
Malware Detection in PDF Files Using Machine Learning

Bonan Cuan1, Aliénor Damien23, Claire Delaplace45 and Mathieu Valois6

1INSA Lyon, CNRS, LIRIS, Lyon, France
2Thales Group, Toulouse, France
3CNRS, LAAS, Toulouse, France

4Univ Rennes 1, CNRS, IRISA, 35000 Rennes, France
5Univ. Lille, CRIStAL, 59655 Villeneuve d’Ascq, France

6Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
bonan.cuan@insa-lyon.fr, alienor.damien@laas.fr, claire.delaplace@irisa.fr, mathieu.valois@unicaen.fr

Keywords: Malicious PDF detection, SVM, Evasion attacks, Gradient-Descent, Feature Selections, Adversarial Learning

Abstract: We present how we used machine learning techniques to detect malicious behaviours in PDF files.
At this aim, we first set up a SVM (Support Machine Vector) classifier that was able to detect 99.7% of
malware. However, this classifier was easy to lure with malicious PDF files, which we forged to make them
look like clean ones. For instance, we implemented a gradient-descent attack to evade this SVM. This attack
was almost 100% successful. Next, we provided counter-measures to this attack: a more elaborated features
selection and the use of a threshold allowed us to stop up to 99.99% of this attack.
Finally, using adversarial learning techniques, we were able to prevent gradient-descent attacks by iteratively
feeding the SVM with malicious forged PDF files. We found that after 3 iterations, every gradient-descent
forged PDF file were detected, completely preventing the attack.

1 INTRODUCTION

Billions of Portable Document Format (PDF) files are
available on the web. Not all of them are as harmless
as one may think. In fact, PDF files may contain var-
ious objects, such as JavaScript code or binary code.
Sometimes, these objects may be malicious. A mal-
ware may try to exploit a flaw in a reader in order to
infect the machine.

In 2017, sixty-height vulnerabilities were discov-
ered in Adobe Acrobat Reader (CVEDetails, 2017).
More than fifty of them may be exploited to run arbi-
trary code. Every reader has its own vulnerabilities,
and a malicious PDF file may find ways to make use
of them.

In this context, several works propose the use
machine learning to detect malicious PDF files,
(e.g. (Kittilsen, 2011; Maiorca et al., 2012; Borg,
2013; Torres and De Los Santos, 2018)). These works
rely on the same main idea: select discriminating fea-
tures (i.e. features that are more likely to appear in
malicious PDF files) and build what is called a clas-
sifier. For a given PDF file, this classifier will take as
input the selected features and, considering the num-
ber of occurrences of each of them, will try to deter-

mine if the PDF file contains malware or not. Many
approaches may be considered, both for the choice of
the features and for the design of the classifier. In fact
there are many classification algorithms that can be
utilised: Naive Bayes, Decision Tree, Random For-
est, SVM... The authors of (Maiorca et al., 2012) first
describe their own way to select features, and use a
Random Forest algorithm in their classifier, while the
author of (Borg, 2013) relies on the choice of features
proposed by Didier Steven (Stevens, 2006), and uses
a SVM (Support Vector Machine) classifier. Both ap-
proaches seem to provide accurate results.

However, it is still possible to bypass such detec-
tion algorithms. Several attacks have been proposed
(e.g. (Ateniese et al., 2013; Biggio et al., 2013)).
In (Biggio et al., 2013), the authors propose to evade
SVM and Neural Network classifiers using gradient-
descent algorithms. Meanwhile, the authors of (Ate-
niese et al., 2013) explain how to learn information
about the training dataset used by a given target clas-
sifier. To do so, they build a meta-classifier, and train
it with a set of classifiers that are themselves trained
with various datasets. These datasets have different
properties. Once their meta-classifier is trained, they
run it on the classifier they aim to attack. Doing

so, their goal is to detect interesting properties in the
training dataset utilised by this classifier. Hopefully
they can take advantage of this knowledge to attack
said classifier.

We worked on three aspects of malware detection
in PDF files.

First we implemented our own PDF file classifier,
using SVM algorithm, as it provides good results. We
explored different possibilities for features selection:
our initial choice was based on (Stevens, 2006) selec-
tion. We refined this choice the following way: from
the set of available features, we selected those which
appeared to be the most discriminating in our case.
We trained and tested our SVM with a dataset of 10
000 clean and 10 000 malicious PDF files from the
Contagio database (Contagio Dump, 2013), and we
also tuned the SVM to study its behavior. We came
up with a classifier that had more than 99% success
rate.

