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A B S T R A C T

We propose a test which allows us to check whether a luminosity function model can account

for the intrinsic luminosity distribution of a magnitude–redshift sample complete in apparent

magnitude. No a priori assumptions are required concerning the redshift-space distribution of

the sources, so neither the clustering nor an eventual evolution of the mean number density of

the galaxies affects the conclusions of the goodness-of-fit test. The statistical efficiency of the

test, if used as a fitting technique for estimating the best-fitting solution of a parametric

luminosity function model, is comparable to the efficiency of standard maximum likelihood

fitting techniques. The goodness-of-fit test presents however a major improvement compared

with fitting techniques in general: the capacity to assess the adequacy of the proposed

parametric model to the data. The computational implementation of this new test is

straightforward. Its potential is illustrated on the Southern Sky Redshift Survey of da Costa

et al.

Key words: methods: statistical – galaxies: distances and redshifts – galaxies: luminosity

function, mass function – large-scale structure of Universe.

1 I N T R O D U C T I O N

Recovering the intrinsic luminosity distribution (i.e. the luminosity

function) of the galaxy population from a magnitude–redshift

catalogue remains one of the major concerns of observational

cosmology. Knowledge of the luminosity function puts strong

constraints on galaxy formation and evolution models (see for

example Ellis 1997) and is a crucial prerequisite for large-scale

structure analyses (see for example Strauss & Willick 1995).

Considering the rapid instrumental progress made recently in high

quality data acquisition, it appears as an urgent matter to develop at

the same time sophisticated statistical tools for analysing the large

redshift surveys already available or in progress (see for example

Colless 2000). Estimating the galaxy luminosity function is not a

trivial task and is plagued in practice by numerous observational

and statistical difficulties.

A first observational difficulty lies in the very definition of the

intrinsic luminosity of a galaxy. Because galaxies are extended

objects, various measures of their apparent magnitude can be

adopted (e.g. isophotal, visual, total magnitudes) which do not

behave equivalently owing to the variation of surface brightness

with redshift (see for example Sandage & Perelmuter 1990,

Petrosian 1976, Driver 1999). Moreover the galaxy distance is

inferred from its redshift, which presupposes that the geometry of

the Universe is known and that the contribution of peculiar

velocities to observed redshifts is well understood. Furthermore,

accurate models for the k-correction term and for the galactic

extinction correction are required.

The presence of selection effects in observation, e.g. a detection

threshold in apparent fluxes, is also a source of problems. Because

a part of the population is, in fact, not observed standard statistical

recipes lead in general to biased estimates of the luminosity

function. Most of the methods proposed in the literature for

recovering an unbiased estimate of the luminosity function are

restricted to the case of samples complete in apparent magnitude

(i.e. magnitude–redshift data sharply truncated by a lower flux

limit). Because additional selection effects in observation are often

at work, this completeness assumption may in practice be a crude

oversimplification for most of the surveys found in the literature.

However, as a preliminary step, the completeness of a redshift

survey can be checked, for example by applying the simple test

recently proposed in Rauzy (2001), which permits robust

determination of the completeness limit in apparent magnitude.

The various methods proposed for estimating the luminosity

function from a sample complete in apparent magnitude can be

roughly classified as follows.

The 1/Vmax estimator of Schmidt (1968) and its extensions (e.g.

Felten 1977, Eales 1993, van Waerbeke et al. 1996, Qin & Xie

1997) provide a non-parametric reconstruction and fitting

technique for the luminosity function. The estimator makes use

of information from the whole sample, as opposed to volume

limited analyses for example. A major drawback of the 1/Vmax
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estimator is nevertheless that it does not account for the observed

clustering of the galaxies. In practice, the Schmidt estimator leads

thus to a biased estimate of the luminosity function (see Willmer

1997 and Takeuchi, Yoshikawa & Ishii 2000 for a practical

comparison of the various luminosity function estimators proposed

in the literature). Note that if the clustering can be ignored, the null-

correlation approach of Fliche & Souriau (1979), which does not

require to assume the completeness of the sample, presents a real

improvement over the 1/Vmax statistic (see Bigot, Fliche & Triay

1988, Bigot & Triay 1991, Bigot, Rauzy & Triay 1991).

