
HAL Id: hal-01704702
https://hal.science/hal-01704702v1

Submitted on 8 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Runtime for Reconfigurable Dataflow Graphs
on Manycore Architectures

Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin Martin, Benoît
Dupont de Dinechin, Jean-François Nezan

To cite this version:
Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin Martin, Benoît Dupont de Dinechin, et
al.. Embedded Runtime for Reconfigurable Dataflow Graphs on Manycore Architectures. PARMA-
DITAM, Jan 2018, Manchester, United Kingdom. �10.1145/3183767.3183780�. �hal-01704702�

https://hal.science/hal-01704702v1
https://hal.archives-ouvertes.fr


Embedded Runtime for Reconfigurable Dataflow
Graphs on Manycore Architectures

Hugo Miomandre1, Julien Hascoët1,2, Karol Desnos1, Kevin Martin3,
Benoı̂t Dupont de Dinechin2, Jean-François Nezan1

1 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France
2 Kalray, Montbonnot-Saint-Martin, France

3 Lab-STICC, Université Bretagne-Sud, CNRS UMR 6285, Lorient, France
email: first.last@{insa-rennes.fr, kalray.eu, univ-ubs.fr}

Abstract—Embedded manycore architectures offer energy-
efficient super-computing capabilities but are notoriously difficult
to program with traditional parallel Application Programming
Interfaces (APIs). To address this challenge, dataflow Models of
Computation (MoCs) are increasingly used as their high-level of
abstraction eases the automation of computation mapping, mem-
ory allocation, and communication management. Reconfigurable
dataflow is a class of dataflow MoC that fosters a unique trade-
off between application dynamicity and predictability. This paper
introduces the first embedded runtime manager enabling the
execution of reconfigurable dataflow graphs on a Non-Uniform
Memory Access (NUMA) architecture. The proposed runtime
manager dynamically deploys reconfigurable dataflow graphs
on clustered Processing Elements (PEs) through the Networks-
on-Chips (NoCs) of the manycore architecture. An open-source
implementation on the Kalray MPPA R© processor demonstrates
the feasibility and the great potential of such a runtime. The
first results with an image processing application show a power
efficiency 2.5 times better than on a multicore x86 architecture.

I. INTRODUCTION

The ever-increasing performance of embedded systems is
driven by the introduction of low-power massively parallel
architectures. Unlike classic multicore architectures, which in-
tegrate tens of complex high-performance Processing Elements
(PEs) in a single chip, the idea behind manycore architectures
is to sacrifice the processing capability of individual PEs, in
order to gain silicon area to integrate hundreds of PEs [1].
Hence, embedded manycore architectures are now commer-
cialized, offering competitive energy-efficient processing [16],
[4], [3].

At the same time, more than 80% of embedded software is
still written using procedural languages such as C/C++. Pro-
cedural languages are based on control-dependent sequences
of imperative instructions manipulating a pool of shared
variables. These characteristics make procedural languages
inherently ill-suited for programming manycore architectures
where hundreds of PEs communicate through complex on-chip
interconnects and distributed memory architectures. Hence, a
widening software productivity gap exists between the devel-
oper productivity and the increasing code complexity required
to fully exploit parallel computing resources [6].

Dataflow Models of Computation (MoCs) have been intro-
duced notably to bridge this software productivity gap. An
application specified with a dataflow graph [13] consists of a

set of processing entities, named actors, connected by First-
In First-Out queues (FIFOs) transmitting data quanta, named
data tokens, between actors. An actor starts its preemption-
free execution when its input FIFOs contains the required data
tokens. The number of data tokens consumed and produced
during the execution of an actor is specified by a set of firing
rules. The dataflow semantics naturally captures parallel and
data-driven computations, which makes dataflow MoCs highly
suitable for programming modern parallel architectures.

