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Abstract

In this report we present how we used machine learning techniques to detect malicious
behaviours in PDF files.
At this aim, we first set up a SVM (Support Machine Vector) classifier that was able to
detect 99.7% of malware. However, this classifier was easy to lure with malicious PDF,
we forged to make them look like clean ones. We first proposed a very naive attack, that
was easily stopped by the establishment of a threshold. We also implemented a gradient-
descent attack to evade this SVM. This attack was almost 100% successful. In order to
fix this problem, we provided counter-measures to the latter attack. A more elaborated
features selection, and the use of a threshold, allowed us to stop up to 99.99% of these
attacks.
Finally, using adversarial learning techniques, we were able to prevent gradient descent
attacks by iteratively feeding the SVM with malicious forged PDF. We found that after
3 iterations, every gradient-descent forged PDF were detected, completely preventing the
attack.

Keywords. Malicious PDF detection, SVM, Evasion attacks, Gradient-Descent, Feature
Selections, Adversarial Learning.

2



Acknowledgement

This work has been accomplished during the french working session REDOCS’17. REDOCS stands
for Rencontre Entreprises DOCtorants en Sécurité. It is a one week event, where cybersecurity PhD
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1 Introduction

Billions of PDF files are available on the web. Not all of them are as harmless as one may think. In
fact, PDF files may contain various objects, such as JavaScript code or binary code. Sometimes, these
objects may be malicious. A PDF file may then try to exploit a flaw in the reader in order to infect
the machine.

In 2017, sixty-height vulnerabilities have been discovered in Adobe Acrobat Reader [CVE17].
More than fifty of them may be exploited to run arbitrary code. Every PDF reader has its own
vulnerabilities, and a malicious PDF may find a way to take advantage of them.

In this context, several works proposed to use machine learning to detect malicious PDF files,
(e.g. [Kit11, MGC12, Bor13]). These works basically rely on the same main idea: select discriminating
features (i.e. features that are more likely to appear in malicious PDF files), build what is called a
classifier. For a given PDF file, this classifier will take as input the selected features and, considering
the number of occurence of each of them, will try to determine if the PDF file is clean or contains
malware. Many approaches may be considered, both for the choice of the features and for the design
of the classifier. In fact there are many classification algorithms that can be utilised: Naive Bayes,
Decision Tree, Random Forest, SVM... The authors of [MGC12] first described their own way to select
features, and used a Random Forest algorithm in their classifier, while the author of [Bor13] relied on
the choice of features that was proposed by Didier Steven [Ste06], and used a SVM (Support Vector
Machine) classifier. Both approaches seemed to provide very accurate results.

However, it is still possible to bypass such detection algorithms. Several attacks have been proposed
(e.g. [AFM+13, BCM+13]). In [BCM+13], the authors proposed to evade SVM and Neural Network
classifiers using gradient-descent algorithms. Meanwhile, the authors of [AFM+13] explained how to
learn informations about the training dataset used by a given target classifier. To do so, they built
a meta-classifier, and trained it with a set of classifiers that were themselves trained with various
datasets. These datasets have different properties. Once their meta-classifier is trained, they ran it
on the classifier they aim to attack. Doing so, their goal is to detect some interesting properties in
the training dataset utilised by this classifier. Hopefully they can take advantage of this knowledge to
attack the said classifier.

Our work. During the REDOCS week, we worked on three aspects of malware detection in PDF
files.

Our first mission was to implement our own PDF classifier, using SVM algorithm, as it is known to
provide good results while remaining simple. We explored different possibilities for features selection:
our initial choice was based on [Ste06] selection. We refined this choice, the following way: from the
set of available features, we selected those who appear to be the most discriminating in our case. We
trained and tested our SVM with a dataset of 10 000 clean PDF files and 10 000 malicious PDF files
from the Contagio database [Con13], and we also tuned the SVM to study its behavior. We came up
with a classifier that had more than 99% of success rate, at that stage.

The second part of our work was about studying evasion techniques against our classifier. We
proposed two ways to edit malicious PDF files such that they are not detected by our classifier. The
first one was a quite naive attack that simply consists in highly increasing the number of occurrences
of one arbitrary feature. The second one implemented a gradient-descent attack which is very similar
to the one proposed by [AFM+13].

