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Improving Shadow Suppression for Illumination
Robust Face Recognition

Wuming Zhang, Xi Zhao, Jean-Marie Morvan and Liming Chen, Senior Member, IEEE

Abstract—2D face analysis techniques, such as face landmarking, face recognition and face verification, are reasonably dependent on
illumination conditions which are usually uncontrolled and unpredictable in the real world. The current massive data-driven approach,
e.g., deep learning-based face recognition, requires a huge amount of labeled training face data that hardly cover the infinite lighting
variations that can be encountered in real-life applications. An illumination robust preprocessing method thus remains a very interesting
but also a significant challenge in reliable face analysis. In this paper we propose a novel model driven approach to improve lighting
normalization of face images. Specifically, we propose to build the underlying reflectance model which characterizes interactions
between skin surface, lighting source and camera sensor, and elaborate the formation of face color appearance. The proposed
illumination processing pipeline enables generation of the Chromaticity Intrinsic Image (CII) in a log chromaticity space which is robust
to illumination variations. Moreover, as an advantage over most prevailing methods, a photo-realistic color face image is subsequently
reconstructed, which eliminates a wide variety of shadows whilst retaining the color information and identity details. Experimental
results under different scenarios and using various face databases show the effectiveness of the proposed approach in dealing with
lighting variations, including both soft and hard shadows, in face recognition.

Index Terms—Face recognition, lighting normalization, illumination and texture analysis

F

1 INTRODUCTION

FACE analysis has received considerable attention due
to the enormous developments in the field of biomet-

ric recognition and machine learning. Beyond its scientific
interest, face analysis offers unmatched advantages for a
wide variety of potential applications in commerce and
law enforcement compared to other biometrics, such as
easy access or avoidance of explicit cooperation from users
[1]. Nowadays, conventional cases have attained quasi-
perfect performance in a highly constrained environment
wherein poses, illuminations, expressions and other non-
identity factors are controlled. However, these approaches
suffer from a very restricted range of application fields
due to the non-ideal imaging environments frequently en-
countered in practical cases: users may present their faces
without a neutral expression, or human faces may come
with unexpected occlusions such as sunglasses, or, yet again,
the images are captured from video surveillance that may
group all difficulties such as low resolution images, pose
changes, lighting condition variations, etc. In order to be
adaptive to these challenges in practice, both academic and
industrial research have understandably shifted their focus
to unconstrained real-scene face images.
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Fig. 1. An example of varying lighting conditions for the same face. (a)
Front lighting; (b) Specular highlight due to glaring light coming from
right side; (c) Soft shadows and (d) hard-edged cast shadow.

Compared with other nuisance factors such as pose and
expression, illumination variation impinges more strongly
upon many conventional face analysis algorithms that as-
sume a normalized lighting condition. As depicted in Fig.
1, the lighting condition can be fairly complicated due to
numerous issues, e.g., the intensity and direction of the light-
ing, or the overexposure or underexposure of the camera
sensor. Moreover, it has already been proven that in face
recognition, differences caused by lighting changes could
be even more significant than differences between individ-
uals [2]. The current state of the art massive data-driven
approach, e.g., deep learning-based face recognition [3],
requires a huge amount of labeled face data which, however,
are unable to cover the infinite illumination variations that
can occur in real-life applications. Therefore, illuminant-
invariant approaches based on lighting normalization con-
tinue to be crucially important for further widening the
application field of face recognition.

In this paper, we propose a novel model driven-based
lighting normalization approach for the purpose of lighting
variation robust 2D face recognition. Specifically, we first
divide the whole face into highlighted and non-highlighted
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Fig. 2. Overview of the chromaticity space-based lighting normalization process and shadow-free color face recovery process.

regions. Second, we approximate Lambertian surfaces and
Planckian lighting in order to investigate image formation
rules. Then, a pixel-level transformation in log space is con-
structed with a view to pursuing a chromaticity invariant
representation. The final step is to extend this chromaticity
invariance to color space by taking shadow edge detec-
tion into account. An overview of the proposed processing
method is illustrated in Fig. 2. Ultimately, the experiments
are carried out based on lighting normalized images, and
favorable experimental results have been achieved on the
CMU-PIE and the FRGC face database. Our specific contri-
butions are listed as follows.

1) We introduce and develop a chromaticity-based
physical interpretation for modeling the face imag-
ing process, which takes highlight detection as pre-
processing and is able to separate the illumination
effect from intrinsic face reflectance.

2) We present a novel application of the chromaticity
invariant image for shadow-free color face recon-
struction rather than gray-scale level de-lighting,
demonstrating the potential for recovering a photo-
realistic face while eliminating the lighting effect.

3) We evaluate the proposed method on two bench-
marking datasets across illumination variations and
demonstrate that it can help improve performance
of state-of-the-art methods especially on hard shad-
ows, both qualitatively and quantitatively.

The remainder of this paper is structured as follows:
Section 2 briefly overviews related work in illumination
invariant face recognition; Section 3 describes the color
formation principles of human faces in the RGB space, while
Section 4 details an illumination-normalized intrinsic image
formation algorithm in chromaticity space; in Section 5 this
invariance is further studied to enable full color shadow-
free face recovery; promising experimental results and con-
clusions are given in Section 6 and Section 7, respectively.

2 RELATED WORK

Over the years, a surge of qualitative and quantitative stud-
ies on illumination invariant research has been observed

due to the suitability and efficacy of such techniques in face
analysis. These techniques could be roughly divided into
three categories according to their diverse theoretical back-
grounds: holistic normalization methods, invariant feature
extraction methods, and 3D model-based methods.

Holistic normalization-based approaches used to be
common in early algorithms. These attempt to redistribute
the intensities of the original face image in a more normal-
ized representation, which is less prone to lighting changes
by applying a simple gray-scale intensity adjustment. His-
togram Equalization (HE) and Histogram Matching (HM)
[4] initiated these methods by adopting an image prepro-
cessing stage on histogram level. Shan et al. [5] developed
Gamma Intensity Correction (GIC) for normalizing overall
image intensity at a given illumination level, and introduced
an intensity mapping: G(x, y) = cI(x, y)1/γ where c is
a gray stretch parameter and γ is the Gamma coefficient.
Notwithstanding their ease of implementation and the ap-
parent beneficial effects on lighting normalization, these
methods fail to further satisfy the increasingly rigorous
demands on accuracy as they are global and do not take
into account the in-depth image formation principles. This
means that they only average holistic intensity distribution
and cannot satisfactorily handle soft shadow, hard shadow
or highlight, respectively.