In the second part of our work, we study evasion
techniques against our classifier: how to edit mali-
cious PDF files such that they are not detected by our
classifier. One first naive attack consists in highly in-
creasing the number of occurrences of one arbitrary
feature but can be easily countered using a threshold.
A more interesting one is the gradient-descent attack.
We implemented this attack following the description
of (Ateniese et al., 2013).

Finally, we propose ways to prevent this attack.
Our first intuition is to set up a threshold value for
each feature. We also present a smarter features selec-
tion to make our SVM more resistant against gradient-
descent attacks. Finally we suggest updating our
SVM using adversarial learning. We tested these
counter-measures and they allowed us to stop almost
all gradient-descent attacks.

2 MALWARE CLASSIFIER

In this section, we present the technical tools for
PDF file analysis, machine learning, and the differ-
ent settings we used in our methodology. Then we
present the first results for that classifier using differ-
ent optimization approaches.

2.1 Useful Tools

We first recall the structure of a PDF file, and explain
how this knowledge can help us to detect malware.
PDF file Analysis. A PDF file is composed of objects
which are identified by one or several tags. These tags
stand for features that characterise the file. There are
several tools made to analyse PDF files. In this work,

PDFiD 0.2.1 CLEAN_PDF_9000_files/rr-07-58.pdf

PDF Header: %PDF-1.4

obj 23

endobj 23

stream 6

endstream 6

xref 2

trailer 2

startxref 2

/Page 4

/Encrypt 0

/ObjStm 0

/JS 0

/JavaScript 0

/AA 0

/OpenAction 0

/AcroForm 0

/JBIG2Decode 0

/RichMedia 0

/Launch 0

/EmbeddedFile 0

/XFA 0

/Colors > 2^24 0

Figure 1: Output of PDFiD

we used the PDFiD Python script designed by Didier
Stevens (Stevens, 2006). Stevens also selected a list
of 21 features that are commonly found in malicious
files. For instance the feature /JS indicates that a PDF
file contains JavaScript and /OpenAction indicates
that an automatic action is to be performed. It is quite
suspicious to find these features in a file, and some-
times, it can be a sign of malicious behaviour. PDFiD
essentially scans through a PDF file, and counts the
number of occurrences of each of these 21 features.
It can also be utilised to count the number of occur-
rences of every features (not only the 21) that charac-
terise a file.

Figure 1 shows an output example of PDFiD. For
each feature, the corresponding tag is given on the
first column, and the number of occurrences on the
second one.

We can represent these features by what we call a
feature vector. Each coordinate represents the number
of occurrences of a given feature.
Supervised Learning and PDF file Classification.
Machine Learning is a common technique to deter-
mine whether a PDF file may or may not contain
malware. We consider a classifier function class that
maps a feature vector to a label whose value is 1 if the
file is considered as clean and -1 otherwise. To infer
the class function, we used what is called Supervised
Learning techniques.

We considered a dataset of 10 000 clean PDF files
and 10 000 containing malware from the Contagio
database (Contagio Dump, 2013). By knowing which
files are clean, and which are not, we were able to la-
bel them. We then split our dataset into two parts. The
first part has been used as a training dataset. In other
words, for every feature vector x of every file in the
dataset, we set class(x) to 1 if the PDF file was clean
and x =−1 if it contains malware. We used a classifi-
cation algorithm to infer the class function using this
knowledge. The second part of our dataset was then

used to test if the predictions of our classifier were
correct.

Usually, between 60% and 80% of the dataset is
used for training. Bellow 60%, the training set may
be to small, and the classifier will have poor perfor-
mances when trying to infer class. On the other hand,
if more than 80% of the dataset is used for training,
the risk of overfitting the SVM increases. Overfit-
ting is a phenomena which happens when a classi-
fier learns noise and details specific to the training set.
Furthermore, if one uses more than 80% of the dataset
for training, one will have to test the classifier with
less than 20% of the data, which may not be enough
to provide representative results. For these reasons,
we first chose to use 60% of our dataset for training,
and saw how the success rate of our classifier evolved
when we increased the size of the training set up to
80%.