The C 2 method of Lynden-Bell (1971) provides a discrete, non-

parametric reconstruction of the cumulative luminosity function,

independent of clustering and of evolution of the mean galaxy

density (see also Cholonewski 1987 and 1986, and for an

enlightening review Petrosian 1992). The C 2 method is therefore a

very robust tool that gives a clear visual idea of the shape of the

cumulative luminosity function. One minor problem with the

method is however that the reconstructed function is not smooth

and thus cannot be differentiated. The problem can be overcome in

practice by introducing a smoothing kernel function (Caditz &

Petrosian 1993) – a standard approach in inverse problem theory.

A more serious drawback concerns the error analysis. Because the

C 2 reconstructed function is not characterized by any parameters,

there is no standard way for performing an error analysis on the

reconstruction.

The maximum likelihood fitting technique proposed by

Sandage, Tammann & Yahil (1979) (see also Turner 1979),

which is also insensitive to clustering and density evolution, allows

the estimation of the best-fitting solution of a parametric

luminosity function model. Since it is a maximum likelihood

fitting method, a standard error analysis can be easily achieved. On

the other hand, as was pointed out by Efstathiou, Ellis & Peterson

(1988), the goodness-of-fit (i.e. the adequacy to the data) of the

proposed parametric luminosity function cannot be assessed.

An intermediate step between the C 2 method and the technique

of Sandage et al. (1979) is the so-called non-parametric stepwise

maximum likelihood method proposed by Efstathiou et al. (1988).

It consists of proposing as the luminosity function model a

multiparametric function general enough to allow the description

of any reasonable shape of luminosity function. The absolute

magnitude axis is divided in piecewise intervals, the values of the

luminosity function on each interval being the parameters of the

model. The goodness-of-fit of this luminosity function model is

obviously satisfied as long as the number of intervals is large

enough.

The error analysis is however not trivial in this case since the

estimates of the amplitudes of the luminosity function on each

interval are highly correlated (i.e. the covariance matrix of the

likelihood function is not diagonal). In particular, allocating

individual error bars to the values of the luminosity function on

each interval of luminosity (see the plots in Efstathiou et al. 1988,

Lin et al. 1996, Heyl et al. 1997 for example) can be misleading.

This problem persists even when using the new parametrization

introduced by Springel & White (1998). A second drawback of the

method is that the minimum number of piecewise intervals

necessary for describing the data is in practice difficult to assess

(see however Takeuchi et al. 2000).

In the present paper, we propose a new test which allows to

check the goodness-of-fit of any luminosity function model to the

data. The test of fit can be used firstly to assess whether a given

parametric model is suitable for describing the luminosity function

of the sampled population. If a region of parameter space is

acceptable, the goodness-of-fit test then provides the standard

sampling errors on the estimated parameters. It also allows to

compare two different luminosity function models and therefore

permits to decide how many parameters are, in fact, required to

account for the distribution function of the sample. The importance

of providing a goodness-of-fit test for luminosity function models

has been previously addressed in Qin & Xie (1999) within the

context of the 1/Vmax analysis. The goodness-of-fit test we propose

herein presents the additional advantages of being independent of

the clustering and the evolution of the mean galaxies density with

time.

The statistical background of the method as well as the

goodness-of-fit test are presented Section 2. An example of

application is given in Section 3, where we investigate the

luminosity function of the spiral galaxies of the Southern Sky

Redshift Survey of da Costa et al. (1998). The properties of the new

test are finally summarized in Section 4.