Finally, we studied how to prevent these attacks. We propose here three techniques. Our first
intuition was to set up a threshold value for each feature. This is fully enough to prevent the first
naive attack. We also proposed a smarter features selection to make our SVM more resistant against
gradient-descent attacks. Finally we suggested to update our SVM using adversarial learning. We
found that these various methods allowed us to stop almost all gradient-descent attacks.
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PDFiD 0.2.1 CLEAN_PDF_9000_files/rr-07-58.pdf

PDF Header: %PDF-1.4
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endobj 23

stream 6

endstream 6

xref 2
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/Encrypt 0
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/JS 0

/JavaScript 0

/AA 0

/OpenAction 0

/AcroForm 0

/JBIG2Decode 0

/RichMedia 0

/Launch 0

/EmbeddedFile 0

/XFA 0

/Colors > 2^24 0

Figure 1: Output of PDFiD

2 Malware Classifier

2.1 Useful Tools

We first recall the structure of a PDF file, and explain how this knowledge can help us to detect
malware in a PDF.

2.1.1 PDF Analysis

A PDF file is composed of objects which are identified by one or several tags. These tags stand for
features that characterise the PDF file. There are several tools made to analyse PDF files. In this
work, we used the PDFiD Python script designed by Didier Stevens [Ste06]. Stevens also selected
a list of 21 features that are commonly used in malicious PDF files. For instance the feature /JS

indicates that a PDF file contains JavaScript and /OpenAction indicates that an automatic action is
to be performed. It is quite suspicious to find these features in a PDF file, and sometimes, it can be
a sign of a malicious behaviour. PDFiD essentially scans through a PDF file, and count the number
of occurrences of each of these 21 features. It can also be utilised to count the number of occurrences
of every features (not only the 21) that characterise a PDF file.

Figure 1 shows an output example of PDFiD. For each feature, the corresponding tag is given on
the first column, and the number of occurrences on the second one.

We can represent these features by what we call a feature vector. Each coordinate represents the
number of occurrences of a given feature.

2.1.2 Supervised Learning and PDF Classification

Machine Learning is a common technique to determine whether a PDF may or not contain malware.
We consider a classifier function class that maps a feature vector to a label whose value is 1 if the PDF
is considered as clean and -1 otherwise. To infer the class function, we used what is called Supervised
Learning techniques.

5



We considered a dataset of 10 000 clean PDFs and 10 000 PDFs containing malware from the
Contagio database [Con13]. By knowing which PDF are clean, and which are not, we were able to
label them. We then split our dataset in two parts. The first part has been used as a training dataset.
In other words, for each PDF of this dataset of feature vector x, we set class(x) to 1 if the PDF was
clean and x = −1 if it contained malware. We used a classification algorithm to infer the class function
using this knowledge. The second part of our dataset has then been used to test if the predictions of
our classifier were correct.

Usually, between 60% and 80% of the dataset is used for training. Bellow 60%, the training set may
be to small, and the classifier will have poor performances when trying to infer class. On the other
hand, if more than 80% of the dataset is used for training, the risk of overfitting the SVM increases.
Overfitting is a phenomena which happens when a classifier learns noise and details specific to the
training set. Furthermore, if one uses more than 80% of the dataset for training, one will have to
test the classifier with less than 20% of the data, which may not be enough to provide representative
results. For these reasons, we first chose to use 60% of our dataset for training, and saw how the
success rate of our classifier evolved when we increased the size of the training set up to 80%.

We used a Support Vector Machine algorithm (SVM) as classification algorithm. Basically this
algorithm considers one scatterplot per label, and finds an hyperplan (or a set of hyperplans when
more than two labels are considered) to delimit them. Usually, it is unlikely that the considered set is
linearly separable. For this reason, we consider the problem in a higher-dimensional space, that will
hopefully make the separation easier. Furthermore, we want the dot-product in this space to be easily
computed, with respect to the coordinates of the vectors of the original space. We define this new
dot-product in term of kernel function k(x, y), where x and y are two vectors of the original space.
This well known trick is due to [ABR64] and was first applied to SVM in [BGV92]. It allows to work
in a higher dimensional space, without having to compute the coordinates of our vectors in this space,
but only dot-products, which is computationally less costly.