This paper focuses on reconfigurable dataflow MoCs
which allow firing rules of actors to be reconfigured non-
deterministically at restricted points in application execu-
tion [15]. The software component responsible for managing
the graph reconfigurations is called a dataflow runtime. We
propose the first implementation of an embedded dataflow
runtime, namely the SPIDER runtime [10], for executing
reconfigurable dataflow graphs on an off-the-shelf manycore
processor. This paper details the new synchronization, memory
allocation, and scheduling mechanisms that were designed to
manage efficiently the key components of the manycore archi-
tecture. An experimental evaluation of the proposed runtime
with an image processing application shows a power-efficiency
up to 2.5 times better than on a multicore x86 architecture.

Related work on Multiprocessor System-on-Chip (MPSoC)
and dataflow MoCs programming are presented in Section II.
Section III details the new mechanisms of SPIDER for execut-
ing reconfigurable dataflow applications on manycore archi-
tectures. Finally, Section IV presents the experimental evalu-
ation of the runtime performance on a commercial manycore
processor, and Section V concludes this paper.

II. CONTEXT AND RELATED WORK

Programming multi-/manycore architectures efficiently is a
challenge. Although many Application Programming Inter-
faces (APIs) adopting various MoCs can be found in the
literature, no universal parallel programming model fitting all
architectures and all applications exist. Pthreads and OpenMP3
are multi-thread programming models for shared memory
architectures where all the PEs access a common memory
address space. OpenMP4, OpenCL and CUDA are acceler-
ation programming models. The purpose of these models is
to offload an application’s heavy computations on external



Configuration
port

Parameter

Parameter 
dependency

Initial 
tokens

FIFO

ActorA

Data port
and rate1

x4

P

(a) PiSDF MoC semantics

N
NbSlice
Setter w h

Sobel ErosionDilation DisplaySplitRead
frame w*h

w*h
w*(h+10*N)

w*h
w*(h/N+8)
w*(h/N+8) w*(h/N+4)

w*(h/N+4) w*h/N
w*(h/N+10)

x1 x1 xN xN xN x1

(b) PiSDF graph of an image filtering application

Fig. 1: Parameterized and Interfaced Synchronous Dataflow (PiSDF) MoC semantics and example

computing resources, such as external CPUs, GPUs, FPGAs or
hardware specific accelerators. The aforementioned program-
ming models often propose dedicated features, like preprocess-
ing directives or specific instructions via intrinsics, to target
specific architectures. Thus, their programming requires a deep
understanding of the application, the hardware and runtime
libraries which take months to master.

Dataflow programming provides the application program-
mer with a higher level of abstraction. Related work on
dataflow programming techniques for manycore architectures
focuses on either dynamic [18], [2], [17] or static [7], [14], [9]
classes of dataflow MoCs. Reconfigurable dataflow MoC offer
a tradeoff between dynamicity and predictability that can be
exploited by a runtime manager to verify application properties
or to perform optimizations at runtime, like the mapping of
actor computations [10].

A. PiSDF MoC

The reconfigurable dataflow MoC studied in this paper is the
Parameterized and Interfaced Synchronous Dataflow (PiSDF)
MoC [5] whose semantics is depicted in Figure 1. Reconfig-
uration in the PiSDF MoC is based on parameters, which are
nodes of the graph associated to rate configuration parameters.
These production and consumption rates of actors can be
specified with expressions depending on these parameters.
Following PiSDF execution rules [5], an actor may trigger a
reconfiguration of the graph topology and intrinsic parallelism
by setting a new parameter value at runtime.

Figure 1 depicts the graphical elements of the PiSDF
semantics and gives an example of a graph implementing a
video filtering algorithm. At each iteration of the graph, which
corresponds to the processing of a new frame, the SetNbSlice
actor triggers a reconfiguration of the data rates by assigning a
new value to parameter N . Reconfigurations enable a dynamic
variation of the number of parallel executions of the Sobel,
Dilation and Erosion actors.

B. SPIDER Runtime

The Synchronous Parameterized and Interfaced Dataflow
Embedded Runtime (SPIDER) was originally introduced
in [10] as a runtime manager for the execution of PiSDF
graphs on heterogeneous MPSoCs.