2 T H E G O O D N E S S - O F - F I T T E S T

2.1 Assumptions and statistical model

The luminosity function of the galaxy population is herein defined

as the probability distribution function ft(M) of the absolute

magnitude M of the galaxies depending in general on the epoch t

(see for example Bingelli, Sandage & Tammann 1988). At any

epoch, the luminosity function is by definition normalized (i.e.Ð
f tðMÞ dM ¼ 1Þ. It is assumed hereafter in this section that the

luminosity function of the population does not depend on the 3D

redshift-space position z ¼ ðz; l; bÞ of the galaxies. The general

case is treated in Appendix B. Without accounting for selection

effects in observation, the probability density describing the

population splits under this assumption as

dPzM/dPz � dPM ¼ rðz; l; bÞ dl db dz � f ðMÞ dM: ð1Þ

where r(z, l, b) is the 3D redshift-space distribution function of the

sources along the past light-cone.

The present model accounts for the observed spatial fluctuations

of the galaxy density (i.e. galaxy clustering and large-scale

structure) and for a pure density evolution scenario (i.e. variation of

the mean galaxy density with redshift or equivalently with time).

On the other hand, equation (1) fails to describe environmental

effects (i.e. the luminosity function of the sampled objects

depending systematically on the local environment). The case of

evolution in the specific characteristics of the luminosity function

with time (e.g. mean absolute magnitude, shape) has been delayed

for clarity until Appendix B.

The selection function c describing observational selection

effects can be expressed in general in terms of the observable

quantities, namely the line-of-sight direction (l, b), the redshift z

and the raw apparent magnitude m, i.e. c;cðm; z; l; bÞ. It assumed

hereafter that the sample is complete in raw apparent magnitude up

to a given magnitude limit mlim, or in other words the selection

function in apparent magnitude is well described by a sharp cut-off,

i.e.

cðm; z; l; bÞ; uðmlim 2 mÞ � fðz; l; bÞ ð2Þ

with u(x) the Heaviside or ‘step’ function. The function f(z, l, b)

describes some eventual selection effects in angular position and

observed redshift. For example, it could account for a mask in

angular position as well as pure selection or subsampling in

redshift (e.g. a lower and upper limit). Note that the selection
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function of equation (2) describes also samples selected following

a sparse-sampling strategy, at least as long as the galaxies selected

for redshift measurement have been chosen at random and not on

the basis of apparent magnitude criteria. How to account for an

additional upper cut-off minf in raw apparent magnitude is

described in Appendix B. Accounting for selection effects in

observation, the probability density describing the sample may be

written as

dP ¼
1

A
fðz; l; bÞrðz; l; bÞ dl db dzf ðMÞ dMuðmlim 2 mÞ ð3Þ

with A the normalization factor satisfying
Ð

dP ¼ 1.

The absolute magnitude M is obtained from the raw apparent

magnitude following

M ¼ mcor 2 mðzÞ ð4Þ

where the (luminosity) distance modulus m(z) can be evaluated

from the redshift given a cosmological world model {H0;V0;L0}

(see for example Weinberg 1972). Note that it has been implicitly

assumed herein that the contribution of peculiar velocities to the

observed redshifts is negligible. The corrected apparent magnitude

mcor is expressed as

mcor ¼ m 2 kcorðzÞ2 Agðl; bÞ ð5Þ

where expressions for the k-correction term kcor(z) and the Galactic

extinction correction Ag(l, b) are required.

At this stage, it is convenient to introduce the quantity Z defined

by

Z ¼ m 2 M ¼ mðzÞ1 kcorðzÞ1 Agðl; bÞ; ð6Þ

which can be computed from the observables z and (l, b) assuming

a cosmological world model. Thanks to the introduction of the

quantity Z, the maximum absolute magnitude Mlim(Z) for which a

galaxy at a given Z would be visible in the sample is uniquely

defined, i.e.

MlimðZÞ ¼ mlim 2 Z: ð7Þ

The cut-off in raw apparent magnitude can then be expressed using

this notation as uðmlim 2 mÞ; uðMlimðZÞ2 MÞ and the probability

density of equation (3) may be rewritten as

dP ¼
1

A
hðZ; l; bÞ dl db dZf ðMÞ dMu½MlimðZÞ2 M�; ð8Þ

where the distribution function h(Z, l, b) may be expressed, if

required, as a function of the 3D redshift-space distribution

r(z, l, b), the selection function f(z, l, b) introduced in equation (2)

and using the definition of Z given equation (6).