In view of this deficiency of holistic normalization, in-
variant feature extraction methods are proposed. Extraction
of illumination-invariant components from the frequency
domain is the mainstream approach yielding implementa-
tion of wavelet-based denoising [6] or logarithmic discrete
cosine transform (LDCT) [7]. Derived from Land’s Retinex
model [8] and its variants, which indicate that a face image
could be broken down into its smoothed version and its il-
lumination invariant features, Riklin-Raviv and Shashua [9]
proved that Quotient Image (QI), i.e. a ratio image between
a test image and a linear combination of three prototype
images based on the Lambertian model, is illumination free.
The algorithm is then generalized by Wang et al. [10] to
the Self Quotient Image (SQI), which replaced the prototype
images by a smoothed version of the test image itself. SQI
achieved predominant performance while suffering from a
lack of edge-preserving capability caused by their weighted
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Gaussian filter. Chen et al. [11] utilized the TV-L1 model
for factorizing an image and succeeded in overcoming this
drawback. Local Normalization (LN) was proposed by Xie et
al. [12] to cope with uneven lighting conditions by reducing
or even removing the effect of noise. Gradientface [13] and
Weberface [14] compute the ratio of x-gradient to y-gradient
and the ratio of the local intensity variation to the back-
ground of a given image, respectively, to obtain illumina-
tion invariant representations. An integrative preprocessing
chain was created by Tan and Triggs [15], who successively
merged Gamma correction, difference of Gaussian filter-
ing, optional masking, and contrast equalization. All these
approaches achieved impressive performance on removing
soft shadows, yet encountered problems with hard-edged
cast shadows especially caused by self-occlusion around the
nose. Moreover, these methods cannot be extended to color
space, resulting in limited applications in the real world.

With the ever-advancing development of 3D data acqui-
sition technologies, many researchers turned their attention
to 3D model estimation based upon physical principles for
dealing with lighting problems. Basri et al. [16] proved
that a convex Lambertian object obtained under a large
variety of lighting conditions can be approximated by a
9D linear subspace. Blanz and Vetter [17] first proposed the
3D Morphable Model (3DMM) to estimate and synthesize
lighting conditions by means of a linear combination of
prototype models. A publicly available 3D Morphable Face
Model - the Basel Face Model (BFM) [18] - was then con-
structed to realize the widespread use of 3DMM. Wang et
al. [19] presented the Spherical Harmonic Basis Morphable
Model (SHBMM), fusing 3DMM and spherical harmonic
illumination representation [16]. Based on physical lighting
models, Zhao et al. [20] decomposed lighting effects using
ambient, diffuse, and specular lighting maps and estimated
the albedo for face images with drastic lighting conditions.
3D-based lighting independent methods are powerful and
accurate in comparison with 2D-based ones. However, they
are easily confined to data acquisition and are limited by the
unavoidable high computational cost. Even if we can com-
promise by considering only 2D images and normalizing
their lightings using 3D models, data registration between
2D and 3D remains likewise an inconvenience.

To summarize, the proposed approach in this paper,
which is actually a fusion of holistic normalization and
the reflectance model, introduces, for the first time, the
usage of the chromaticity invariant image in the field of
face analysis to reconstruct a shadow-free color face image
without using 3D priors. Compared with existing methods,
we have constructed a comprehensive framework which
combines the physical interpretation of face imaging and
the simplicity of implementation. Moreover, since the pro-
posed method removes shadow in color space, it can jointly
function with other gray-scale level techniques to improve
lighting normalization performance.

3 SKIN COLOR ANALYSIS

In this section, we formulate a physics-based reflectance
model for approximating pixel-based face skin colors. To
begin with, we recapitulate the definition and properties of

the two most commonly used reflectance models. A non-
negative matrix factorization (NMF) based method is then
implemented to locate the highlighted facial region, which is
less informative for precise model formulation. A product-
form representation, which could account for diffuse color,
is finally proposed as the cornerstone for our approach.

3.1 Reflectance Model: Lambert vs. Phong
Despite the appearance of several more comprehensive and
more accurate BRDF models in recent years, these models
are practically constrained by computational burden and be-
come strongly ill-posed with respect to inverse estimation of
material reflectance, thus greatly restricting their application
in general lighting normalization tasks. Instead, classical
models like Lambert and Phong [21] still occupy a prime
position in this field due to their ease of implementation.

As a common assumption, Lambert and Phong both
adopt the concept of ideal matte surface, obeying Lambert’s
cosine law where the incident lighting arriving at any point
of an object surface is uniformly diffused in all observation
directions. Furthermore, Phong’s model extends Lambertian
reflectance by adding a specular highlight modelization
term, which is merely dependent on the object’s geometric
information and lighting direction at each surface point. The
representation of the Lambertian model and Phong’s model
can be formulated by equation (1) and (2), respectively,

Ldiffuse = SdEd(n · l) (1)

Ldiffuse + Lspecular = SdEd(n · l) + SsEs(v · r)γ (2)

where Sd and Ss denote the diffuse and specular reflection
coefficients; Ed and Es represent the diffuse and specular
lighting intensities;n, v, l and r = 2(n · l)n− l refer to the
normal vector, the viewer direction, the direction of incident
light and the direction of the perfectly reflected ray of light
for each surface point; γ is a shininess constant.

Despite the fact that the human face is neither pure
Lambertian (as it does not account for specularities) nor
entirely convex, the simplifying Lambertian assumption is
still widely adopted in face recognition studies [16], [22],
[23] as the face skin is mostly a Lambertian surface [24].
Nevertheless, premising the work on this assumption would
be suboptimal because the specular highlight widely occurs
in practice and could not be ignored in face images due
to the inevitable existence of the oil coating and semi-
transparent particles in the skin surface. To address this
problem, we decide to first detect the highlight region on
each face image using the Phong-type model. The classical
Lambertian reflectance will then be applied afterwards to
the skin color analysis for the non-highlighted region.

3.2 Specular Highlight Detection
As was proven in [25], variations in density and distribu-
tion of skin pigments, such as melanin and hemoglobin,
simply scales the skin reflectance function, i.e. Sd(x, λ) =
β(x)Sd(λ). Here x denotes the spatial coordinates. Further-
more, as stated in [26], the spectrum of surface-reflected
light for specular spots in face skin can be considered to
be equal to the spectrum of source lighting, i.e. Ss = 1,
otherwise Ss = 0 for non-highlighted regions. With these
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Fig. 3. Specular highlight detection results on images under various
lighting conditions. Top: raw images; bottom: detected highlight masks.

caveats in mind, each component in Phong’s model could be
divided into an achromatic term (decided only by geometric
parameters) and a chromatic term (parametrized by λ):

L(x, λ) = (n · l)β(x)Ed(λ) + (v · h)γSs(x)Es(λ) (3)

More specifically, the RGB responses could be rewritten
as spatial coordinates determined by geometrical depen-
dency in space, spanned by the colors of light and surface:R(x)

G(x)
B(x)

 =

Rd Rs
Gd Gs
Bd Bs

× [kd(x)
ks(x)

]
(4)

where the first term of the right-hand side is a 3×2 matrix
representing RGB channel magnitudes for diffuse and spec-
ular reflection, while the second achromatic term is a 2×N
matrix (N denotes the number of pixels) containing diffuse
and specular coefficients.