If we denote by nfeatures the number of features we consider (i.e. the size of our vector), and we
choose to use a Gaussian Radial Basis Function (RBF) kernel:

k(x, y) = exp(−γ · ||x− y||2),

with parameter γ = 1/nfeatures.

2.2 Experimentations

We implemented our classifier in Python, using the Scikit-learn package. We initially used PDFiD
with the 21 default features to create our vectors,. Then, we trained our SVM on 60% of our shuffled
dataset. We used the remaining 40% data to test our SVM and calculate its accuracy: the ratio
(number of well classified PDF files)/(total number of PDF files).

After having split our dataset as described above (60%/40%), we obtained an accuracy of 99.60%.
Over 2622 PDF containing malware, only 29 have been detected as clean (1.11%), and over 5465 clean
PDF, only 3 have been detected as containing malware (0.05%).

Using different settings. To go further in our experimentations, we slightly modify our SVM.
For instance, we tested other values of parameter γ, in the RBF kernel. We also changed tested the
other kernels proposed by Scikit-learn package. We figured out that using the RBF kernel with default
parameter γ = 1/nfeatures yields to the best results, considering all the settings we tried.

Change splitting ratio. We changed how we split the initial dataset into training and testing
sets. We saw that, if we chose 80% of our dataset for training, and 20% for testing, then the success
rate was slightly higher. We also used cross-validation: we restart our training/testing process several
times with different training sets and testing sets, and combined the results we obtained. We did not
notice any overfitting issue (i.e. our SVM does not seem to be affected by the noise of the training
set).
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Table 1: Results of features selection using: PDFiD default features (D), frequency selection
on all features (F), the merge of these two lists (M), and better sublist selection (BS) applied
to each of these feature set.

Features selection Accuracy Nb of Time to
(cross-validation) features compute SVM

(D) Default 21 features 99,43% 21 21,17s
(F) Frequency (90%) 99,22% 31 54,49s
(M) Frequency (95%) 99,40% 39 47,66s

+ default features
(D+BS) Sublist from 21 default features 99,68% 11 7,03s
(F+BS) Frequency (80%) 99,63% 13 11,30s

+ Sublist
(M+BS) Frequency (80%) 99,64% 10 15,89s

+ default features + Sublist

Change the default features. Instead of choosing the default 21 features proposed by Didier
Stevens [Ste06], we tried some other features selections. In the whole set, we found more than 100000
different types of tags, so it was too much to compute a SVM considering each tag as a feature (about
12Gb of memory required to compute the vectors for each PDF file).

A first strategy implemented was to select features by their frequency in PDF files (e.g. “90%
frequency” means that 90% of the PDF in the dataset possess this feature). We chose the most
common features in clean PDF in one hand, and the most frequently used features in malicious PDF
in the other hand, and combined them to obtain a sublist of features. Once this selection is made, the
resulting list can be merged with the 21 default features.

A second strategy, that we call “better sublist selection” was to remove non-significant features
from the first sublist, by throwing features one by one and compute the SVM to check if the accuracy
(computed with cross-validation) was the same or was better.

Note that these two strategies can be combined together. In practice, we did the following:

• Select initial sublist : from 21 default features and/or frequency selection,

• Apply the “better sublist selection”.

The Table 1 shows some results found by applying these two strategies, regarding the original
result.

Results The application of the “frequency” selection method did not improve the accuracy of our
SVM, and increased significantly the number of features, making the training and testing of the SVM
much slower. Applying the “better sublist” selection method improved significantly the accuracy of
the SVM, and kept a reasonable amount of features. We also saw that applying the “better sublist”
method to the 21 default features, improved the accuracy (+0.25%). The resulting set contains only
11 features, reducing significantly the time to train and test the SVM.