We used a Support Vector Machine algorithm
(SVM) as the classification algorithm. Basically this
algorithm considers one scatterplot per label, and
finds a hyperplan (or a set of hyperplans when more
than two labels are considered) to delimit them. Usu-
ally, it is unlikely that the considered set is linearly
separable. For this reason, we consider the problem in
a higher-dimensional space that will hopefully make
the separation easier. Furthermore, we want the dot-
product in this space to be easily computed, with re-
spect to the coordinates of the vectors of the original
space. We define this new dot-product in term of the
kernel function k(x,y), where x and y are two vectors
of the original space. This well known trick is due
to (Aizerman et al., 1964) and was first applied to a
SVM in (Boser et al., 1992). It allows us to work in
a higher dimensional space, without having to com-
pute the coordinates of our vectors in this space, but
only with dot-products, which is computationally less
costly.

We denote by n f eatures the number of features we
consider (i.e. the size of our vector), and we choose to
use a Gaussian Radial Basis Function (RBF) kernel:

k(x,y) = exp(−γ · ||x− y||2),
with parameter γ = 1/n f eatures.

2.2 Experimentations

We implemented our classifier in Python, using the
Scikit-learn package. We initially used PDFiD with
the 21 default features to create our vectors. Then,
we trained our SVM on 60% of our shuffled dataset.
We used the remaining 40% data to test our SVM and
calculate its accuracy: the ratio (number of well clas-
sified PDF files)/(total number of PDF files). After

having split our dataset, we obtained an accuracy of
99.60%. Out of 2 622 PDF files containing malware,
only 29 have been detected as clean (1.11%). Out
of 5 465 clean files, only 3 were considered contain-
ing malware (0.05%). To compare with related work,
the SVM used in (Kittilsen, 2011) has a success rate
of 99.56%, out of 7 454 clean PDF files, 18 were de-
tected as containing malware. Out of 16 280 files con-
taining malware, 103 were detected as clean.
Using different settings. To go further in our ex-
perimentations, we slightly modify our SVM. For in-
stance, we tested other values of the gamma parame-
ter in the RBF kernel. We also tested the other kernels
proposed by Scikit-learn package. We figured out that
using the RBF kernel with default γ = 1/n f eatures pa-
rameter yields to the best results, considering all the
settings we tried.
Change splitting ratio. We changed how we split the
initial dataset into training and testing sets. We saw
that if 80% of our dataset is used for training and 20%
for testing, then the success rate was slightly higher.
We also used cross-validation: we restarted our train-
ing/testing process several times with different train-
ing sets and testing sets, and combined the results we
obtained. We did not notice any overfitting issue (i.e.
our SVM does not seem to be affected by the noise of
the training set).
Change the default features. Instead of choos-
ing the default 21 features proposed by Didier
Stevens (Stevens, 2006), we tried other features selec-
tions. In the whole set, we found more than 100 000
different tag types. Considering that it requires 12Gb
of memory to compute the vectors of each PDF file in
a SVM, using 100 000 tags would be too much. A first
strategy implemented was to select features by their
frequency in the files (e.g. “90% frequency” means
that 90% of the files in the dataset have this feature).
In one hand, we chose the most common features in
the clean PDF files, in the other, we chose the most
frequently used features in the malicious files, and
combine them into a sublist of features. Once this se-
lection was made, the resulting list could be merged
with the 21 default features. A second strategy, that
we call better sublist selection, was to remove non-
significant features from the first sublist, by removing
features one by one and computing the SVM (with
cross-validation) to check if accuracy improved or de-
teriorated. Note that these two strategies can be com-
bined together. In practice, we selected initial sublist
: from 21 default features and/or frequency selection
and apply the better sublist selection. Table 1 shows
some results found by applying these two strategies,
regarding the original result.
Results. The application of the frequency selection

Table 1: Results of features selection using: PDFiD default features (D), frequency selection on all features (F), the merge of
these two lists (M), and better sublist selection (BS) applied to each of these feature set.