The internal structure and behavior of SPIDER are depicted
in Figure 2. The depicted internal structure consists of two
types of processes, each responsible for managing the cores
which they are mapped on, and adopting a master/slaves
model. The Global Runtime (GRT) is the master of the system:
it manages the PiSDF graph topology and takes mapping and

scheduling decisions. It is usually implemented over a general
purpose core. The GRT can also process actors. The Local
Runtimes (LRTs) are lightweight slave processes that execute
actors. LRTs can be implemented over heterogeneous types of
PEs: general purpose or specialized processors, accelerators.

The execution steps followed by SPIDER to run an actor
are numbered in Figure 2. First, the GRT schedules an actor
on a PE of the architecture, and sends the execution order
through the dedicated job queue of the LRT of this PE. A
job is a message that embeds all data required to execute
one instance of an actor: a job ID, location of actor data and
code, and which are the preceding actors in graph execution.
When an LRT starts an actor execution, it waits for data
tokens to be available in the input FIFOs specified in the job
message, among a pool of data FIFOs. On actor completion,
data tokens are written in output FIFOs, and the LRT sends
new parameter values, if any, and execution traces back to the
GRT for reconfiguration, monitoring and debugging purposes.
Each LRT is associated with a job counter that stores the
integer job ID of the last executed job. As the job IDs
increase monotonically both with scheduling order and data
dependencies between jobs, these job counters can be used for
synchronization purposes between LRTs, to check whether an
LRT already executed a given job.

Open-source implementations of the SPIDER runtime have
been proposed for general purpose x86 architectures, Texas
Instruments’ Keystone digital signal processor architectures,
and Xilinx’s Zynq heterogeneous platforms [10]. To the best of
our knowledge, this paper presents the first implementation of
a reconfigurable dataflow runtime on a manycore architecture.

The objective of this paper is neither to advocate the
performance of manycore architectures against other modern
architectures (GPU, DSP, FPGA) nor to compare the perfor-
mance of reconfigurable dataflow MoCs with decidable or
dynamic MoCs. The objective of this paper is to demonstrate
the feasibility and show the potential and flexibility of imple-
menting a runtime for reconfigurable dataflow on a manycore
architecture.

Master

Slave

Slave

Schedule
Actors

1
Jobs

Queues
Send Order 2

Data Queues
Pool

... Exchange
Dataflow
Tokens

4

Fire Actors3

Parameters
Set Resolved
Parameters

5

Timings

Execution
Traces 6

Fig. 2: SPIDER runtime internal structure.



III. SPIDER FOR CLUSTERED MANYCORE

A. Architecture Overview
The original implementation of the SPIDER runtime is

detailed in [10] targeting embedded shared-memory based
MPSoCs. SPIDER operates as an offloading runtime similar
to OpenCL or OpenMP4. The master process embeds a
PiSDF graph description of the application and deploys at
runtime the computation on the slaves processes (master/slaves
organization). Such a model offers several advantages such
as centralized control, the ability to trigger the offloading of
any dataflow graphs depending on external events and manage
error recovery on complex parallel systems. The master GRT,
which handles graph reconfigurations, mapping and scheduling
heuristics, and application profiling/monitoring, requires a sub-
stantially larger memory footprint than LRTs to handle these
tasks. For instance, on the Kalray Multi-Purpose Processor
Array (MPPA) R© implementation (see Section IV), the GRT
process is mapped on one IO subsystem, which is a multicore
implementing four VLIW-cores with direct access to the
external DDR memory of 4 GBytes. Slave LRTs are mapped
on the PEs of the manycore with a dedicated job queue coming
from the master.

All runtime mechanisms presented in this section are fully
automated in SPIDER and transparent to the application devel-
oper. Hence, the application developer specifies the application
PiSDF graph, and computation kernels associated to the PiSDF
actors and accessing input and output buffers of the application
through data pointers. In particular, all data movements are
managed implicitly by the distributed SPIDER runtime which
performs explicitly all the required communications, using the
underlying low-level asynchronous one-sided communication
API provided by the Kalray toolchain [8].