2.2 The random variable z

The new method relies on the introduction of the random variable z

defined as follows

z ¼ zðM; ZÞ ¼
FðMÞ

F½MlimðZÞ�
; ð9Þ

where F(M) stands for the cumulative luminosity function, i.e.

FðMÞ ¼

ðM

21

f ðxÞ dx ð10Þ

Note that given the function F, the random variable z is computable

from the observable quantities M and Z. The volume element of

equation (8) may be rewritten as

dl db dZ dz ¼
f ðMÞ

F½MlimðZÞ�
dl db dZ dM ð11Þ

and by definition the random variable z for a sampled galaxy

belongs to the interval [0,1], i.e. because from equation (8)

21 , M < MlimðZÞ, the random variable z introduced

equation (9) takes its value between zð21;ZÞ ¼ 0 and

zðMlimðZÞ; ZÞ ¼ 1. The probability density of equation (8) reduces

therefore to

dP ¼
1

A
hðZ; l; bÞFðMlimðZÞÞ dl db dZ � uðzÞuð1 2 zÞ dz; ð12Þ

with A ¼
Ð

hðZ; l; bÞF½MlimðZÞ� dl db dZ. Two properties follow

from equation (12),

(i) P1: z is uniformly distributed between 0 and 1,

(ii) P2: z and (Z, l, b) are statistically independent.

It is worthwhile mentioning that no assumptions have been

made concerning the distribution function h(Z, l, b) introduced

in equation (8). This means that properties P1 and P2 hold for

any 3D redshift-space distribution r(z, l, b) (allowing for the

presence of clustering and the evolution of the mean galaxy

number density with time), and for any selection function

f(z, l, b) (e.g. subsampling in redshift bins will not alter the two

properties).

We have shown previously (Rauzy & Hendry 2000; Rauzy

2001) that the random variable z can be estimated directly from

the data without any prior knowledge of the cumulative

luminosity function F(M). This leads to a robust method for

fitting peculiar velocity field models (Rauzy & Hendry 2000)

and to a useful tool for assessing the completeness in apparent

magnitude of the sample (Rauzy 2001). In the present paper, we

devise a method which makes use of properties P1 and P2 for

testing the goodness-of-fit to the data of a proposed luminosity

function model.

2.3 The goodness-of-fit test Tf

Our test of fit is based on the following remark. Any acceptable

candidate function for describing the cumulative luminosity

function of the population must necessarily verify properties P1

and P2. We show in Appendix A that this condition is also

sufficient, i.e. the only function jointly satisfying properties P1

and P2 (and which enters the definition of z) is the cumulative

luminosity function F(M). For a given luminosity function

model, the associated random variable z can be computed for each

galaxy of the sample. The test of fit consists in checking whether or

not that z distribution satisfies simultaneously properties P1 and

P2:

(i) If it does not, the necessary condition allows to reject the

proposed function as an acceptable model for the luminosity

function of the sample.

(ii) If it does, the sufficiency condition ensures that there is no

means using that particular sample to reject the proposed

luminosity function model, unless some additional information is

supplemented (e.g. more data points, a priori hypotheses on the

spatial distribution of the sources, etc.).

In the following subsections we present methods for checking

properties P1 and P2 in practice, accounting for the effects of

sampling fluctuations.
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2.3.1 The Tz test: z is uniformly distributed between 0 and 1

Property P1 is tested by investigating the deviation of the z

distribution (associated with the proposed luminosity function

model) from a uniform distribution between 0 and 1. This is

achieved in practice by performing a Kolmogorov–Smirnov test

on the z distribution. The statistic Tz is hereafter defined as the

confidence level for rejecting the statement ‘the z distribution is

drawn from a uniform distribution between 0 and 1’ on the basis of

the Kolmogorov–Smirnov test (the closer Tz to 1, the more

confident we are in rejecting this statement). If the model tested

corresponds to the genuine luminosity function of the population

f(M), the Tz statistic is therefore expected to be uniformly

distributed between 0 and 1.