Remarkably, all these matrices are non-negative and
ks(x) is sparse due to the fact that only a small portion of
face contains specularity. It then becomes natural to consider
the use of Non-negative Matrix Factorization (NMF) [27]
for solving such a V = W ·H problem. Implementation
is easy: we set the inner dimension of factorization to 2 and
apply a sparse constraint for ks(x) by restricting its L1 norm
while fixing its L2 norm to unity as a matter of convenience.

As illustrated in Fig. 3, performance of highlight de-
tection using the proposed method proves to be robust,
irrespective of lighting intensity and lighting direction for
face images under different illumination environments. In
particular, NMF may not be able to distinguish specular
and diffuse properties under low illumination, but in this
case the shininess constant γ in equation (2) becomes very
small and thus the specular reflection can be ignored.

3.3 Skin Color Formation
After successful separation of the surface-reflected region
from the body-reflected region, our focus will be to investi-
gate skin color formation on the non-highlighted area using
the Lambertian model. Conceptually, three primary factors
may be involved in a comprehensive image formation scene:
source lighting, object surface, and imaging sensor. Each
factor is physically modeled, based on which the definitive
color representation will be straightforwardly derived.

First, we assume that the source illuminations are
Planckian, which could cover most lighting conditions such
as daylight and LED lamps, i.e. the spectral radiance of

lighting could be formulated by B(λ, T ) = 2hc2

λ5
1

ehc/λkBT−1
where h = 6.626×10−34J ·s and kB = 1.381×10−23J ·k−1
are the Planck constant and the Boltzmann constant, respec-
tively; λ characterizes the lighting spectrum; T represents
the lighting color temperature, and c = 3× 108m · s−1 gives
the speed of light in the medium. Additionally, since the
visible spectrum for the human eye always falls on high
frequencies where hc/λ� kBT , spectral power distribution
E(λ, T ) of illumination with an overall intensity I tends to
Wien’s approximation [28]:

E(λ, T ) ' I k1
λ5
e−

k2
λT (5)

where k1 = 2hc2 and k2 = hc
kB

refer to the first and
second radiation constants. Moreover, as proven in [29], the
Planckian characteristic can be approximately considered
linear, thus allowing us to generalize this assumption to a
bi-illuminant or multi-illuminant scene.

The assumption for skin surface has already been formu-
lated, i.e. the skin is a Lambertian surface and follows the re-
flection rule specified in (1). With the sensor response curve
Fi(λ) corresponding to three color channels, the spectral
reflectance function of skin surface S(λ) and the aforemen-
tioned spectral power distribution E(λ), the final output of
camera sensors C = {R,G,B} could be represented as an
integral of their product over the spectrum:

Ci =

∫
Fi(λ)E(λ)S(λ)(nk · l)dλ, i = 1, 2, 3 (6)

where (nk · l) describes the inner product between surface
normal and illumination direction. Given a specific scene
and geometry, this product value for each surface point is
fixed to a constant α.

A widely used assumption in computer graphics, which
is subsequently adopted here, is that camera sensors are
sufficiently sharp and that their spectral sensibility could be
characterized by Dirac delta function Fi(λ) = fiδ(λ − λi).
This satisfies

∫
Fi(λ)dλ = fi and turns the integral repre-

sentation in (6) into a multiplicative form in (7).

Ci = αfiE(λi)S(λi), i = 1, 2, 3 (7)

Eventually, a comprehensive representation of color for-
mation emerges after a combination of (5) and (7):

Ci = αIk1fiλ
−5
i e
− k2
λiT S(λi), i = 1, 2, 3 (8)

An apparent truth about this formula is that the color
value for one skin surface point can be practically com-
partmentalized into three segments: a constant part (αIk1),
a lighting (T ) invariant yet channel (λi) related part

(fiλ−5i S(λi)), and a lighting related part (e−
k2
λiT ). This

thought-provoking observation instantly prompts us to first
carry out a normalization processing to remove the constant
part and then separate the channel related part and the
lighting related part. Not surprisingly, the property of inten-
sity normalization in chromaticity space, together with the
attendant investigation of the chromaticity invariant image,
have been brought to our attention.
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4 CHROMATICITY INVARIANT IMAGE

The target of inferring an illumination-invariant face image
based upon the previously derived skin model in chro-
maticity space is discussed and achieved in this section.
We first recall the definition of chromaticity, whereafter an
intrinsic characteristic of the chromaticity image in log space
is studied, leading to the following gray-scale chromaticity
invariant face image formation.

4.1 Skin Model in Chromaticity Space
Chromaticity [29], [30], generally considered as an objec-
tive specification of the quality of color regardless of its
luminance, is always defined by intensity normalized affine
coordinates with respect to a tristimulus color space, such
as CIEXYZ or RGB utilized in our case. The normalization
mapping mainly contains two modalities: L1-normalization:
c = {r, g, b} = {R,G,B}/(R+G+B) and geometric mean
normalization: c = {r, g, b} = {R,G,B}/ 3

√
R ∗G ∗B. In

both normalization methods, all colors are regularized to
equiluminous ones, which helps to attenuate the effect of
the intensity component.

For computational efficiency and further extension, the
geometric-mean-normalized chromaticity is implemented
as a processing pipeline for skin color in (8). The c= {r, g, b}
values in chromaticity space are given as follows:

ci =
fiλ
−5
i S(λi)

(
3∏
j=1

fjλ
−5
j S(λj))

1
3

e
− k2
λiT

e
1
3

3∑
j=1
− k2
λjT

, i = 1, 2, 3 (9)

Within this chromaticity representation, all constant
terms are normalized. The two remaining terms consist
of a channel-related one and a lighting-related one. If we
switch our focus back to the process of highlight detection
in the previous section, which aims at separating specular
reflection from diffuse reflection, the explanation could be
sufficient: only under the assumption of the Lambertian
model can we be capable of normalizing the constant terms
benefiting from the multiplicative representation of color.

So far, we solidify and parametrize an exhaustive color
formation model in a concise form. More specifically, this
representation could be naturally considered as an aggrega-
tion of a lighting-invariant part and another lighting-related
part, thus providing us with the opportunity to further
explore illumination invariant components.