B. Software Explicit Network-on-Chip (NoC) Communications
1) Issue: Shared-Memory Based Communications: SPIDER

was originally designed for shared memory MPSoCs. Shared
memory models are easy to use thanks to the global address
space and the provided hardware synchronization mechanisms
(atomics). The original synchronization protocol used by LRTs
to trigger the execution of actors implements the following
sequences. First, when an LRT completes a job, it writes the
produced data tokens into shared memory, then sets its job
counter to the completed job ID. Second, the LRT can dequeue
a new job to process from its job queue. Third, before firing the
actor, it needs to synchronize with the completion of preceding
actors executions. For that purpose, job messages contain the
job ID of each preceding actor and the ID of each LRT that
executed these jobs. Thus the LRT will compare the expected
job counter values, given by the job IDs, to the actual job
counter values of the specified remote LRTs. For convenience,
job counter values of all LRTs are stored in a single array,
accessible to all PEs. Such synchronization mechanisms are
simple to implement for shared memory architectures where
they consist of a comparison done by Load/Store instructions
and management of the memory consistency using full mem-
ory barrier to prevent from data race. On previous SPIDER

implementations [10], when targeting the Texas Instruments’
Keystone II architecture, this synchronization mechanism used
specific hardware queues to manage data dependencies. It
means that the SPIDER architecture provides a proper parti-
tioning of the key actions of the dataflow runtime, allowing
them to be accelerated by hardware specific features of the
targeted platform.

2) Solution: Distributed Synchronization Algorithm: The
objective of the new synchronization algorithm is to both dis-
tribute the control of synchronizations and bound the number
of NoC communications per data dependency of the firing
of an actor. Therefore, the proposed algorithm builds on the
observer design pattern, where the observers are the LRTs
waiting for completion of a preceding actor, and the notifier
is the LRT executing this actor. The operating principle of the
algorithm consists of the three following actions:
Register: When an LRT pops a new job to execute in its
queue, it scans the set of preceding actors (information coming
from the master in the job message), and sends a notification
request to each LRT executing the preceding actors. A noti-
fication request encapsulates both the ID of its sender LRT,
and the ID of the awaited job.
Notify: On job completion, an LRT updates its job counter
then answers to all LRTs with a pending notification request
with an awaited ID lower than the new job counter value.
Peek: Optionally and for optimization purpose, after sending
all its notification requests, an LRT can check, once and on
its own, the job counter values of all LRTs that have not yet
answered. The objective of a peek, which consists of a remote
8-byte load in a distant memory over the NoC, is to avoid
waiting for a notification from a busy LRT whose job counter
is already greater than the awaited value.

Considering the above description of actions, each data
dependency between two actors requires at most five commu-
nications through the NoC: two to send a notification request,
one to send a notification, and two for a peek. Hence, a finite
number of NoC communications per dependency is needed,
thus fulfilling the communication bounding objective.

The algorithm flow-chart diagram in Figure 3a details the
distributed synchronization protocol. It implements an all-to-
all (LRTs) synchronization mechanism. The left part of the
diagram describes the observer LRTa popping a new job from
its job queue and the right part explains the notification se-
quence when an LRTb processes pending notification requests.
For simplification purposes the peek action was omitted. The
protocol requires three synchronization vectors for each LRT,
allocated in the local scratchpad memory of the PE: Sem
contains LRTs IDs of sent unanswered notification request,
Req registers LRTs IDs of received notification requests, and
Val contains job counter values awaited by LRTs registered in
Req . The size of each array corresponds to the total number
of LRTs in the system NbLRT .

C. Runtime Scheduling for a Large Number of PEs

1) Issue: Prohibitive Complexity and Footprint: The orig-
inal scheduler implemented in SPIDER is a LIST scheduling



Answer Notification RequestsLRTb

Start
i=0

Req[NbLRT]

Val[NbLRT]

Yes

++i < NbLRT

Val[i]>=
Job count

No

Clear
Req[i]

Post
LRTi.Sem[b]

Exit

Request M Notifications

No

++i < M

LRTi
pending

LRTa

Start
i=0

No

Set
Sem[#LRTi]

Sem[NbLRT]

Post
LRTi.Req[a]

Call Answer
notif. request Yes

LRTM
pending

No

Call Answer
notif. request Yes

Read

Read

Set

Yes

Ni:
LRTi:
Vali:

Notifs (i in [1..M])
Source LRT for Ni
Trigger for Ni on LRTi

LRTi.Val[a]
= Vali

Yes

Req[i]
pending

No

No

Exit

No

Read

Clear

Read

Set

Set

Clear

NoC

LRTa
Variable

LRTb
Variables

(a) Actor synchronization. As many requests are sent as the number of input FIFO of the next actor.