In practice, if the number of galaxies is large enough (say

Ngal . 10Þ, the confidence level of rejection is given by

Tz . 1 2 QKS

ffiffiffiffiffiffiffiffi
Ngal

p
1 0:12 1

0:11ffiffiffiffiffiffiffiffi
Ngal

p" #
DKS

 !
ð13Þ

where the function QKS is defined as

QKSðlÞ ¼ 2
X11

j¼1

ð21Þj21 expð22j 2l 2Þ ð14Þ

and with DKS the Kolmogorov–Smirnov distance between the

observed (i.e. sample) cumulative distribution function of the zs,

CDF(z), and the straight line of equation y ¼ z corresponding to

the cumulative distribution of the uniform distribution, i.e.

DKS ¼
i¼1;Ngal

maxðjCDFðziÞ2 zijÞ ð15Þ

See for example the Numerical recipes book by Press, Flannery &

Teukolsky (1986) for a computer implementation of the

Kolmogorov–Smirnov test.

2.3.2 The Tr test: z and Z are not correlated

Property P2 is tested by analysing the coefficient of correlation

r(Z, z)1 of the random variables Z and z. The independence

between Z and z will be rejected when the absolute value of the

observed coefficient of correlation robs;robsðZ; zÞ is too high to be

as a result of sampling fluctuations (i.e. a double-sided rejection

test). We define the Tr statistic as the confidence level for rejecting

the statement ‘the deviation of robs from 0 is owing to sampling

fluctuations’. The closer Tr to 1, the less likely it is that the

variables Z and z are independent. For the genuine luminosity

function of the population, the Tr statistic is expected to be

uniformly distributed between 0 and 1.

For a number of galaxies large enough (say Ngal . 30Þ, a

good approximation to the confidence level of rejection is in that

case

Tr . erf
1ffiffiffi
2
p

jrobsjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

obs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngal 2 2

p !
ð16Þ

where erfðxÞ ¼ ð2/
ffiffiffiffi
p
p
Þ
Ð x

0
expð2t 2Þ dt is the error function. The

observed correlation coefficient robs is given by

robsðZ; zÞ ¼
CovðZ; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CovðZ; ZÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Covðz; zÞ
p ð17Þ

where the covariance Cov(X, Y) on the sample of two random

variables X and Y is

CovðX; YÞ ¼
1

Ngal 2 1

XNgal

i¼1

ðXi 2 �XÞðYi 2 �YÞ ð18Þ

with X̄ and Ȳ respectively the means of the Xi and Yi on the sample,

i.e.

�X ¼
1

Ngal

XNgal

i¼1

Xi; �Y ¼
1

Ngal

XNgal

i¼1

Yi: ð19Þ

Note that Tr is not strictly speaking a sufficient statistic for testing

property P2 (z and (Z, l, b) are independent). First, rðZ; zÞ ¼ 0 does

not imply systematically that Z and z are independent. However,

this problem can be overcome, if required, by using more

sophisticated statistical tools such as rank order statistics (see for

example Efron & Petrosian 1992). Secondly, the independence

between the random variable z and the angular direction (l, b) is not

tested. We choose however to neglect this information since z

should depend on (l, b) only through the Galactic extinction

correction, which is a second-order effect for the present analysis.

2.3.3 The Tf test: Tf¼ Sup(Tr , Tz)

The test of fit Tf, designed to test the goodness-of-fit of the

proposed luminosity function model to the data, requires the two

properties P1 and P2 to be satisfied conjointly. In other words, the

luminosity function model can be rejected if one of the Tz or Tr

statistics allows to do so. A convenient way to define the Tf statistic

is, therefore, to take the greatest of Tz and Tr values as the value of

Tf, i.e.

T f ¼ SupðTr; TzÞ: ð20Þ

The goodness-of-fit test consists, therefore, in rejecting the

proposed luminosity function model when the value of the Tf

statistic is high (i.e. close to 1). The confidence level of rejection

associated to this test can be evaluated as follows.