4.2 Chromaticity Invariant Image Generation
When investigating the characteristics of the skin model
in chromaticity space, both its multiplicative form and the
exponential terms easily guide us to logarithm processing,
which is capable of transforming (9) into:

ψi = log(ci) = log
Wi

W
+ (−k2

λi
− 1

3

3∑
j=1

−k2
λj

)/T, (10)

with the lighting-invariant components Wi = fiλ
−5
i S(λi)

and W = (
3∏
j=1

fjλ
−5
j S(λj))

1
3 .

It is noticeable that all three chromaticity color channels
in log space are characterized by the same lighting color T ,

which implies the potential linear correlation among these
values. Let us now consider another fact: c1∗c2∗c3 = 1 since
they are geometric mean normalized values, it could be
equally inferred that in log space we have ψ1+ψ2+ψ3 = 0,
illustrating that all chromaticity points ψ = (ψ1, ψ2, ψ3) in
3D log space actually fall onto a specific plane perpendicular
to its unit normal vector u = 1/

√
3(1, 1, 1).

Up to now, the dimensionality of target space has been
reduced to 2. It is now reasonable to introduce a 3D-2D pro-
jection in order to make the geometric significance more in-
tuitive. Derived from the projectorP⊥

u = I−uTu = UTU
onto this plane, U = [u1;u2] is a 2 × 3 orthogonal
matrix formed by two nonzero eigenvectors of the projector,
which is able to transform the original 3D vector ψ into 2D
coordinates φwithin this plane. This transformation process
is portrayed in (11).

φ = UψT = [u1 · ψT ;u2 · ψT ], (11)

with u1 = [ 1√
2
,− 1√

2
, 0],u2 = [ 1√

6
, 1√

6
,− 2√

6
].

Along with the substitution of (10) in (11), we are able
to derive the 2D coordinates of chromaticity image pixels
analytically as follows:

φ =

(
φ1
φ2

)
=

( √
2
2 (d1 + (− k2

λ1
+ k2

λ2
)/T )

√
6
6 (d2 + (− k2

λ1
− k2

λ2
+ 2k2

λ3
)/T )

)
(12)

with d1 = log(W1

W2
), d2 = log(W1W2

W 2
3

).
The property of linearity in the projected plane could be

straightforwardly deduced via a further analysis of (12):

φ2 =

√
3

3

λ1(λ2 − λ3) + λ2(λ1 − λ3)

(λ1 − λ2)λ3
φ1 + d (13)

where d is an offset term determined by {W1,W2,W3}.
Considering that Wi depends merely on object surface re-
flectance and remains constant for a given geometry even
under varying lighting conditions, the points projected onto
this plane should take the form of straight lines with the
same slope. Moreover, points belonging to the same material
should be located on the same line, where the length of each
line shows the variation range of lighting with respect to
this material. Accordingly, the distance between each pair
of parallel lines reflects the difference between object surface
properties behind them. The similar idea of color lines was
also discussed in [31] by simply slicing the RGB histogram.

The above inference is evidenced and supported by illus-
trations in Fig. 4. First, Fig. 4b shows that all chromaticity
image points fall onto the same plane, the normal vector of
which, depicted with a fine blue line, is u = 1/

√
3(1, 1, 1);

then, we choose two sub-regions in the original image for
the linearity study since the whole image contains excessive
points for demonstration. Fig. 4c and Fig. 4d represent,
respectively, the projected 2D chromaticity pixels in fore-
head and nose bridge rectangles, where two approximately
parallel line-shaped clusters can be clearly observed. In
particular, the chosen nose bridge area shows more lighting
changes while there is only unchanged directional lighting
in the forehead area for comparative analysis. Correspond-
ingly, the straight line in Fig. 4c holds a smaller range than
that in Fig. 4d.



6

(a) (b)

(c) (d)

Fig. 4. Linearity of chromaticity image pixels in log space. (a) Original
image. (b) chromaticity pixel values in 3D log space. (c) Pixels of the
forehead area in the projected plane. (d) Pixels of the nose bridge area
in the projected plane.

4.3 Entropy-based Lighting Normalization

Note that all 2D chromaticity image pixels are scattered into
line-shaped clusters differentiated by their corresponding
surface attributes. To estimate the intrinsic property of dif-
ferent materials in chromaticity images, we further proceed
to reduce the dimensionality of the chromaticity space.

According to [32], global parsimony priors on reflectance
could hold as a soft constraint. Under this assumption, only
a small number of reflectances are expected in an object-
specific image. We reasonably extend this assumption to
our own work, which implies that lighting normalization
substantially decreases the probability distribution of disor-
der in a human face image. Within this pipeline, we seek a
projection direction, parametrized by angle θ, which should
be exactly perpendicular to the direction of straight lines
formed on the projected plane. Inasmuch as points of the
same material across various illuminations fall on the same
straight line, their 2D-1D projection onto a line with angle
θ will result in an identical value which could be literally
treated as an intrinsic value of this material. During this 2D-
1D projection formulated in (14), the chromaticity image is
finally transformed into a 1D gray-scale image.

χ = φ1 cos θ + φ2 sin θ (14)

With this in mind, the most appropriate projection di-
rection could be found by minimizing the entropy of pro-
jected data. To begin with, we adopt the Freedman-Diaconis
rule [33] for the purpose of determining the bin width
as h = 2Q(χ)

n1/3 , here n refers to the number of projected
points. Compared with the commonly used Scott’s rule, the
Freedman-Diaconis rule replaces standard deviation of data
by its interquartile range, denoted by Q(χ), which is thus
more robust to outliers in data. Then, for each candidate
projection direction, the corresponding Shannon entropy

Fig. 5. Overview of chromaticity invariant image generation. Left column:
original face image and its chromaticity points in 2D log space; middle
column: entropy diagram as a function of projection angle, the arrows in
red indicate projection directions at that point; right column: generated
chromaticity images with different angle values.

can be calculated based on the probability distribution of
the projected points.

Fig. 5 shows the workflow of chromaticity invariant
image extraction in log space. Note that we choose three
different angle samples, which are the zero point and two
points leading to the minimum and maximum entropy, to
visualize their generated chromaticity images. Apparently,
only when the angle is adjusted to the value at which
entropy is at its minimum is shadow effect significantly
suppressed in its corresponding chromaticity image, i.e. the
chromaticity invariant image.

Rather than traversing all possible θ ranging from 0 to
π inefficiently, we conduct an additional analysis on the
slope value of projected straight lines in (4), indicated by
k =

√
3
3
λ1(λ2−λ3)+λ2(λ1−λ3)

(λ1−λ2)λ3
. The theoretical value of slope is

determined by trichromatic wavelengths {λ1, λ2, λ3}, alter-
natively, the wavelengths of {R,G,B} lights wherein {λ1 ∈
[620, 750], λ2 ∈ [495, 570], λ3 ∈ [450, 495], unit : nm}. With
simple calculations, it is interesting to note that no matter
how these wavelengths change, k is always a positive value.
The range of θ can therefore be restricted to [π/2, π], which
helps greatly reduce the computational burden.