Cluster-level
Shared
Memory

Start alloc

Release lock

DEADLOCK Exit

Success

True

Yes

Failure

No

Lock

Pend

Post

Read

Set

Get lock

False

Shared
Variables

Cluster

Allocating Data

Size = 
Ʃ buffersize

Increment
nbactiveLRT

Set
alloc_flag

Clear 
alloc_flag

Try 
alloc(size)

nbactiveLRT
> 0

Check
alloc_flag

nbactiveLRT

LRT

(b) Cluster-level memory allocation.

Fig. 3: LRT algorithms for memory allocation and actor synchronization.

heuristic described in [11]. When parameters of a graph are
dynamically configured, the GRT analyses the data exchange
rates in the PiSDF graph and generates an equivalent Directed
Acyclic Graph (DAG) graph, exposing explicitly all data par-
allelism. Actors of the DAG are obtained by duplicating actors
of the PiSDF graph as many times as their number of firing,
themselves obtained analytically from data consumption and
production rates [12]. Then, the GRT handles the mapping and
scheduling of each actor, taking into account the dependencies
of the DAG and mapping constraints if any.

The issue with the LIST scheduler is that its complex-
ity becomes prohibitively large when targeting a processor
with hundreds of PEs. Indeed, its complexity is given by
O(A.log(A)+P.(A+E)) [11], where A and E are the number
of actors and dependencies in the DAG, and P is the number of
PEs. Manycore architectures implement hundreds of PEs and
require a lot of application parallelism. Therefore, the number
of DAG actors to be scheduled in parallel increases roughly
linearly with the number of PEs. Consequently, the complexity
of the LIST scheduling tends to increase quadratically with the
number of PEs, making it a bottleneck for runtime scheduling.

2) Solution: Lightweight Scheduling: We replaced the orig-
inal LIST scheduler with a less complex scheduling algorithm
based on a specialized Round Robin (RR) heuristics. First, the
new algorithm was optimized to reduce the memory footprint
and the latency of job scheduling decisions. The classical RR
heuristic iterates circularly on a list of LRTs, and sends jobs
to the first available LRT. This heuristic lowers the scheduling
complexity down to O(A + E), as a topological ordering of
actors is required. However we find out that the evaluation of
the actor execution time and the job fairness distribution to
LRTs were no longer required, as a lot of LRTs are available
and one is always is ready.

Second, optimization regarding memory usage consists of
interleaving the PEs from different clusters in the list on which
the RR algorithm iterates. In each cluster, several PEs share a
local scratchpad memory and a NoC interface. The objective

of this optimization is to prevent too many jobs from being
sent simultaneously to PEs on the same cluster. Multiple jobs
starting their execution will simultaneously try to synchronize
themselves with their predecessor actors, and allocate cluster
memory for their input and output buffers (see Section III-D).
Therefore, scattering jobs among clusters will prevent/reduce
the waiting time of PEs to access to shared cluster resources.

Third, the specialized RR algorithm features a flow control
mechanism to avoid the corruption of LRT job queues. The
GRT is authorized to send a job to an LRT only if the targeted
remote job queue contains enough space to receive the job. For
that purpose, LRTs send their job counter value to the GRT on
job completion. The statically configurable size of job queues
has to be large enough to prevent starvation of the LRTs, but
as small as possible to limit its memory footprint.

Finally, the RR scheduler was enhanced to take into account
the available memory in the compute cluster. When scheduling
an actor, the required amount of memory for its execution
is computed, and the scheduler avoids sending it to an LRT
that will not be able to run it, thus creating a deadlock. The
measurement of available space in cluster memory associated
to each PE is done at compile time, but can be automated
during the initialization boot sequence of SPIDER.