If x and y are two independent random variables uniformly

distributed between 0 and 1, the probability that the quantity z ¼

Supðx; yÞ is less than cðc [ ½0; 1�Þ is given by Probðz < cÞ ¼ c 2. If

the random variables x and y are not independent, this result

transforms in c > Probðz < cÞ > c 2 (see for example Kendall &

Stuart 1979). We have seen previously that if the genuine

luminosity function is tested, the Tz and Tr statistics are by

definition uniformly distributed between 0 and 1. Tz and Tr are not

independent in general, which means that the probability that Tf is

less than a given value c satisfies the constraint c > ProbðT f <

cÞ > c 2: The value of the confidence level of rejection associated

to the Tf test is therefore T2
f (since we have to consider the lower

bound of the inequality in that case).

2.4 The Tf test used as a fitting method

It is worthwhile to mention that the goodness-of-fit test

proposed here can also be used to fit a parametric model of

luminosity function to the data. Let us consider a luminosity

function model fa(M) parametrized by an N-dimensional vector

1 Any other suitable measure of correlation, such as Spearman’s coefficient

of rank correlation, could also be used here as the independence test

statistic, with the rejection criterion based on the appropriate sampling

distribution.

Assessing the goodness-of-fit of luminosity function models 1019

q 2001 RAS, MNRAS 328, 1016–1026

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/328/4/1016/1082385 by guest on 28 January 2022



a ¼ ða1;a2;…;aNÞ: For each point a of the parameter space, we

can apply the Tf test on fa(M)2 and therefore evaluate the

confidence level of rejection T2
f ðaÞ associated to the vector a.

Scanning the parameter space allows to find the best-fitting

solution [say the lowest value of T2
f ðaÞ� and draw the 1s, 2s, …

error ellipsoids [i.e. the curve respectively defined by

T2
f ðaÞ ¼ 0:68, T2

f ðaÞ ¼ 0:95, etc.], as usual.

However, the great advantage of the Tf test over standard fitting

techniques, such as maximum likelihood for example, is that the Tf

test allows to assess the adequacy of the parametric luminosity

function model to the data. In particular, the Tf test will reject any

parametric models unable to describe the luminosity function of

the population.

3 E X A M P L E O F A P P L I C AT I O N

As an illustration, the method is applied to the Southern Sky

Redshift Survey (SSRS2) sample of da Costa et al. (1998). The

completeness of the sample is addressed in Section 3.2. Three

different two-parameter luminosity function models are afterwards

investigated: a Schechter luminosity model, a Gaussian model and

a toy model of luminosity evolution. These examples allow us to

emphasize the major advantages of the goodness-of-fit test Tf

compared to the standard maximum likelihood fitting technique. A

variety of alternative parametric luminosity function models could

be found in Yahil et al. (1991), Santiago et al. (1996) and Bingelli

et al. (1988) for example.

3.1 The SSRS2 sample

The SSRS2 sample contains 5369 galaxies with measured B-band

magnitude and redshift. It has been drawn primarily from the list of

non-stellar objects identified in the Hubble Space Telescope Guide

Star Catalog (Lasker et al. 1990). The redshift survey is more than

99 per cent complete up to the magnitude limit mSSRS2 of 15.5 mag

(da Costa et al. 1998).

The redshifts are hereafter transformed in the CMB rest frame

and the distance modulus is computed adopting an Hubble constant

of H0 ¼ 100 km s21 Mpc21 in a flat universe with no cosmological

constant (i.e. V0 ¼ 1 and L0 ¼ 0Þ. Galaxies not belonging to the

redshift range [2500,15 000] km s21 are discarded. The lower limit

in redshift has been introduced in order to minimize the impact of

peculiar velocities on the luminosity function analysis. In

particular, the kinematical influence of the Virgo cluster will be

considerably reduced by removing nearby galaxies. The upper

bound in redshift sets some limits on the interval of cosmic time

spanned by the data and thus reduces the role of an eventual

evolution of the luminosity function ðcz ¼ 15 000 km s21 corre-

sponds to a look-back time of 0.5 Gyr for H0 ¼ 100 km s21 Mpc21,

and 1 Gyr if H0 ¼ 50 km s21 Mpc21Þ. Note that such a

subsampling in redshift will not affect the result of our

goodness-of-fit test.