4.4 Global Intensity Regularization
Notwithstanding illumination normalization, projected
shadow-free images may suffer from global intensity differ-
ences across images caused by original lighting conditions
and outliers. A final global regularization module is conse-
quently integrated to overcome this drawback. In this step,
the most dominant intensity of the resulting image is first
approximated by a simple strategy:

µ = (mean(χ(x, y)m))1/m (15)

where m is a regularization coefficient which considerably
decreases the impact of large values. We take m = 0.1
by default following the setup in [15]. Next, this reference
value is chosen to represent the color intensity of most face
skin areas and is scaled to 0.5. The same scale ratio is then
applied to all pixels to gain the final image.

5 SHADOW-FREE COLOR FACE RECOVERY

Though the representation of the 1D chromaticity invariant
image contains successfully normalized lighting variations
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across the whole face image, it is flawed due to the loss of
textural details during the dimensionality reduction process,
leading to low contrast images as depicted in Fig. 5. A
full color image reconstruction module is therefore required
both to improve the realism of generated images and en-
hance performance in face analysis.

5.1 In-depth Analysis of 1D Chromaticity Image
Given a chromaticity invariant image and all projection
matrices, a general idea to reconstruct its color version is to
project reversely its 1D lighting-normalized points to 2D/3D
space in steps. However, this solution is virtually impracti-
cable for two reasons: 1) recovery of overall intensity in each
color band is an ill-posed problem since the shadow removal
method is designed only for chromaticity values, 2) a large
number of textural features, such as the mustache and the
eyebrow, are undesirably eliminated or wrongly recognized
as being skin during the forward 2D/1D projection. Thus,
a further analysis of representation of RGB channels in log
space is conducted.

Derived from equation (8), the logarithmic representa-
tion of RGB values, denoted by Li, could be written as a
two-component addition:

Li = log(αIk1fiλ
−5
i S(λi))−

k2
λiT

, i = 1, 2, 3 (16)

It is worth noting that the first additive component in the
above equation consists of spatially varying factors, while
the second additive term is lighting-dependent. Given an
illumination-invariant region, the gradients at pixel (x,y) are
then computed during inference:

∇xLi(x, y, T ) =
Li(x+ ∆x, y, T )− Li(x, y, T )

∆x

∇yLi(x, y, T ) =
Li(x, y + ∆y, T )− Li(x, y, T )

∆y

(17)

Based on evidence in [34] and [8], lighting conditions
change slowly across a face image except for shadow edges.
Consequently, for the partial derivative of the log-image
with respect to x at any pixel (x, y) which appears out of
shadow edges we obtain:

∇xLi(x, y, T1) = ∇xLi(x, y, T2),∀(T1, T2) (18)

where T1 and T2 refer to different lighting conditions such
as illuminated part and shadow part. This property holds
equally for the partial derivative with respect to y.

To summarize, lighting conditions across a log-image are
mainly changed on the boundary of the shadow area, i.e.
for any pixel inside or outside this boundary, the spatial
gradient is practically lighting-invariant. Motivated by this,
we will derive a shadow-specific edge detection method
analytically.

5.2 Shadow-Specific Edge Detection
The ability to separate shadow-specific edges from edges
between different facial parts is crucial. To achieve this
aim, we trace back the generation of the 1D chromaticity
invariant image, where the shadow edges are removed
by an orthogonal projection. Note that this projection was
determined by an angle θmin, which minimizes the entropy

of (14). Conversely, a ’wrong’ projection angle would retain
or even highlight the shadow edge.

More specifically, we seek a novel direction θmax along
which projection of chromaticity pixels to 1D tends to clearly
preserve the chaos caused by varying lighting conditions.
The θmax could be estimated by maximizing entropy. The-
oretically, the freshly projected 1D image contains edges
caused by both facial features and lighting variations. Thus,
it would be considered to be different from the chromaticity
invariant image in order to obtain the shadow-specific edge
mask M(x, y).

Furthermore, considering that lighting effects could be
specially enhanced in one of the two dimensions described
in (12), we define M(x, y) as follows, while combining
comparisons in both re-projected φmin

1 , φmin
2 and φmax

1 , φmax
2 :

M(x, y) =

{
1 if ‖φ′

min‖ < τ1 & ‖φ′

max‖ > τ2
0 otherwise

(19)

where ‖φ′

min‖ = max(‖∇φmin
1 ‖, ‖∇φmin

2 ‖), ‖φ′

max‖ =
max(‖∇φmax

1 ‖, ‖∇φmax
2 ‖) and τ1, τ2 are two pre-defined

thresholds.
It is worth mentioning that all 2D chromaticity images

derived from both θmax and θmin are preprocessed by a
guided filter [35] to facilitate gradient calculation on a
smoother version. As regards the choice of guided filter, we
use the all-ones matrix for the chromaticity invariant image
to average the intensity. Conversely, the chromaticity image
with shadows will take itself for guided filtering to enforce
the gradient map.

5.3 Full Color Face Image Reconstruction
Inasmuch as the shadow edge mask is provided by the
above detector, our focus can now be turned to the full color
face image recovery. The algorithm simply continues the
assumption that illumination variations mainly take place in
the shadow edge area and could be ignored in other regions,
i.e. the key to reconstructing an illumination-normalized
color image is the reconstruction of a novel gradient map
excluding the shadow-specific gradients.

To address this problem, we define a shadow-free gradi-
ent map ζ(x, y) for each log-RGB channel i as follows:

ζk,i(x, y) =

{
∇kLi(x, y) if M(x, y) = 0
0 otherwise

(20)

where k ∈ {x, y}. Apparently this novel shadow-free gra-
dient map will lead us to a shadow-free Laplacian for each
band:

νi(x, y) = ∇xζx,i(x, y) +∇yζy,i(x, y) (21)

This straightforwardly computed Laplacian, when com-
bined with the shadow-free log-image L̂ to be reconstructed,
allows us to define Poisson’s equation easily:

∇2L̂i(x, y) = νi(x, y) (22)

Solving Poisson’s equation is challenging. Two nontrivial
priors are therefore imposed to make it soluble: first, the
Neumann boundary condition is adopted which specifies
the derivative values on the boundary. Here we uniformly
set them to zero for convenience; second, instead of en-
forcing integrability of νi, we simply discretize relevant
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Fig. 6. Overview of edge mask detection and full color face recovery.
(a) and (f) are raw and recovered face images; (b), (c) and (d) depict
1D/2D chromaticity images and edge maps, respectively. Note that, in
each figure, the upper row refers to the shadow-free version, while the
lower row is shadow-retained; (e) is the final detected edge mask.

terms and perform the calculation in matrix space. Im-
portantly, given an image of size M × N , the Laplacian
operator∇2, which acts essentially as a 2D convolution filter
[0, 1, 0; 1,−4, 1; 0, 1, 0], is represented by a sparse matrix Λ
of size MN ×MN .