D. Distributed Scratchpad Memory Allocation

1) Issue: Scratchpad Memories instead of Caches: When
an LRT pops a new job, it needs to allocate memory to accom-
modate the input and output buffers of the corresponding actor.
As the original SPIDER implementation was implemented for
shared-memory based architectures, where PEs (LRTs) access
the main memory (usually DDR technology) through their
data cache, SPIDER used single global memory allocator. Data
pointers on globally allocated data tokens of the FIFOs are sent
to the LRT job queues, and LRTs are able to access data tokens
using simple Load/Store instructions, implicitly supported by
their data cache, refilling from the main memory. However,



memory consistency operations at synchronization points are
still required (full memory barrier).

On a scratchpad memory based clustered manycore archi-
tecture, the memory in the cluster needs to be allocated by the
software. Furthermore, a scratchpad memory is limited and
distributed, thus making the control software more complex
and error-prone. In such a case, exhausting memory resources
may happen frequently but does not necessarily requires
terminating the application. For instance, a memory allocation
may fail for an actor A when another actor B executed in
the same cluster uses all the available scratchpad memory. On
completion of the execution of actor B, its memory can be
reused, possibly after sending output buffers back to the main
external memory. Then actor A may successfully perform its
memory allocation in the scratchpad memory.

2) Solution: Thread-safe Scratchpad Memory Allocator:
The flow-chart in Figure 3b describes a new algorithm for
managing the memory allocation in the scratchpad memory of
a clustered manycore architecture. This allocation procedure
ensures that all job scheduled on an LRT running in a cluster
will succeed in allocating the required memory, as long as their
required memory does not exceed the maximum capacity of
the cluster memory space (see Section III-C). When all firing
conditions of a mapped actor are fulfilled, the LRT attempts
to allocate memory using this algorithm.

As multiple PEs may compete for scratchpad memory space,
a cluster level lock, based on atomic instructions, is required to
prevent the memory allocator from data structure corruption.
This critical section of this algorithm also protects a shared
counter NbActiveLRT that represents the number of actors
currently executed in the cluster. If the number of active LRT is
greater than zero when a memory allocation fails, then the LRT
should release the lock, and try again later. If not, a deadlock
is detected as no other LRT is currently using cluster memory,
and there is no reason for more memory to be available
during a future allocation attempt. The deadlock detection is
an expendable safety feature if, as presented in Section III-C,
the scheduling algorithm is aware of the maximum available
space in cluster memories.

The deallocation procedure on actor completion consists
of taking the lock, freeing the data, decrementing the
NbActiveLRT counter, and releasing the lock, along with full
memory barrier to manage the cache coherence in the cluster.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

The new mechanisms introduced in this paper, which allow
the execution of the open-source SPIDER runtime for scratch-
pad memory based manycore architectures, were implemented
on the Kalray MPPA R© processor [4].

1) Kalray’s MPPA R© Architecture: MPPA R© implements
hierarchical computing resources featuring 18 Non-Uniform
Memory Access (NUMA) nodes, 16 compute clusters and 2
IOs subsystems, interconnected with a NoC. Each compute
cluster consists of 16 VLIW cores and 2 MB of scratchpad-
only memory. The MPPA is a DMA-based manycore architec-

ture. All computations are driven by DMA data transfers over
the NoC and the software runtime is in charge of configuring
the DMA NoC interface. Indeed the compute clusters can
access the main memory (DDR) and the memory of other
compute clusters only through the NoC and explicitly by
software. Because of these features, programming efficiently
the MPPA is a challenge as all communications have to be
managed explicitly by the software, and thus written by the
developer.

2) Image Filtering Application: The image processing
PiSDF graph used to assess the functioning of the SPIDER
manycore implementation is presented in Figure 1. The pur-
pose of this application is to apply a commonly used Sobel
image filter, and two morphological operators, an Erosion and
a Dilation, in order to detect the edges of the processed 2D
image. In Figure 1, notations xN next to actors denotes the
number of (parallel) executions of each actor during a graph
iteration. In this example, the Sobel, Dilation and Erosion
actors are parallel and the other actors are sequential. The
reconfigurable parameter N represents the number of slices the
input image is divided into for parallel processing. In this ex-
ample, actor NbSliceSetter automatically searches for the value
of N that maximizes application performance by monitoring
the system. The selected application allows to demonstrate the
feasibility of a reconfigurable dataflow runtime on a manycore
architecture, and evaluate the runtime overhead in comparison
with a static execution.