3 Evasion Attacks

In this section, we propose some evasion attacks to trick the trained SVM. We expose the goal of these
attacks in subsection 3.1. Then, we define our adversary model in subsection 3.2. Finally, we present
our attacks in subsection 3.3 alongside their results.
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3.1 Goal

The main goal of these attacks is to modify the objects in infected PDF files to make them considered
as clean by the SVM. At this end, the modifications performed on the files should not be noticeable
by human eyes. Removing objects is a risky practice that may in some cases change the display of
the file. On the other end, adding empty objects seems to be the easiest way to modify a PDF file,
without changing its physical appearance.

3.2 Adversary Model

We consider a white box adversary. In this model, the adversary has access to everything the defender
has, namely:

• The training dataset used to train the classifier

• The classifier algorithm (SVM, DecisionTree, K-Neighbors, ...)

• The classifier parameters (kernel, used features for vector, threshold, ...)

• Infected PDF files that are detected by the classifier

This attacker is the most powerful one, since she knows everything about the scheme she attacks.

3.3 Attacks

In this section we present the naive attack we implemented with its counter-measure in section 3.3.1,
and the gradient descent attack in the section 3.3.2.

3.3.1 Naive Attack
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Figure 2: Example of component brutal raise attack, where feature 2 is brutally increased to
cross the hyperplan

The first attack that has been implemented to lure the classifier is the component brutal raise.
Given the feature vector of a PDF, the attacker picks one feature and increments it until the vector
is considered as clean by the classifier. The choice of the feature is either done arbitrarily or with the
same process as feature selection in section 2.2. An example of component brutal raise is illustrated
by Figure 2.

Concretely, we conducted an experiment where each feature was individually incremented until
all malware vectors were considered as clean. At the end of each computation, the vectors were reset
to their original values, before increasing the value of the next feature. The number of additional
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occurrences that are required for each feature, in order to change the label of the vector are detailed
in Table 2. This gave us a more precise idea of the features to modify in order to have an effective
attack.

Table 2: Number of required additional feature occurrences for all the malicious vectors to cross
the hyperplan

Object Required occurrences

obj 711
endobj 710
stream 249

endstream 246
xref 7
trailer 6

startxref 12
/Page 25

/Encrypt 2
/ObjStm 31

/JS 33
/JavaScript 37

/AA 26
/OpenAction 4
/AcroForm 5

/JBIG2Decode 3
/RichMedia 5
/Launch 2

/EmbeddedFile 19
/XFA 3

/Colors > 2 ˆ24 2

On this table, some features need few occurrences to achieve the attack like ’/Encrypt’, ’/Launch’,
and ’/Colors > 2 ˆ21’, while some other need a huge amount of new occurrences to attack the classifier
like ’obj’, ’endobj’, ’stream’ and ’endstream’. Hence, it is more interesting for an attacker to append
’/Encrypt’ tags to the PDF because it requires less modification to the original file, making the changes
less visible.

Counter-measure A quick counter-measure that can be applied is to ignore the surplus number of
features when this number is too high, and consider it as the maximum permitted value. To implement
this idea, we used a threshold value. A threshold is a value that is considered as the maximum value
a feature can take. For example, if the threshold is 5, the original feature vector x = (15, 10, 2, 3, 9, 1)
would be cropped to become the vector x� = (5, 5, 2, 3, 5, 1).

Using results from Table 2, we see that the minimum additional features required to lure the
classifier is 2. Thus, we don’t want an attacker to be able to add more than 1 object to a malicious
file since it would be considered as clean by our classifier. We deduced then the threshold to use: it’s
the minimum value for the given feature in the original dataset + the number of required occurrences
to cross the hyperplan - 1.

If we consider the feature ’/Launch’ for example, the minimum value of this feature is 0 in the
malicious training set, and the required number of additionnal occurrences to lure the SVM is 2. Thus,
we applied a threshold of 1 on this feature.

Because some features resulted in the same threshold, and to perform a simple counter-measure,
we decided to apply the same threshold of 1 to every feature. Thus, no component could be increased
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enough to bypass the classifier.
We experimented this idea with the naive attack shown in Figure 2 with the same features (the

default 21 from PDFiD), and the result is that no feature can be increased enough to lure the classifier.
Thus, with a threshold of 1, the naive attack can be completely blocked.