Features selection Accuracy Nb of Time to
(cross-validation) features compute SVM

(D) Default 21 features 99,43% 21 21,17s
(F) Frequency (90%) 99,22% 31 54,49s
(M) Frequency (95%) 99,40% 39 47,66s

+ default features
(D+BS) Sublist from 21 default features 99,68% 11 7,03s
(F+BS) Frequency (80%) 99,63% 13 11,30s

+ Sublist
(M+BS) Frequency (80%) 99,64% 10 15,89s

+ default features + Sublist

method did not improve the accuracy of our SVM,
and increased significantly the number of features,
making the training and testing of the SVM much
slower. Applying the better sublist selection method
improved the SVM’s accuracy significantly and kept
a reasonable amount of features. We also saw that ap-
plying the better sublist selection method to the 21 de-
fault features, improved the accuracy (+0.25%). The
resulting set contains only 11 features, significantly
reducing the time to train and test the SVM.

3 EVASION ATTACKS

In this section, we propose some evasion attacks to
trick the trained SVM. The main goal of these attacks
is to increase the amount of objects in the infected
PDF files so that the SVM considers them as clean.
To this end, the modifications performed on the files
should not be noticeable by the naked eye. Removing
objects is a risky practice that may, in some cases,
change the display of the file. On the other hand,
adding empty objects seems to be the easiest way to
modify a PDF file, without changing its physical ap-
pearance.

We consider a white box adversary. In this model,
the adversary has access to everything the defender
has, namely: the training dataset used to train the
classifier, the classifier algorithm (here SVM), the
classifier parameters (kernel, used features for vector,
threshold, ...), and infected PDF files that are detected
by the classifier

This attacker is the most powerful one, since she
knows everything about the scheme she’s attacking.
Naive attack. The first implemented attack to lure
the classifier is the component brutal raise. Given the
feature vector of a PDF file, the attacker picks one
feature and increments it until the vector is considered
as clean by the classifier. The choice of the feature

is either done arbitrarily or with the same process as
feature selection in section 2.2.

A quick counter-measure that can be applied is
to ignore the surplus number of features when this
number is too high, and consider it as the maximum
permitted value. To implement this idea, we used a
threshold value. A threshold is a value that is con-
sidered as the maximum value a feature can take. For
example, if the threshold is 5, the original feature vec-
tor x = (15,10,2,3,9,1) would be cropped to become
the vector x′ = (5,5,2,3,5,1).

We experimented this naive attack with the default
features from PDFiD, and figured out that, if we set
up a threshold of 1, this naive attack is completely
blocked.
Gradient-Descent. The gradient-descent is a widely
used algorithm in machine learning to analytically
find the minimum of a given function. Among its var-
ious applications, we were particularly interested in
how it can be utilised to attack SVM classifiers. Given
a PDF file of feature vector x, that contains malware
and has been correctly classified, the goal is to find a
vector x′ on the other side of the hyperplan, so that the
difference between x and x′ is the smallest possible.
Usually, to quantify this difference, the L1 distance is
utilised. In other words, given a feature vector x such
that class(x) = −1, we aim to find a vector x′ such
that class(x′) = 1 and

||x− x′||1 = ∑
i
|xi− x′i|,

is minimized. The gradient-descent algorithm tries
to converge to this minimum using a step-by-step ap-
proach: first, initialise x0 to x, then at each step t > 0,
xt is computed to be equal to:

xt = xt−1− εt ·∇class(xt−1),

with εt a well chosen step size and ∇class(xt−1) is
the gradient of the class at point xt−1. The iteration

terminates when class(xt) is equal to 1.

An illustration of the result of this attack is shown
on Figure 2 where features 1 and 2 are slightly in-
creased to cross the hyperplan.

Feature 1

Fe
at

ur
e

2

+ +
+ +

+
+

+

-

-

-

-
-

-
+

Figure 2: Example of attack using gradient-descent

This attack does not consider components indi-
vidually but as a whole, allowing the algorithm to
find a shorter difference vector than with the naive at-
tack. Hence the L1 distance between the crafted and
the original vector is significantly lower than with the
naive attack, it results in a crafted PDF file that has
been way less modified.

Using this attack we conducted two experiments:
the first was to compute its theoretical success rate
and the second its success rate in practice.

Theoretical success rate: to compute the theoret-
ical success rate, we took the feature vector of ev-
ery infected file and ran the gradient-descent to get
the feature vector that lures the classifier. By this ex-
periment, we found that 100% of the forged vectors
are detected as clean by the classifier (namely every
gradient-descent succeeded).

