

algorithm for an easier appreciation of the field fluctuations. The used DIC mesh is much

finner than the cell size (i.e. the kinematics is only constrained to a FEM-like field, not a

homogeneous Cauchy elasticity one). It can be noted that with the global DIC procedure,

the gray level residual field at convergence is very low (<0.1% of the dynamic range of the

images) meaning that all the kinematic has been correctly captured. The obtained total

displacement fields uMes are presented Fig. 14(a) & 14(b), with the colorbar corresponding

to uMes
x . As a first sight, [D2] and [Zπ2 ] fields are close to the classical Cauchy elasticity

solution: homogeneous strain along both ex and ey directions. The fluctuations at the

mesoscale are not visible. At first sight, the distributions of uMes
x are flat, corresponding

to a uniform tensile loading applied to homogeneous specimens.
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Figure 14: Total displacement field (without the rigid body motion) for (a) the [D2] and (b) the [Zπ2 ]

geometry.

Looking for the ‘compliance coefficients’ i.e. the ratios of homogeneous strains εxx,

εyy and εxy to the applied force F , one first verify that the experimental discrepancies

are small. To this aim several setup modifications (turning the specimen, adjusting the

whippletree) are operated. The optical distortions (whose influence have been estimated

by moving the specimens with the same maximum magnitude as during a test, but without

load) and the effect of load cycling are also assessed. Results shown Fig. 15 prove that

the discrepancies are low in comparison with the average measured values.
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Figure 15: Compliance coefficients for [D2] and [Zπ2 ] architectures. Different test conditions are presented:

for the [D2] architecture, test number 1 is with specimen in initial position, number 2 with specimen in-

plane flipped, 3 back in initial position and a finer adjustment of the whippletree and 4 after the addition

of 15 load cycles. Number 5 corresponds to an estimation of the distortions influence. For the [Zπ2 ]

architecture, test number 6 is in initial position and 7 after 1 cycle.

The compliance coefficients obtained with the final setup configuration are presented
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Tab. 1. Compliances are the average of 2 successive measures, and error ranges are calcu-

lated as the difference between the 2 values, thus including all experimental discrepancies.

εxx/F [10−6.N−1] εyy/F [10−6.N−1] εxy/F [10−6.N−1]

[D2] 36.66± 0.17 −17.14± 0.05 0.03± 0.00

[Zπ2 ] 42.26± 0.59 −11.44± 0.13 0.24± 0.021

Table 1: Measured compliance coefficients. Ranges are evaluated by repeating the measurement.

Several points are worth noting:

• First the order of magnitude is coherent with the ones obtained by simulation, given

in Table 2. Measured compliances are on average more important, which is expected

because of the porosity of the sample described in Section 3.1. Simulations were

indeed performed using a isotropic elastic model and a molded ABS Young modulus

value (2400 MPa) while FDM ABS is reported to be slightly anisotropic in the 3D-

printer plane and having a lower average Young modulus (e.g [10] measures values

around 1990 MPa, i.e. 17% lower than the used value). In the present case, the

stiffness is expected to be even lower because of the narrow walls (2-mm width)

of the specimens not allowing an ABS density as high as for the standard tensile

specimens used by [10] (6-mm width).

• Second, [D2] and [Zπ2 ] measured specimen Cauchy compliances are roughly alike

since the geometries are not very different (same wall thickness to cell size ratio,

quadrangular lattice, etc.). FEM results were alike.

• Last, an unexpected shear strain appears under tension in the [D2] case, however very

small (3 order of magnitude below the tensile strains). It may be due to specimen

or setup flaws. For the [Zπ2 ] specimen, on the contrary, this non-null compliance is

predicted, however lower than the FEM value. This could be due to the setup own

stiffness or friction with the supporting plate.
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εxx/F [10−6.N−1] εyy/F [10−6.N−1] εxy/F [10−6.N−1]

[D2] 29.25 −12.73 0

[Zπ2 ] 34.50 −8.11 0.94

Table 2: Compliance coefficients obtained from FEM.