Let

D =



−4 1 0 0 0 · · · 0
1 −4 1 0 0 · · · 0
0 1 −4 1 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 1 −4 1 0
0 · · · 0 0 1 −4 1
0 · · · 0 0 0 1 −4


(23)

and I denotes an M ×M unit matrix. We have

Λ =



D I 0 0 0 · · · 0
I D I 0 0 · · · 0
0 I D I 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 I D I 0
0 · · · 0 0 I D I
0 · · · 0 0 0 I D


(24)

Each row of Λ corresponds to a sparse full-size filter for
one pixel, L̂i could be accordingly solved by a left division:

L̂i = Λ \ νi (25)

After exponentiating L̂i, a multiplicative scale factor per
channel, which is computed by retaining the intensity of the
brightest pixels in the raw image, will be finally applied
to ensure that not only color but also intensity is properly
recovered. See Fig. 6 for a demonstration of shadow-specific
edge detection and color face recovery results.

6 EXPERIMENTAL RESULTS

The effectiveness of the proposed method is first quali-
tatively assessed (subsection 6.2), and then quantitatively
evaluated for face recognition in (subsections 6.3 and 6.4),
using face images of two benchmarks, i.e.,CMU-PIE and
FRGC, for their illumination variations (subsection 6.1).

(a)

(b)

Fig. 7. Cropped face examples of the first subject in the (a): CMU-PIE
database; (b): FRGC database.

TABLE 1
Overview of database division in our experiments

Database Person
Target Set Query Set

Lighting Images Lighting Images

CMU-PIE 68 3 204 18 1,224
FRGC 466 controlled 16,028 uncontrolled 8,014

6.1 Databases and Experimental Settings
Databases. In light of the fact that our method aims to
normalize and recover illumination in RGB color space, two
criteria need to be fulfilled in selecting a database: 1) it
includes face images taken with various lighting conditions;
and 2) all images are provided with full color information.
The two selected databases are CMU-PIE [36] and FRGC
[37], and only lighting variations are considered.

Using the first subject of each database, Fig. 7 gives an
illustration of some image samples across varying illumina-
tion environments. Note that all facial images are cropped
and that resolution is 180 × 180. As can be visualized
from these figures, the CMU-PIE database contains well-
controlled illuminations and strictly unchanged pose for
one subject, while the FRGC database contributes more to
variations in illumination in combination with slight pose
changes, thus bringing our evaluation closer to real-life
application conditions.

Table 1 gives a detailed structure as well as an experi-
mental protocol for each database. According to commonly
used protocols, two different tasks are proposed for these
two databases: 1-v-n face identification for CMU-PIE and 1-
v-1 face verification for FRGC. These will be further detailed
in the upcoming subsections.

Features. To evaluate performance robustness under dif-
ferent feature extraction algorithms, we have experimented
with four popular descriptors in face recognition, including
Local Binary Pattern (LBP), Local Phase Quantization (LPQ),
Local Gabor Binary Pattern (LGBP), and deep CNN based
face descriptor (VGG-Face). The parameter settings for each
of them are detailed as follows:

• LBP [38]: For each image, a 59D uniform LBP his-
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togram feature is extracted. We set the number of
sample points as 8 and the radius as 2. Chi-square
distance is computed between two LBP features to
represent their dissimilarity.

• LPQ [39]: We set the size of the local uniform window
as 5 and the correlation coefficient ρ as 0.9. Ac-
cordingly, the α for the short-time Fourier transform
equals the reciprocal of window size, i.e. α = 0.2.
With the decorrelation process, the output feature is a
256D normalized histogram of LPQ codewords. Chi-
square distance is applied as a matching criterion.

• LGBP [40]: For each image, 4 wavelet scales and 6 fil-
ter orientations are considered to generate 24 Gabor
kernels. Similarly to LBP, holistic LGBP features are
extracted for test images, resulting in 1.416D feature
vectors. A simple histogram-intersection-matching
described in [40] is used as a similarity measurement.

• VGG-Face [3]: The VGG-Face descriptors are com-
puted based on the VGG-Very-Deep-16 CNN archi-
tecture in [3], which achieves state-of-the-art per-
formance on all popular FR benchmarks. Here we
simply take the pre-trained model and replace the
last Softmax layer by an identity module to extract
4,096D features for test images.

Methods. The main contributions of our method are to
remove shadows and to recover illumination-normalized
color face images instead of de-lighting in gray-scale like
all other existing methods do. To better present the effec-
tiveness and necessity of the proposed method, we imple-
ment it as a preprocessing followed by other gray-scale
level lighting normalization techniques to test fusion per-
formance compared with the results obtained without using
our method. As an exception to the above, for the VGG-Face
model which requires RGB images as input, we conduct the
comparison only between original images and shadow-free
recovered images with no gray-scale level lighting normal-
ization.

For this comparative study, a bunch of gray-scale space-
based approaches are covered, including basic methods
such as Gaussian filter based normalization (DOG), Gra-
dient faces based normalization (GRF) [13], wavelet-based
normalization (WA) [41], wavelet-based denoising (WD) [6],
single-scale and multi-scale retinex algorithms (SSR and
MSR) [42], [43], and state-of-art methods such as logarithmic
discrete cosine transform (DCT) [7], single-scale and multi-
scale self-quotient image (SQI and MSQ) [10], single-scale
and multi-scale Weberfaces normalization (WEB and MSW)
[14]. Additionally, a well-known fusing preprocessing chain
(TT) [15] is also experimented. Thankfully, an off-the-shelf
implementation provided by Štruc and Pavešić [44], namely
INface Toolbox, grants us the opportunity to achieve our
target efficiently and accurately.

6.2 Visual Comparison and Discussion

Shadows. First, a comparison of shadow removal results on
soft and hard shadows is conducted and depicted in Fig. 8.
We can derive two observations from these results:

1) From a holistic viewpoint, our method satisfacto-
rily handles the removal of both hard and soft

Fig. 8. Holistic and local shadow removal results on hard-edged shad-
ows (left) and soft shadows (right).

edge shadows. In both cases, the lighting across the
whole image is normalized and the shadow effects
are eliminated.