We restrict furthermore our analysis to the sample of spiral

galaxies (from type T ¼ 1 to T ¼ 8Þ, having in mind that the study

of the E/SO1spirals sample could be affected by some

environmental effects which are not described by the formalism

presented Section 2 (see Rauzy 2001 for details).

Galactic extinctions are obtained as Agðl; bÞ ¼ 4:325EðB 2 VÞ

by use of the dust maps of Schlegel, Finkbeiner & Davis (1998) for

the reddening correction. We apply a type-dependent k-correction

calculated following Pence (1976), i.e. kcorðzÞ ¼ KBðTÞ �

cz/ ð10 000 km s21Þ with KBðTÞ ¼ 0:15 2 0:025T for 3 > T > 0

and KBðTÞ ¼ 0:075 2 0:010ðT 2 3Þ for 3 < T. The formalism

presented in Section 2 does not account explicitly for that type

dependency. More specifically, if the luminosity function of the

population is also type-dependent, a type-by-type analysis would

in this case be required. However the upper bound in redshift limits

the magnitude of the k-correction term, which in turn moderates

the amplitude of this effect, as well as the amplitude of the errors

introduced by an uncertain k-correction.

3.2 Completeness of the sample

The completeness of the sample is a crucial prerequisite for any

luminosity function analysis. Indeed, if the sample is not complete

in apparent magnitude the number of faint galaxies will be

systematically underestimated, introducing a bias in the determi-

nation of the sought luminosity function. We apply herein the test

for completeness proposed in Rauzy (2001) for determining the

completeness limit of the SSRS2 spirals sample.

The completeness test presented in Rauzy (2001) makes use of

the fact that, in the case of incompleteness in apparent magnitude,

the distribution of the random variable z introduced in equation (9)

is systematically shifted towards 0, invalidating property P1. The

TC statistic is constructed from the observed values of z in such a

way that TC is normally distributed up to the effective

completeness limit of the sample and is systematically negative

beyond that limiting apparent magnitude. The TC test for

completeness presents a real improvement compared to standard

completeness tests, such as the analysis of the variation of galaxy

number counts as a function of the limiting apparent magnitude

(Hubble 1926). Namely, no a priori assumptions are required

concerning the redshift-space distribution of the sources. It means

in particular that neither clustering nor evolution of the mean

number density of the galaxies affect the result of the test.

Figure 1. The test for completeness in apparent magnitude TC (see Rauzy

2001) is applied to the 2780 spirals galaxies of the SSRS2 sample with

redshifts between 2500 and 15 000 km s21. The systematic decline of the TC

statistic from 0 to negative values indicates incompleteness in apparent

magnitude beyond mSSRS2 ¼ 15:35 mag.

2 Note that both Tz and Tr are functions of the parameters

a ¼ ða1;a2;…;aN Þ. Although, for each galaxy, the random variable Z is

independent of the luminosity function parameters, the dependence of z on

a means that robs(Z, z) – and hence Tr – also depend on a.
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The result of the test for completeness applied to the 2780 spirals

galaxies of the SSRS2 sample with redshifts between 2500 and

15 000 km s21 is shown in Fig. 1. It suggests to adopt a value of

mlim ¼ 15:35 mag as a reasonable completeness limit (for a full

discussion on the completeness of the SSRS2 sample, see Rauzy

2001). After discarding galaxies fainter than mSSRS2 ¼ 15:35 mag,

we are left with a sample of 2341 spirals.

3.3 Schechter luminosity function

The goodness-of-fit test Tf is now applied in order to check whether

the Schechter model is a good candidate for describing the

luminosity function of the SSRS2 spirals. Schechter luminosity

function models are characterized by two parameters a and M* and

follow the shape

f ðMÞ/exp{c1ða 1 1ÞðM* 2 MÞ2 exp½c1ðM* 2 MÞ�} ð21Þ

with c1 ¼ 0:4 ln 10.