3.3.2 Gradient-Descent

The gradient-descent is a widely used algorithm in machine learning to analytically find the minimum
of a given function. Among its various applications, we were particularly interested in how it can be
utilised to attack SVM classifiers. Given a PDF file of feature vector x, that contains malware and
has been correctly classified, the goal is to find a vector x� on the other side of the hyperplan, so that
the difference between x and x� is the smallest possible. Usually, to quantify this difference, the L1

distance is utilised. In other words, given a feature vector x such that class(x) = −1, we aim to find
a vector x� such that class(x�) = 1 and

||x− x�||1 =
�

i

|xi − x�i|,

is minimized. The gradient-descent algorithm tries to converge to this minimum using a step by step
approach: first, initialise x0 to x, then at each step t > 0, xt is computed to be equal to:

xt = xt−1 − �t ·∇class(xt−1),

with �t a well chosen step size and ∇class(xt−1) is the gradient of class at the point xt−1. The iteration
terminates when class(xt) is equal to 1.

An illustration of the result of this attack is shown on Figure 3 where features 1 and 2 are slightly
increased to cross the hyperplan.
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Figure 3: Example of attack using gradient-descent

This attack does not consider components individually but as a whole, allowing the algorithm to
find a shorter difference vector than with the naive attack. Hence the L1 distance between the crafted
and the original vector is significantly lower than with the naive attack, it results in a crafted PDF
that has been way less modified.

Using this attack we conducted two experiments: the first was to compute its theoretical success
rate and the second its success rate in practice.

Theoretical success rate: to compute the theoretical success rate, we took the feature vector of
every infected PDF and ran the gradient-descent to get the feature vector that lures the classifier.
By this experiment, we found that 100% of the forged vectors are detected as clean by the classifier
(namely every gradient-descent succeeded).
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Practical success rate: to compute the practical success rate of the attack, we ran the gradient-
descent on vector of every PDF, and then reconstructed new PDF according to the crafted feature
vector.

Remark : If we denote by m the number of selected features considered by the SVM, the gradient-
descent computes a vector x� ∈ Rm, however only an integer number of objects can be added to the
PDF, thus a rounding operation is needed in practice. For this attack we rounded component values
to the nearest integer (the even one when tied).

Due to the rounding operation, this practical attack had a 97.5% success rate instead of the 100%
of the theoretical success rate.

4 Counter-measures

The gradient-descent attack has an impressive high success rate. This is due to the huge degree of
freedom the algorithm has. Every component of the vector can be increased as much as required.

Hence, to counter the gradient-descent attack, one would reduce the degrees of freedom of the
algorithm. That can be achieved by three different ways: applying a threshold, following the idea of
section 3.3.1, smartly select features that are the hardest to exploit, and finally a mix of both solutions
by applying a threshold with a restricted set of features.

Another approach to counter this attack is to restart the training of the SVM with some malicious
forged PDF: it is called adversarial learning.

In this section, we detail each solution by explaining the method and the choice of parameters and
we give the ratio of attacks that are thus blocked.

4.1 Vector Component Threshold

Once again, the threshold is defined by t ∈ N∗ due to the discreteness of PDF objects number. To
choose t, we have used algorithm 1. We considered a SVM with the 21 default features of PDFiD.

Algorithm 1 Calculate the best threshold to block as many attacks as possible
t ← 20
s(20) ← success rate of gradient-descent with t = 20
while t > 0 do
apply t on each forged feature vector x
compute success rate s(t) of gradient-descent
if s(t) > s(t+ 1) then
return t+ 1

end if
t ← t− 1

end while
return t

Algorithm 1 decreases the threshold until a local minimum success rate of the gradient is found
(namely when the most attacks are blocked).

Remark : Algorithm 1 assumes that the function s(t) is continuous. Hence, by the intermediate
value theorem, the algorithm 1 can converge. Moreover, we only retrieve a local minimum, not a
global one. Despite these imprecisions, our counter-measure seemed to be rather efficient in practice
(cf. Table 3).
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Table 3: Percentage of Gradient-Descent attacks stopped depending on the threshold value
Threshold Attack prevention Accuracy of SVM

(theory)

5 0% 99,55%
4 0% 99,57%
3 29% 99,63%
2 38% 99,74%
1 99,60% 99.48%

All in all, a threshold of 1 allows the SVM to block almost every attack while keeping a reasonably
good accuracy (the difference between no threshold and threshold of 1 is about 0,10%).