2) Specified in dashed-red and dashed-blue rectangles,
respectively, the two middle image patches reveal
the differences while processing different shadows.
Despite visually similar results, for face images on
the left with a hard-edged shadow, shadow removal
performance is actually more robust than for the im-
age on the right with soft shadows. This is because
more facial details are smoothed for soft shadows,
where shadow edges are difficult to define. This
drawback may also affect the performance of face
recognition, a fact that will be detailed in the next
subsection.

Fusions. To visually evaluate the effectiveness of the
proposed method before its quantitative evaluation, we
consider some image samples selected from both databases
as well as the corresponding results after different lighting
normalization methods in Fig. 9. Three gradually varying
illumination scenarios are considered in our illustration,
including uniformly distributed frontal lighting, a side light-
ing causing soft shadows, and another side lighting causing
some hard-edged shadows. This setting aims to evaluate the
robustness of the proposed method against a wide variety
of illumination environments. From the visual inspection of
Fig. 9, it can be seen that:

1) In the first scenarios of both Figs. 9a and 9b, we
observe hardly any differences between the original
images and the recovered images. This is due to
the homogeneous distribution of lighting, which
tends to assign a zero value to most elements of
the shadow-specific edge maskM(x, y). In this case,
our algorithm considers that very few changes are
required to hold this homogeneous distribution.

2) The two middle rows in Fig. 9a depict a face with
soft shadows mainly located on its left half. Before
applying additional lighting normalization meth-
ods, the two leftmost images show that the recov-
ered color image successfully normalizes holistic
lighting intensity while retaining texture details.
This property can also be evidenced by contrast
after fusion with a diverse range of lighting normal-
ization methods. Note that most of these techniques
could handle perfectly the removal of soft shadows
such as DCT, SQI, SSR and TT. For these techniques,
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(a)

(b)

Fig. 9. Illustration of illumination normalization performance of two samples in (a) CMU-PIE and (b) FRGC database. For each sample, three
lighting conditions are considered, i.e. from top to bottom, the image with frontal lighting, the image with soft shadows, and the image with hard-
edged shadows.The columns represent different lighting normalization techniques to be fused with the original image or the CII recovered image.

visually indistinguishable results are obtained on
both the original images and the recovered images.
On the other hand, for techniques which are less
robust to soft shadows such as WA (visualized in
green boxes), taking the recovered image as in-
put enables a globally normalized lighting intensity
where dark regions, especially the area around eyes,
are brightened. Compared with the original image,
this process yields better visualization results. Un-
like the first subject in CMU-PIE, we choose a fe-
male face from FRGC with complicated illumination
conditions where shadows are more scattered. Even
though certain shadows still remain around the
mouth region with our method, we can nevertheless
perceive the improvement of shadow suppression
on the upper half of the face.

3) The two bottom rows in Fig. 9a and 9b focus on
hard-edged shadows caused by occlusion by the

nose and glasses against the lighting direction, re-
spectively. In this scenario, the resulting images gen-
erated by adopting the proposed recovery method
as preprocessing show distinct advantages over
those generated from the original image. This kind
of shadow edge is difficult to remove for existing
lighting normalization methods, including the state-
of-art algorithm TT (visualized in red boxes), since
these methods can barely distinguish shadow edges
from the intrinsic texture.

To summarize, according to the visual comparison re-
sults, our shadow-free color face recovery algorithm could
(1) provide original images with intuitively identical results
when illumination is homogeneously distributed every-
where; (2) normalize holistic lighting in color space when
soft shadows occur; (3) be performed as a supplementary
measure specifically to remove hard-edged shadows before
being fused with other gray-scale level lighting processing.
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Fig. 10. Faces in the wild before (top) and after (bottom) shadow re-
moval. From left to right we choose images with a gradual decrease
(left: strong, middle two: moderate, right: weak) in shadow intensity.

Faces in the wild. To further analyze the effectiveness
and limitation of our approach, we conduct additional ex-
periments on natural face images in the wild with a far
wider range of lighting conditions. The first row of Fig.
10 illustrates four face images with a gradual decrease in
shadow intensity. As can be seen on the bottom row images
after shadow removal, our method can effectively handle
faces under moderate lighting conditions (middle two im-
ages) quite well. However, it will fail when holistic lighting
is poor with intense shadows (first image), or when holistic
lighting is too bright with soft shadows (last image). In both
cases, lighting conditions are saturated (pixel values are
limited by either 0 or 255) and, accordingly, our assumption
of linearity in chromaticity space becomes much weaker.

6.3 Identification Results on CMU-PIE
A rank-1 face identification task is generally described as
a 1-to-n matching system, where n refers to the number of
recordings in the target set. In this scenario, closed-set iden-
tification is performed on various recognition algorithms to
evaluate the effectiveness of our method.

Table 2 tabulates the identification rate for different
features. For each feature and each gray-scale lighting
normalization method, we compare the results before and
after taking the CII recovery algorithm as preprocessing.
In particular, we adopt a state-of-the-art reflectance recov-
ery algorithm SIRFS [32], which defined an optimization
problem based on a series of priors on shape, reflectance
and illumination, as another preprocessing method for com-
parative study. The highest accuracy is highlighted. Several
observations can be derived from these results:

1) Generally, fusing our method in the preprocessing
chain helps improve performance on this identifica-
tion task with different gray-scale approaches and
features. This is because our method emphasizes
shadow edge removal while all other methods suf-
fer from retaining such unwanted extrinsic features.

2) Without any gray-scale methods (N/A in the Table)
or even with gray-scale methods such as WA, which
are relatively less robust to lighting variations, our
recovery method helps boost performance signif-
icantly. This observation implies that, besides the
effect of shadow removal, our method also provides
us with holistic lighting normalization.

3) For SQI and MSQ, our method causes slight yet
unpleasant side effects with LBP and LPQ features.
This is due to the phenomenon previously ob-
served, i.e. that our method will smooth the detected
shadow edges and thus that SQI/MSQ may become
more sensitive to this unrealistic smoothness as im-
ages would be further divided by their smoothed
version. Nevertheless, with LGBP features, we still
achieves better results with SQI/MSQ as introduc-
tion of 24 Gabor filters helps alleviate the effect of
the smoothed region.

4) Fusion of CII and TT failed to result in performance
improvement. As a preprocessing sequence itself,
TT has been carefully adjusted to the utmost extent,
making it hard to combine with another method.

5) In compliance with state-of-the-art FR methods, the
deep learning-based VGG-Face model largely out-
performs the other features. Such a performance
has been made possible for 2 major reasons: a)
the adoption of deep CNNs; b) the availability
of very large-scale labeled training datasets. VGG-
Face [3] has been trained using a deep CNN of
18 layers and a dataset of 2.6M face images over
2.6K people. The requirement of large-scale training
data highlights the limit of the current massively
data-driven machine learning approach, e.g.,deep
learning, which increasingly faces severe data star-
vation as disturbing factors, e.g., lighting variations,
are multiplied. In the case of the CMU-PIE where
lighting is strictly controlled, the training data of
2.6M face images used by VGG-Face more or less
cover these lighting variations, thereby enabling the
VGG-Face features to achieve an accuracy rate as
high as 99.7%. However, using the proposed CII
recovery, we still witnessed a 0.3% improvement.