The key point of this study is now to check whether the Cauchy elasticity is sufficient

to described the 2 types of specimen behaviour. To do so, one now calculates the relative

difference between the Cauchy elastic fields obtained with Integrated-DIC uCauchy and the

measured displacement field (without RBM) uMes. Fig. 16(a) & 16(b) (resp. Fig. 17(a) &

17(b)) show the result, with the colorbar corresponding to the component along ex (resp.

ey). In the case of the [D2] geometry, this difference is composed of displacement noise

without spatial coherency and expected mesoscale pattern. A light long wave pattern is

visible along the ex direction (Fig. 16(a)), probably due to a setup or specimen defect. For

[Zπ2 ] geometry, the kinematic field show no noticeable pattern along ey (Fig. 17(b)) but has

a non-negligible extra component, up to 13 % of the measured displacement magnitude

along ex (Fig. 16(b)). This one is not limited to the end regions of the specimen and is

thus not just a boundary effect. The distribution of values for the [Zπ2 ] geometry is more

extended than for the [D2] one, clearly underlining the existence of a different kinematic

field. One deduces from the analysis of the experimental displacement fields that, roughly

speaking, a rotation of the left and right ends, appears. Such a kinematics is unpredicted

by Cauchy elasticity. It is similar to a bending kinematics (Fig. 18), but contrary to

the usual bending of a beam where the transverse displacement along ey is ‘amplified’

by the length of the specimen, here its shortness leads to an nearly invisible transverse

displacement, while the normal displacement along ex is remarkable.
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Figure 16: Relative residual displacement field (i.e. not captured by the Cauchy elasticity) for (a) the

[D2] and (b) the [Zπ2 ] geometry. The colorbar and the histogram correspond to the ex component.
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Figure 17: Relative residual displacement field (i.e. not captured by the Cauchy elasticity) for (a) the

[D2] and (b) the [Zπ2 ] geometry. The colorbar and the histogram correspond to the ey component.
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ex

ey

Figure 18: Schematic representation of the deformation observed on the [Zπ2 ] geometry. Dotted line =

initial state, thick line = deformed state.

4. Conclusion

The overall elastic behavior of architectured materials is generally described by the

mean of the classical Cauchy continuum. In this paper a situation for which this procedure

fail to adequately described the observed phenomenon has been identified in the case of

quasi-static loadings. This situation is related to non-standard couplings that occur for

materials having a non-centrosymmetric architecture.

This departure from Cauchy elasticity has been experimentally observed on a uniaxial

tension test on a non-centro-symmetric lattice. To assess that the effect is related to

architecture, the same experiment has also been conducted on a centro-symmetric lattice

where the non-standard coupling should not produce. The quality of the experiment has

been investigated and assessed, ensuring that the measured higher-gradient are not noise

and are, hence, characteristic of the mechanical behavior of the architectured material.

The conclusion is that an overall description of this experiment can not be achieved in

the realm of classical Cauchy elasticity. The idea that these higher-gradient effects, no-

ticeable on computations, would vanish when considering a real case with manufacturing

defects turns out to be wrong. It should be pointed that this doesn’t validate the used

strain-gradient elasticity which only serve a conceptual intermediate to conceive the ex-

periment. Using the same test, an enrichment of the kinematic basis with second gradient

fields for the full field measurement would able model (in)validation, but it was not in the

scope of the present paper.
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Appendix

A. Symmetry classes

It is known since the mid 90’ that the space of 2D elasticity tensors is divided into 4

anisotropic classes. Those classes are reported together with their number of independent

components in the following table:

Name Digonal Orthotropic Tetragonal Isotropic

[GL] [Z2] [D2] [D4] [O(2)]

#indep(L) 6 (5) 4 3 2

Table A1: The names, the sets of subgroups [GL] and the numbers of independent components #indep(L)

for the 4 symmetry classes of L. The in-parenthesis number indicates the minimal number of components

of the law in an appropriate basis.

It can be observed that, for classical elasticity, the situation is relatively simple, with

few anisotropic systems. Extending classical elasticity to strain-gradient elasticity the

number of anisotropic system increases by far. To be more specific, it has been demon-

strated that there exists 14 anisotropic systems, which are reported in the following table:
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Name Oblique Rectangular Digonal Orthotropic Trichiral Trigonal Tetrachiral Tetragonal

[GL] [Id] [Zπ2 ] [Z2] [D2] [Z3] [D3] [Z4] [D4]

#indep(L) 45 (44) 27 36 (35) 16 15 (14) 10 13 (12) 9

Name Pentachiral Pentagonal Hexachiral Hexagonal Hemitropic Isotropic

[GL] [Z5] [D5] [Z6] [D6] [SO(2)] [O(2)]

#indep(L) 9 (8) 7 9 (8) 7 7 6

Table A2: The names, the sets of subgroups [GL] and the numbers of independent components #indep(L)

for the 14 symmetry classes of L. The in-parenthesis number indicates the minimal number of components

of the law in an appropriate basis.