B. Results

1) LRT Memory Footprint: A first porting of the SPIDER
LRT runtime on MPPA R© PEs resulted in a memory footprint
of 82kB. Mapping an LRT process on each 16 PEs of
a cluster requires 1.28MB out of the 2MB local memory.
Considering that 620kB of memory is reserved for system
services, only 116kB of memory would remain available to
store processed data. 116kB allows executing the filtering
application on image resolutions up to 720p with 256 slices
processed in parallel.

Thanks to the scheduling mechanism limiting the number
of jobs sent to individual LRTs, the size of the job queues was
reduced to three slots, enabling job buffering and leading to an
LRT memory footprint of 6.5kB. In this configuration, 1.29MB
of cluster memory remains available for storing processed
data. This new configuration leaves enough space to allow the
processing of ultra high-resolution (4K) images, equivalent to
nine 720p images, on the MPPA R©.

2) Performance and SPIDER Overhead: Figure 4 shows
the performance obtained when executing the image filtering
PiSDF graph on the MPPA R© for 4K images. Application
performance, expressed as the number of processed frames
per second (fps), is plotted for a varying number of active
clusters, and a varying number of active PEs per cluster. The
sequential performance on a single PE is 0.13 fps. When using
the 256 PE of the compute clusters, a throughput of 2.81 fps
is reached, which represents a speed-up of 22 compared
to the sequential execution. During the processing of each



0

16

0.5

14

1

1612

1.5

Fr
a
m

e
s 

p
e
r 

se
co

n
d

1410

2

12

Nb Clusters

2.5

8 10

Nb PE per Cluster

3

86
64

4
2 2

Fig. 4: Application performance on a 4K video

frame (0.36s), only 8% of this latency is due exclusively
to GRT computations. Hence, actor computations and NoC
communications are responsible for 92% of the latency. These
results are decent considering that, according to Amdahl’s law,
the theoretical speedup for this application on 256 cores is
28, which is an optimistic prediction as the communications
overhead is ignored. Calculation of Amdahl’s law is based on a
measurement of Tpar the summed execution time of the image
processing actors (Sobel, Dilation, Erosion) on the compute
clusters, and Tseq the summed execution time of all other
actors on the IO subsystem. The theoretical speedup S on 256
cores is given by S = ((1− Tpar

(Tseq+Tpar)
)+

256×Tpar

Tseq+Tpar
)−1 = 28.

In [9], the authors evaluate the performance of a static
version of the PiSDF graph from Figure 1. In the static
version, N is fixed and all mapping and scheduling are done at
compile time for VGA videos (640x480). The top performance
obtained for the static execution is 217 fps. For an identical
video resolution, the reconfigurable PiSDF graph executed
with SPIDER peaks at 47 fps. Besides the SPIDER runtime
overhead, the difference between the performance of the static
and reconfigurable executions is mostly due to the lack of
memory optimization in the reconfigurable implementation.
In the reconfigurable version, many memcpy calls are issued
to create the image slices in the Split actor and to merge
processed slices into a contiguous buffer before Display.
Thanks to compile time optimizations, these memcpy calls are
replaced with pointer operations in the static version reducing
the memory bandwidth drastically by a factor of 3.

When using a standard thread-based implementation of
SPIDER on an Intel Xeon E5-1650 with 6 hyper-threaded x86
cores clocked at 3.60GHz, the processing of a 4K video with
the same PiSDF graph reaches 11.40 fps, using 95% of all
CPU time. Although the performance on the Xeon processor
is almost 4 times better, this processor dissipates on average
10 times more power than the MPPA R©. Hence, the execution
on the MPPA R© is approximately 2.5 more energy efficient
than on the Xeon.