Practical success rate: to compute the practical
success rate of the attack, we ran the gradient-descent
on the vectors of every PDF files and then recon-
structed new file according to the crafted feature vec-
tor.

Remark: If we denote by m the number of selected
features considered by the SVM, the gradient-descent
computes a vector x′ ∈ Rm, however only an integer
number of objects can be added to the PDF file, thus
a rounding operation is needed in practice. For this
attack we rounded component values to the nearest
integer (the even one when tied).

Due to the rounding operation, this practical at-
tack had a 97.5% success rate instead of a 100% the-
oretical success rate. In previous work (Biggio et al.,
2013), the success rate was about the same, even if
they made a deeper analysis of it using various set-
tings of their SVM.

4 COUNTER-MEASURES

The gradient-descent attack has an impressively high
success rate. This is due to the huge degree of free-
dom the algorithm has. Every component of the vec-
tor can be increased as much as required.

Hence, to counter the gradient-descent attack, one
would reduce the degree of freedom of the algorithm.
This can be achieved in three different ways: apply-
ing a threshold, smartly selecting features that are the
hardest to exploit, and finally a mix of both solutions.

Another approach to counter this attack is to
restart the training of the SVM with maliciously
forged files: it is called adversarial learning.

4.1 Vector Component Threshold

Once again, the threshold is defined by t ∈ N∗ due to
the discreteness of the number of PDF file objects. To
choose t, we have used algorithm 1. We considered a
SVM with the 21 default features of PDFiD.

Algorithm 1 Calculate the best threshold to block as
many attacks as possible

t← 20
s(20)← success rate of gradient-descent with t =
20
while t > 0 do

apply t on each forged feature vector x
compute success rate s(t) of gradient-descent
if s(t)> s(t +1) then

return t +1
end if
t← t−1

end while
return t

Algorithm 1 decreases the threshold until a lo-
cal minimum success rate of the gradient is found
(namely when most attacks are blocked).

Remark: Algorithm 1 assumes that the function
s(t) is continuous. Hence, by the intermediate value
theorem, algorithm 1 can converge. Moreover, we
only retrieve a local minimum, not a global one.
Despite these imprecisions, our counter-measure is
rather efficient in practice (cf. Table 2).

All in all, a threshold of 1 allows the SVM to block
almost every attack while keeping a reasonably good
accuracy (the difference between no threshold and a
threshold of 1 is about 0,10%).

We also applied a threshold of 1 on a SVM
constructed from different lists of features (see sec-
tion 2.2). The corresponding results are presented in
Table 3.

Table 2: Percentage of Gradient-Descent attacks stopped
depending on the threshold value

Threshold Attack prevention Accuracy of SVM
(theory)

5 0% 99,55%
4 0% 99,57%
3 29% 99,63%
2 38% 99,74%
1 99,60% 99.48%

Table 3: Features selection global method application re-
sults. D means that we used the default features, and F the
frequency selection.

Features set Attacks Accuracy #features
stopped
(theory)

21 D 99,60% 99,37% 7
F (80%) 91,00% 99,45% 9
F (90%) 100,00% 98,00% 30

F (80%) + D 21,00% 99,61% 17
F (90%) + D 96,40% 99,46% 29

Results Threshold usage allows to keep a very good
accuracy while reducing the success rate of gradient-
descent attack, but this reduction is not optimal and
depends a lot on the features list utilised in the SVM.

4.2 Features Selection - Prevent
Gradient-Descent

Because the gradient-descent attack uses some vul-
nerable features, another idea of counter-measure is
to select only features that are less vulnerable to this
attack. As shown by Figure 3, we selected the fea-
tures that an adversary has no interest in modifying,
in order to make a malicious file pose as a clean one.
In other words, increasing the number of occurence of
these features will never allow the gradient-descent to
get closer to the hyperplan we aim to cross.

Feature 1

Fe
at

ur
e

2

+

+

+

+

+

+

+

-

-

-

-

-

-

-

- Remove Feature 1 Fe
at

ur
e

2

+

+

+

+

+

+

+

-

-

-

-

-

-

-

Figure 3: Suppression of features vulnerable to gradient-
descent attack (Feature 1 is vulnerable here, and Feature 2
is not)

To detect the vulnerable features from a list, we
used algorithm 2. This algorithm computes a SVM
with the current feature list and performs the gradient-
descent attack on it. At each iteration, the features
used by the gradient-descent attack are removed from
the current feature list. The algorithm stops when the
feature list is stable (or empty).