The detail of each situation is provided here after, where the classical elasticity is

retrieved by restraining the complete operator to only its C part:

LId =

C
≈Z2

M
u Id

M
u
T

Id
A∼∼∼Z2

 ; LZπ2
=

C
≈Z2

M
u Zπ2

M
u
T

Zπ2

A∼∼∼Z2

 (A1)

LZ2 =

C
≈Z2

0

0 A∼∼∼Z2

 ; LD2 =

C
≈D2

0

0 A∼∼∼D2

 (A2)

LZ3 =

C
≈O(2)

M
u Z3

M
u
T

Z3

A∼∼∼Z6

 ; LD3 =

C
≈O(2)

M
u D3

M
u
T

D3

A∼∼∼D6

 (A3)

LZ4 =

C
≈D4

0

0 A∼∼∼Z4

 ; LD4 =

C
≈D4

0

0 A∼∼∼D4

 (A4)

LZ5 =

C
≈O(2)

M
u D5

M
u
T

D5

A∼∼∼SO(2)

 ; LD5 =

C
≈O(2)

M
u D5

M
u
T

D5

A∼∼∼O(2)

 (A5)

LZ6 =

C
≈O(2)

0

0 A∼∼∼Z6

 ; LD6 =

C
≈O(2)

0

0 A∼∼∼D6

 (A6)

LSO(2) =

C
≈O(2)

0

0 A∼∼∼SO(2)

 ; LO(2) =

C
≈O(2)

0

0 A∼∼∼O(2)

 (A7)

The link between generalized compliance tensors and generalized rigidity ones are

28



provided by the following relation:

S
≈

= C
≈
−1 + C

≈
−1 : M

u
∴ Π∼∼∼

−1 ∴ M
u
T : C

≈
−1 ; W

u
= −C

≈
−1 : M

u
∴ Π∼∼∼

−1 ; V∼∼∼
= Π∼∼∼

−1

with

Π∼∼∼
= A∼∼∼
−M

u
T : C

≈
−1 : M

u

It can be observed that in the case M
u

= 0, this simplifies to

S
≈

= C
≈
−1 ; W

u
= 0

u
; V∼∼∼

= A∼∼∼
−1

B. 1D analytic solution

B1. Equilibrium equations: general case

In strain-gradient elasticity the linear momentum reads [23, 14]:

Divs
∼

+ f = 0

where s
∼

is the effective second order symmetric stress tensor, defined as follows:

s
∼

= σ
∼
−Divτ

'

Hence the stress quantities that appears in the equilibrium is a combination of the Cauchy

stress tensor σ
∼

and the hyperstress tensor τ
'

.

Bulk equations are supplemented with the Neumann Boundary Conditions (B.C.) on

surface ti = sijnj − Pml(Pmjτijknk),l

Ri = τijknjnk

(B1)

where the quantities t,R, and n are respectively, the traction (i.e. a force per unit area),

the double-force per unit area and the outward normal. The quantity P
∼

, which is the

projector onto the tangent plane, is defined as follows:

P
∼

= I
∼
− n⊗ n

It worth being noted that if the boundary of the domain is not smooth boundary conditions

should be added on edges (in 3D) or at the corners of the domain in 2D. These conditions

will not be detailed here.
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B2. 1D tension test

In a pure 1D setting, the constitutive law is given by 3 scalars7:σ
τ

 =

 c m

m a

ε = u′

η = u′′


As illustrated on Fig. 1(a) and 1(b) in 1D the constitutive law can be ”isotropic” if m = 0,

or hemitropic (the only 1D ”anisotropic” situation) if m 6= 0.

(a) (b)

Figure B1: In 1D composite materials can either be (a) centro-symmetric unit cell (isotropic) or (b)

non-centro-symmetric unite cell (hemitropic).

To build a bridge with the main part of the text, consider the Zπ2 -invariant pattern

previously studied and build two different kind of beam from it. Obtained beams are

depicted on figures 2(a) and 2(b), the first is isotropic 1D (m = 0), while the second is

hemitropic 1D (m 6= 0).

(a) Isotropic architectured beam (m = 0)

(b) Hemitropic architectured beam (m 6= 0)

Figure B2: Architectured beams made from the Zπ2 -invariant pattern.

It should be noted that the uniaxial hemitropic situation studied here after, illustrated

on 2(b), differs from the situation studied in the main part of the text. Indeed, it is in

1D the only situation producing a non-trival coupling, the situation 2D is, as illustrated

in main part, much richer.

7In 1D those quantities have the following units c : [N ], m : [N ][m] and a : [N ][m]2.
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The elastic energy reads in this case:

2W = σε+ τη = c(u′)2 + 2mu′u′′ + a(u′′)2

This energy is positive definite provided the relation ac−m2 ≥ 0 is verified. Positiveness

of the classical elasticity is assumed, and hence a ≥ 0.