V. CONCLUSION

This paper presents the first implementation of a runtime
manager for reconfigurable dataflow graphs on embedded
manycore architectures. The proposed runtime is based on

new scheduling, synchronization, and memory allocation al-
gorithms specifically designed for clustered architectures. Ex-
periments on an MPPA R© processor demonstrate the feasibility
of such a runtime, and its potential in terms of application
performance and energy efficiency. Future work includes the
development of lightweight scheduling strategies improving
the data locality of computations on clustered PEs.

ACKNOWLEDGEMENTS

This work was partially supported by the MORDRED
Project, funded by the GdR ISIS of the CNRS.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in Design
Automation Conference (DAC). ACM, 2007, pp. 746–749.

[2] S. C. Brunet, C. Alberti, M. Mattavelli, and J. W. Janneck, “Design space
exploration of high level stream programs on parallel architectures: a
focus on the buffer size minimization and optimization problem,” in
ISPA. IEEE, 2013, pp. 738–743.

[3] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini, “Enabling
the heterogeneous accelerator model on ultra-low power microcontroller
platforms,” in Design, Automation & Test in Europe Conference &
Exhibition. IEEE, 2016, pp. 1201–1206.

[4] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss
et al., “A clustered manycore processor architecture for embedded
and accelerated applications,” in High Performance Extreme Computing
Conference (HPEC). IEEE, 2013, pp. 1–6.

[5] K. Desnos, M. Pelcat, J.-F. Nezan, S. Bhattacharyya, and S. Aridhi,
“PiMM: Parameterized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS). IEEE, 2013, pp. 41–48.

[6] W. Ecker, W. Müller, and R. Dömer, Hardware-dependent Software.
Springer, 2009.

[7] T. Goubier, R. Sirdey, S. Louise, and V. David, “SigmaC: A program-
ming model and language for embedded manycores,” in Algorithms and
Architectures for Parallel Processing, ser. Lecture Notes in Computer
Science. Springer, 2011, pp. 385–394.

[8] J. Hascoët, B. D. de Dinechin, P. G. Massas, and M. Q. Ho, “Asyn-
chronous one-sided communications and synchronizations for a clus-
tered manycore processor,” in Embedded Systems for Real-Time Multi-
media. IEEE/ACM, 2017.

[9] J. Hascoët, K. Desnos, J.-F. Nezan, and B. D. de Dinechin, “Hierarchical
dataflow model for efficient programming of clustered manycore pro-
cessors,” in Application-specific Systems, Architectures and Processors
(ASAP), 2017.

[10] J. Heulot, M. Pelcat, K. Desnos, J. F. Nezan, and S. Aridhi, “Spider:
A synchronous parameterized and interfaced dataflow-based rtos for
multicore dsps,” in Embedded Design in Education and Research
Conference (EDERC), Sept 2014, pp. 167–171.

[11] Y.-K. Kwok, “High-performance algorithms for compile-time scheduling
of parallel processors,” Ph.D. dissertation, 1997.

[12] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235 – 1245, sept. 1987.

[13] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[14] Y. Lesparre, A. Munier-Kordon, and J. M. Delosme, “Evaluation of
synchronous dataflow graph mappings onto distributed memory archi-
tectures,” in Digital System Design (DSD). Euromicro, Aug 2016, pp.
146–153.

[15] S. Neuendorffer and E. Lee, “Hierarchical reconfiguration of dataflow
models,” in MEMOCODE, 2004.

[16] A. Olofsson, “Epiphany-v: a 1024 processor 64-bit risc system-on-chip,”
arXiv preprint arXiv:1610.01832, 2016.

[17] S. Roloff, A. Pöppl, T. Schwarzer, S. Wildermann, M. Bader, M. Glaß,
F. Hannig, and J. Teich, “Actorx10: An actor library for x10,” in ACM
SIGPLAN Workshop on X10. ACM, 2016, pp. 24–29.

[18] A. Stoutchinin and L. Benini, “Stream drive: A dynamic dataflow frame-
work for clustered embedded architectures,” in Computing Frontiers.
ACM, 2017, pp. 1–8.