Algorithm 2 Find the features vulnerable to Gradient-
Descent attack and remove them

f eatures list← initial list
GD f eatures used← initial list
while GD f eatures used 6=⊥ do

compute SVM for f eatures list
apply gradient-descent attack to current SVM
GD f eatures used← features used by gradient-
descent Attack
f eatures list.remove(GD f eatures used)

end while
return f eatures list

Global features selection. To select the final list of
features, the following steps are applied: We selected
the initial sublist : from 21 default features and or
frequency selection (see 2.2), apply the better sub-
list selection (see 2.2), apply gradient-descent resis-
tant selection (Algorithm 2), apply Better Sublist se-
lection (see 2.2) We used different parameters here
(frequency, force 21 default features or not), and the
corresponding results are presented in Table 4.

Remark: accuracy is not taking into account the
forged file, only the initial dataset of 10 000 clean and
10 000 malicious PDF files.

Results. This features selection method drastically
reduces the number of features (between 1 and 3,
except without application of the better selection
method first), resulting in very bad accuracy results.
The application of the global method on the 95% fre-
quently used features + 21 default features only gives
quite good results (98,22% of accuracy), but it is far
less from the initial SVM.

Combination of Threshold & Features selection
counter-measures. The threshold counter-measure
previously proposed, significantly reduces the attacks
whilst keepingg very good accuracy, but was not suffi-
cient to block every gradient-descent attacks. The fea-
tures selection counter-measure stopped all gradient-
descent attacks, but significantly reduced accuracy
and had very different results depending on the ini-
tial features list. Hence, we tried to combined both
counter-measures to obtain both good accuracy and
total blocking of gradient-descent attack. Table 5
presents the results obtained by applying both of these

Table 4: Features selection global method application results

Initial features set Attack prevention Accuracy Nb of features
(theory)

21 default features (GD resistant selection only) 100% 98,03% 6
21 default features 100% 55,68% 2
Frequency (80%) 100% 67,64% 1
Frequency (90%) 100% 95,12% 3

Frequency (80%) + default features 100% 55,66% 1
Frequency (90%) + default features 100% 55,79% 3
Frequency (95%) + default features 100% 98,22% 3

techniques.

Results. We obtained in each case a 100% theoretical
resistance of gradient-descent, but only the initial fea-
tures sets including the default 21 features (and with
or without the frequency-selected features) had good
accuracy (more than 99%).

Practical results. Table 6 summarizes the best re-
sults obtained by applying each counter-measure. The
conclusion we can make is that the best compromise
between accuracy and attack prevention is when both
the threshold and the gradient-descent resistant fea-
tures selection are applied. In this case, we are able
to prevent 99,99% of gradient-descent attacks while
conserving a reasonably good accuracy of 99,22%.

4.3 Adversarial Learning

One of the major drawbacks concerning the super-
vised learning that we used so far is that the SVM
is only trained once. The decision is then always the
same and the classifier does not learn from its mis-
takes.

The Adversarial Learning solves this issue by al-
lowing the expert to feed the SVM again with vectors
it wrongly classified. Hence, the classifier will learn
step-by-step the unexplored regions that are used by
the attacks to bypass the SVM. Algorithm 3 describes
how we iteratively fed our SVM to implement the ad-
versarial learning. Note that we used the 21 default
features from PDFiD.

The results of this counter-measure are presented
in Table 7. With n = 10 we found that 3 rounds are
enough for the SVM to completely stop the gradient-
descent attack. Furthermore, at each round, we see
that the gradient-descent algorithm requires more and
more steps to finally converge, and thus the attack be-
comes more and more costly. The Support Vectors
column represents the number of support vectors the
SVM has constructed. The accuracy represents the
number of correct classifications of the SVM. One in-
teresting fact using this counter-measure is that the

Algorithm 3 Adversarial learning

n← number of PDF files to give to c at each itera-
tion
c← trained SVM
s0← success rate of gradient-descent
s1←−1
while s0 6= s1 do

s0← s1
feed c with n gradient-descent-forged files
relaunch the learning step of c
s1← success rate of gradient-descent

end while
return c

accuracy of the SVM barely changes. Furthermore,
we did not need a more elaborated choice of features.