We also applied a threshold of 1 on SVM constructed from different lists of features (see section 2.2).
The corresponding results are presented in Table 4.

Table 4: Features selection global method application results
Initial features set Attack prevention Accuracy Nb of features

(theory)

21 default features 99,60% 99,37% 7
Frequency (80%) 91,00% 99,45% 9
Frequency (90%) 100,00% 98,00% 30

Frequency (80%) + default features 21,00% 99,61% 17
Frequency (90%) + default features 96,40% 99,46% 29

Results The use of a threshold allows to keep a very good accuracy while reducing the success rate
of gradient-descent attack, but this reduction is not optimal and depends a lot of the features list
utilised in the SVM.

4.2 Features Selection - Prevent Gradient-Descent

Because the gradient-descent attack uses some vulnerable features, another idea of counter-measure
is to select only features that are less vulnerable to this attack. As shown by Figure 4, we selected the
features that an adversary has no interest in modifying, in order to make a malicious PDF pose as a
clean one. In other words, increasing the number of occurence of these features will never allows to
get closer to the hyperplan we aim to cross.

To detect the vulnerable features from a list, we used the algorithm 2. This algorithm computes a
SVM with the current features list and performs the gradient-descent attack on it. At each iteration,
the features used by the gradient-descent attack are removed from the current features list. The
algorithm stops when the features list is stable (or empty).

Global features selection method To select the final list of features, the following steps are
applied :

• Select initial sublist : from 21 default features and or frequency selection (see 2.2)

• Apply Better Sublist selection (see 2.2)

• Apply gradient-descent Resistant selection (Algorithm 2)

• Apply Better Sublist selection (see 2.2)
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Figure 4: Suppression of features vulnerable to gradient-descent attack (Feature 1 is vulnerable
here, and Feature 2 is not)

Algorithm 2 Find the features vulnerable to Gradient-Descent attack and remove them

features list ← initial list
GD features used ← initial list
while GD features used �= ⊥ do
compute SVM for features list
apply gradient-descent attack to current SVM
GD features used ← features used by gradient-descent Attack
features list.remove(GD features used)

end while
return features list

We used different parameters here (frequency, force 21 default features or not), and the corresponding
results are presented in Table 5.

Remark: accuracy is not taking into account the forged PDF, only the initial dataset of 10.000
clean PDF and 10.000 malicious PDF.

Table 5: Features selection global method application results

Initial features set Attack prevention Accuracy Nb of features
(theory)

21 default features (GD resistant selection only) 100% 98,03% 6
21 default features 100% 55,68% 2
Frequency (80%) 100% 67,64% 1
Frequency (90%) 100% 95,12% 3

Frequency (80%) + default features 100% 55,66% 1
Frequency (90%) + default features 100% 55,79% 3
Frequency (95%) + default features 100% 98,22% 3

Results. This features selection method drastically reduces the number of features (between 1
and 3, except the case without application of “better selection” method first), resulting in very bad
accuracy results. The application of the global method on the 95% frequently used features + 21
default features only gives quite good results (98,22% of accuracy), but it is far less from the initial
SVM.
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4.3 Combination of Threshold & Features selection counter-measures

The threshold counter-measure previously proposed reduced significantly the attacks keeping a very
good accuracy, but was not sufficient to block every gradient-descent attacks. The features selection
counter-measure reduced totally the gradient-descent attack, but reduced significantly the accuracy,
and had very different results depending on the initial features list. Hence, we tried to combined both
counter-measures to obtain both good accuracy and total blocking of gradient-descent attack. Table 6
presents the results obtained by applying both of these techniques.

Results. We obtained in each case a theoretical block of gradient-descent attack of 100%, but only
the initial features sets including the default 21 features (and the features selected by frequency or
not) had a good accuracy (more than 99%).