6) The reflectance from shading methods always leads
to weaker performance, showing the limitation of
using parsimony and smoothness as strong assump-
tions. Our method retains useful facial details by
adopting such assumptions only for shadow detec-
tion, while SIRFS tends to average similar pixels and
obtains reflectances which are difficult to recognize.

6.4 Verification Results on FRGC

Notwithstanding its one-to-one characteristic, face verifi-
cation on FRGC v2.0 is always considered as a highly
challenging task. This is because a large number of face
images in FRGC are captured in uncontrolled and thus com-
plicated illumination environments, with sensor or photon
noise as well. For each preprocessing combination and each
feature, we conduct a 16.028× 8.014 pair matching and then
compute the verification rate (VR) based on this similarity
matrix. The experimental results are evaluated by Receiving
Operator Characteristics (ROC), which represents the VR
varying with the False Acceptance Rate (FAR).

Similarly, we list the performance of different methods
on the ROC value for FAR at 0.1% in Table 3. Moreover,
ROC curves for each gray-scale method are illustrated in
Fig 11. We derive our observations from these results:
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TABLE 2
Rank-1 Recognition Rates (Percent) of Different Methods on CMU-PIE Database

Feature Preprocessing
Gray-Scale Lighting Normalization Methods

N/A GRF WD WA DCT DOG WEB MSW SQI MSQ SSR MSR TT

LBP
Original 44.0 32.8 20.8 39.2 72.6 65.4 59.2 58.9 61.4 71.8 66.8 67.7 67.7

SIRFS [32] 41.8 32.2 20.0 37.6 70.0 63.2 55.8 55.6 58.4 69.9 66.6 67.2 64.2
CII Recovery 48.3 34.1 23.0 45.6 75.3 66.0 59.8 61.0 61.3 70.9 68.8 69.8 65.6

LPQ
Original 58.0 34.7 37.9 49.6 85.2 79.1 73.9 77.6 74.0 80.2 84.4 84.8 82.4

SIRFS [32] 56.4 32.8 35.7 51.0 84.8 77.4 74.1 73.9 72.0 76.3 82.3 83.7 80.0
CII Recovery 62.6 35.1 35.5 55.3 86.6 81.0 75.7 75.1 73.1 77.1 88.3 87.4 82.3

LGBP
Original 75.5 67.8 84.6 67.2 97.4 91.3 99.0 99.4 99.5 99.2 98.0 97.8 97.9

SIRFS [32] 74.2 66.6 83.9 68.6 97.0 89.7 99.1 99.2 98.8 98.0 97.4 97.6 94.7
CII Recovery 77.6 74.6 84.8 72.1 98.0 93.6 99.4 99.7 99.6 99.4 99.5 98.4 96.7

VGG-Face
Original 99.7 - - - - - - - - - - - -

SIRFS [32] 99.1 - - - - - - - - - - - -
CII Recovery 100 - - - - - - - - - - - -

TABLE 3
Verification Rate (Percent) at FAR = 0.1% Using Different Methods on FRGC V2.0 Exp.4

Feature Preprocessing
Gray-Scale Lighting Normalization Methods

N/A GRF WD WA DCT DOG WEB MSW SQI MSQ SSR MSR TT

LBP
Original 1.0 12.8 3.5 1.1 6.0 14.5 18.5 17.7 18.5 12.3 3.8 3.9 15.7

CII Recovery 1.3 14.8 5.3 1.5 6.2 18.8 23.3 23.1 25.6 18.0 5.3 5.9 20.4

LPQ
Original 1.4 14.2 7.4 2.0 6.6 15.3 18.3 18.8 13.4 12.0 6.2 7.5 21.4

CII Recovery 2.0 17.6 7.5 2.5 6.7 14.9 19.1 19.7 16.8 15.2 7.3 8.1 20.2

LGBP
Original 13.0 31.0 18.8 12.7 28.2 37.0 37.9 35.7 29.1 30.9 27.2 28.2 38.8

CII Recovery 16.7 33.2 25.9 14.3 29.6 42.4 38.4 37.0 31.0 33.1 29.4 29.9 44.4

VGG-Face
Original 92.5 - - - - - - - - - - - -

CII Recovery 93.6 - - - - - - - - - - - -

1) Using the recovered color image is generally an
effective way to improve performance on this ver-
ification task with different gray-scale methods and
features. Compared with the identification task on
CMU-PIE, this effectiveness is enhanced since CII
helps improve the verification rate at FAR = 0.1%
for almost all gray-scale methods with different fea-
tures, thus validating the superiority of our method.

2) When dealing with the FRGC database where a
large number of face images are captured in un-
constrained conditions, thereby presenting far more
complicated illumination variations, the VGG-Face
feature sees its verification rate decrease to 92.5% at
FAR=0.1%. This can be explained by the fact that its
2.6M training data fail to cover the whole spectrum
of lighting variations depicted in FRGC. Once more,
the proposed CII recovery shows its superiority in
displaying a higher verification rate of 93.6% in
comparison with the VGG-Face directly applied to
the raw face images.

3) The performance variance for different gray-scale
methods is not totally consistent with our previ-
ous observation on CMU-PIE. Unlike the results
on CMU-PIE, GRF, DOG and WEB achieve better
results than DCT and SSR, which suggests that these
methods are more robust when dealing with more
uncontrolled lighting conditions.

7 CONCLUSION

In this paper we have presented a novel pipeline in chro-
maticity space for improving performance on illumination-
normalized face analysis. Our main contributions consist
in: (1) introducing the concept of chromaticity space in
FR as a remedy to illumination variations, (2) achieving
an intrinsic face extraction processing and (3) achieving
a photo-realistic full color face recovery after shadow re-
moval. Overall, the proposed approach explores physical
interpretations for skin color formation and has proven to be
effective by improving performance for FR across illumina-
tion variations on different databases. Meanwhile, it shows
promising potential in practical applications for its photo-
realism and extensibility. Further efforts in developing this
work will include synthesizing face images under different
illumination conditions and combining other techniques in
order to address face analysis problems in the wild.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Several ROC curves for different gray-scale methods. (a) No gray-scale method, (b) GRF, (c) DOG, (d) WEB, (e) SQI, (f) TT. Note that only
(a) contains ROC curves for the VGG-Face model as it requires RGB images as model input.
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