5 CONCLUSION AND
PERSPECTIVES

We implemented a naive SVM, that we easily
tricked with a gradient-descent attack. We also im-
plemented counter-measures against this attack: first,
we set up a threshold over each considered feature.
This alone enabled us to stop almost every gradient-
descent attack. Then, we reduced the number of se-
lected features, in order to remove features that were
used during the gradient-descent attack. This makes
the attack even less practical, at the cost of reducing
the accuracy of the SVM. We also proposed another
approach to reduce the chances of success of the gra-
dient descent attack, using adversarial learning, by
training the SVM with gradient-descent forged PDF
files, and re-iterating the process. Our SVM was re-
sistant to gradient-descent attacks after only three it-
erations of the process.

Obviously more can be said about the topic. For
instance, it can be interesting to see what can happen
if the adversary does not know the algorithms and fea-

Table 5: Features selection global method with threshold application results

Initial features set Attack prevention Accuracy Nb of features
(theory)

21 default features 100% 99,11% 6
Frequency (80%) 100% 94,36% 5
Frequency (90%) 100% 98,00% 30

Frequency (80%) + default features 100% 98,10% 8
Frequency (90%) + default features 100% 99,05% 6

Table 6: Results of Counter-measures Threshold and Features Selection application

Attack prevention Accuracy Nb of features
(in practice)

Treshold only 94,00% 99,81% 20
Features selection only 99,97% 98,05% 2 (/JS and /XFA)

Threshold + Features selection 99,99% 99,22% 9

Table 7: Adversarial learning results

Round # Support Vectors Accuracy (%) Steps number of GD Success rate of GD (%)
0 293 99,70 800 100
1 308 99,68 1 800 90
2 312 99,67 3 000 0

tures that have been used in the classifier. We could
also perform a gradient-descent attack using other al-
gorithms (e.g. Naive Bayes, Decision Tree, Random
Forest) and see how many files thus forged can bypass
our SVM. The adversary could also use other types of
attacks, like Monte-Carlo Markov Chains (MCMC)
techniques. Other attacks may exploit some proper-
ties that are inherent in the training set. To avoid them,
it may be interesting to have a look at unsupervised
learning techniques, and try to identify a malicious
behaviour with clustering. We could also use deep
learning algorithms like Generative Adversarial Net-
work (GAN), in order to generate a classifier and test
its resistance against various attacks.

ACKNOWLEDGEMENTS

This work has been accomplished during the
french working session REDOCS’17. We thank Pas-
cal Lafourcade for his support, as well as Boussad
Addad, Olivier Bettan, and Marius Lombard-Platet
for having supervised this work.

REFERENCES

Aizerman, M. A., Braverman, E. A., and Rozonoer, L.
(1964). Theoretical foundations of the potential func-

tion method in pattern recognition learning. Automa-
tion and Remote Control.

Ateniese, G., Felici, G., Mancini, L. V., Spognardi, A., Vil-
lani, A., and Vitali, D. (2013). Hacking smart ma-
chines with smarter ones: How to extract meaningful
data from machine learning classifiers. CoRR.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013). Evasion
Attacks against Machine Learning at Test Time.

Borg, K. (2013). Real time detection and analysis of pdf-
files. Master’s thesis.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992).
A training algorithm for optimal margin classifiers.
COLT ’92.

Contagio Dump (2013). Contagio: Malware dump.
http://contagiodump.blogspot.fr/2013/03/
16800-clean-and-11960-malicious-files.
html.

CVEDetails (2017). Adobe vulnerabilities statistics.
https://www.cvedetails.com/product/497/
Adobe-Acrobat-Reader.html.

Kittilsen, J. (2011). Detecting malicious pdf documents.
Master’s thesis.

Maiorca, D., Giacinto, G., and Corona, I. (2012). A Pattern
Recognition System for Malicious PDF Files Detec-
tion,.

Stevens, D. (2006). Didier stevens blog. https://blog.
didierstevens.com/.

Torres, J. and De Los Santos, J. (2018). Malicious pdf doc-
uments detection using machine learning techniques.

http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html
https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html
https://blog.didierstevens.com/
https://blog.didierstevens.com/