Table 6: Features selection global method with threshold application results
Initial features set Attack prevention Accuracy Nb of features

(theory)

21 default features 100% 99,11% 6
Frequency (80%) 100% 94,36% 5
Frequency (90%) 100% 98,00% 30

Frequency (80%) + default features 100% 98,10% 8
Frequency (90%) + default features 100% 99,05% 6

Practical results. A summary of the best results obtained by applying each (and both) counter-
measure is given by Table 7. The conclusion we can make is that the best compromise between
accuracy and attack prevention is when both the threshold and the gradient-descent resistant features
selection are applied. In this case, we are able to prevent 99,99% of gradient-descent attacks while
conserving a reasonably good accuracy of 99,22%.

4.4 Adversarial Learning

One of the major drawbacks concerning the supervised learning that we used so far is that the SVM
is only trained once. The decision is then always the same and the classifier does not learn from its
mistakes.

The Adversarial Learning solves this issue by allowing the expert to feed the SVM again with
vectors it wrongly classified. Hence, the classifier will learn step by step where are the ignorance
regions that are used by malware to bypass the SVM.

The algorithm 3 describes how we iteratively fed our SVM to implement the adversarial learning.
Note that we used the 21 default features from PDFiD.

The results of this counter-measure are presented in Table 8. With n = 10 we found that 3
rounds are enough for the SVM to completely stop the gradient-descent attack. Furthermore, at each
round, we see that the gradient-descent algorithm requires more and more steps to finally converge,

Table 7: Results of Counter-measures “Threshold” and “Features Selection” application
Attack prevention Accuracy Nb of features

(in practice)

Treshold only 94,00% 99,81% 20
Features selection only 99,97% 98,05% 2 (/JS and /XFA)

Threshold + Features selection 99,99% 99,22% 9
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Algorithm 3 Adversarial learning

n ← number of PDFs to give to c at each iteration
c ← trained SVM
s0 ← success rate of gradient-descent
s1 ← −1
while s0 �= s1 do
s0 ← s1
feed c with n gradient-descent-forged PDFs
relaunch the learning step of c
s1 ← success rate of gradient-descent

end while
return c

Table 8: Adversarial learning results

Round # Support Vectors Accuracy (%) Steps number of GD Success rate of GD (%)

0 293 99,70 800 100
1 308 99,68 1800 90
2 312 99,67 3000 0

and thus the attack becomes more and more costly. The Support Vectors column represents the
number of support vectors the SVM has constructed. The accuracy represents the number of correct
classifications of the SVM.

One interesting fact using this counter-measure is that the accuracy of the SVM barely changes.
Furthermore, we did not need a more elaborated choice of features.

5 Conclusion and Perspectives

We implemented a naive SVM, that we easily tricked with a gradient-descent attack. We also im-
plemented counter-measures against this attack: first, we set up a threshold over each considered
features. This alone enabled us to stop almost every gradient-descent attack. Then, we reduced the
number of selected features, in order to remove features that were used during the gradient-descent
attack. This makes the attack even less practical, at the cost of reducing a bit the accuracy of the
SVM. We also proposed another approach to reduce the chances of success of the gradient descent
attack, using adversarial learning, by training the SVM with gradient-descent forged PDF files, and
re-iterating the process over again. Our SVM was resistant to gradient-descent attack after only three
iterations of the process.

Finally we would like to stress that this work as been accomplished in only four days, and obviously
more can be said about the subject. For instance, it can be interesting to see what can happen if the
adversary does not know the algorithms and features that have been used in the classifier (grey or black
box adversary models). We could also perform a gradient-descent attack using other algorithms (e.g.
Naive Bayes, Decision Tree, Random Forest) and see how many PDF files thus forged can bypass our
SVM. The adversary could also use other types of attacks, like Monte-Carlo Markov Chains (MCMC)
techniques. Other attacks, we did not consider, may exploit some properties, that are inherent in the
training set. To avoid them, it may be interesting to have a look at unsupervised learning techniques,
and try to identify a malicious behaviour with clustering.

We could also use deep learning algorithms like Generative Adversarial Network (GAN), in order
to generate a classifier and test its resistance against various attacks.
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