In this case the equivalent stress reduces to s = σ − τ ′ and, in absence of body force,

the equilibrium equation s′ = 0 becomes:

σ′ − τ ′′ = 0

Inserting the constitutive law, the following 4th order ODE is obtained:

cu′′ − au(4) = 0

the general solution of which is

u(x) = λ2
(
C1e

x
λ + C2e

− x
λ

)
+ C3x+ C4

This solution depends on a through the quantity λ =
√

a
c

which is homogeneous to a

length. λ is a characteristic length of the problem.

The two following points can be noted:

1. The equilibrium equation does not involved the parameter m. Its influence can only

be felt through boundary conditions;

2. The displacement field is polynomial if either c or a is null. If a vanishes a general

linear displacement field is obtained, while is cubic if c vanishes.

The constants have to be determined from the boundary conditions. At the boundaries

the force is imposed to F while the hyper force is null. The problem is of Neumann type

so the constant C4 is not imposed by the B.C.. Without loss of generality, C4 can be set

to 0. For the other B.C. the expressions of σ and τ need to be computed. Beforehand

let’s determine ε and η, from the expression of the displacement field:

ε = λ(C1e
x
λ + C2e

− x
λ ) + C3 ; η = C1e

x
λ + C2e

− x
λ

and using the constitutive law we obtain

σ = C1(m+ cλ)e
x
λ + C2(m− cλ)e−

x
λ + cC3

τ = C1(a+mλ)e
x
λ + C2(a−mλ)e−

x
λ +mC3
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As a consequence:

s = σ − τ ′ = cC3

For the tensile loading we have, on the right boundary:

t

(
L

2

)
= s

(
L

2

)
= σ

(
L

2

)
− τ ′

(
L

2

)
= cC3 = F

R

(
L

2

)
= C1(a+mλ)e

L
2λ + C2(a−mλ)e−

L
2λ +mC3 = 0

while on the left boundary:

t

(
−L

2

)
= −s

(
−L

2

)
= −σ

(
−L

2

)
− τ ′

(
−L

2

)
= −cC3 = −F

R

(
−L

2

)
= C1(a+mλ)e−

L
2λ + C2(a−mλ)e

L
2λ +mC3 = 0

Leading to

C1 = − Fme
L
2λ

cλ (eL/λ + 1) (cλ+m)
; C2 = − Fme

L
2λ

cλ (eL/λ + 1) (cλ−m)
; C3 =

F

c

The displacement field have the following expression:

u(x) =
F

c

(
x−

λmsech
(
L
2λ

) (
cλ cosh

(
x
λ

)
−m sinh

(
x
λ

))
∆

)

with ∆ = ac−m2. It can be observed that if m = 0 the displacement field is independent

of a and the classical solution is retrieved.

On Fig. B3 the displacement curve is plotted for different situations. The length and

the force are unitary. The material parameters are c = 100 N, a = 5 N.m2 leading to

the characteristic length λ ∼ 0.22 m. The three plots, correspond, respectively from

the top to the bottom, to the cases in which m = −20, 0, 20 N.m. As it should the case

m = 0 corresponds to the standard situation. The displacement curve is centrosymmetric.

Having a non null m parameter breaks this symmetry leading to an heavily distorted

displacement field. It can be observed that broken symmetry is somehow contained in the

fact that flipping the sign of m amount to inverse the displacement field.
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Figure B3: Displacement curve in the 1D continuum. The parameters in common are: L = 1 m, F = 1 N,

c = 100 N, a = 6 N.m2. For m, from top curve to the bottom one: −20 N.m, 0 N.m, 20 N.m. The x-axis

(in m) represents the position in the rod, on the y-axis the associated displacement (in m).

The different stress functions inside the continuum have been plotted for the case

m = 20 N.m on Fig. B4. As can be observed, both the equivalent stress and the hyperstress

function are even function of space and hence respect the symmetry of the problem. Hence

the symmetry loss seen on kinematic fields is a consequence of the asymmetry of the

constitutive law. It can also be noticed that the way σ and τ are distributed in s depends

on m and hence on the constitutive law.
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Figure B4: Stress measures in the 1D continuum for the tensile loading. The parameters in common are:

L = 1 m, F = 1 N, c = 100 N, 20 N.m, a = 6 N.m2. Plotted curves represents : Figure (a) from top to

bottom, Cauchy stress (N), equivalent stress (N), minus the derivative of the hyperstress (N.m); Figure

(b) the hyperstress (N.m). The x-axis (in m) represents the position in the rod.
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