For each pair (a, M*), the random variable z is computed

following equation (9) with F;FðM; M*;aÞ the corresponding

cumulative Schechter luminosity function. The two statistics Tr

and Tz are afterwards calculated using respectively equations (16)

and (13). The confidence levels of rejection associated with these

tests as a function of the parameters a and M* are shown in Fig. 2.

We can observe that each of the two tests allows to reject a different

portion of parameter space. They will, therefore, be both

informative for the goodness-of-fit test Tf.

The statistic Tf is obtained from Tr and Tz following equation

(20) and the confidence level of rejection associated to the

goodness-of-fit test Tf is computed for each pair (a, M*) as T2
f . The

results are displayed in Fig. 3. We observe that there exists a region

of the parameter space which cannot be rejected on the basis of the

test of fit, at least using the sample under consideration. Or in other

words, the Schechter luminosity function model is a good

candidate for describing the luminosity function of the population

of the sampled galaxies. Fig. 3 also clearly illustrates how to make

use of the Tf test as a fitting technique, by choosing for example the

range of the admissible Schechter parameters within the 1s

confidence level region and by taking as the best-fitting solution the

minimum value of the Tf test, herein ða ¼ 20:94, M* ¼ 219:48Þ.

For comparison, we also applied to our sample the maximum

likelihood fitting technique of Sandage et al. (1979). The method

consists in adopting as the best-fitting solution of the luminosity

function model fa(M), the value of the parameter a corresponding

to the maximum Lmax of the efficient part of the logarithm of the

maximum likelihood function

LðaÞ ¼
XNgal

i¼1

½ln f aðMiÞ2 ln FaðMlimðZiÞÞ� ð22Þ

If the luminosity function model is a good descriptor of the genuine

luminosity function of the population, the quantity 2ðLmax 2 LðaÞÞ
is expected to follow asymptotically a x 2 probability law with N

degrees of freedom (N is the dimension of the parameters space).

The error ellipsoids associated with the maximum likelihood

estimate can then be computed on this basis. Note, however, that

this error analysis rests on the assumption that the luminosity

function model is a good descriptor, whereas our method also

allows to test this goodness-of-fit at the same time as providing

best-fitting parameters.

The maximum likelihood estimate of the Schechter parameters

is shown in Fig. 4. The best-fitting solution corresponds to

ða ¼ 20:99, M* ¼ 219:50Þ, within the 1s error ellipsoid of the Tf

test. The maximum likelihood technique is, statistically speaking,

very efficient for estimating the best-fitting parameters of a model

in the sense that it provides the estimator with the smallest variance

(see for example Kendall & Stuart 1979). We have shown in

Section 2.3 that the goodness-of-fit test Tf is close to being a

Figure 2. Confidence levels of rejection associated to the tests Tr and Tz as a

function of the parameters a and M* characterizing the Schechter

luminosity function model. Bold and normal contours indicate respectively

confidence levels of 68 and 95 per cent (i.e. 1s and 2s ).

Figure 3. Confidence levels of rejection associated to the goodness-of-fit

test Tf as a function of the parameters a and M* characterizing the

Schechter luminosity function models. Bold and normal contours indicate

respectively confidence levels of 68 and 95 per cent (i.e. 1s and 2s ) and the

shading represents increasing values of the confidence level. Within that

range of parameters, the Schechter models cannot be ruled out by the

goodness-of-fit test. The minimum of the test indicated by the 1 sign occurs

for ða ¼ 20:94, M* ¼ 219:48Þ.
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sufficient test, which means in particular that its efficiency is

expected to be close to the optimal efficiency of a maximum

likelihood estimator. That property is observed in Figs 3 and 4. The

regions of parameter space associated with a given confidence level

of rejection for the Tf test have indeed a comparable area to the

corresponding maximum likelihood error ellipsoids. This implies

that the goodness-of-fit test Tf used as a fitting technique is also a

very efficient estimator.

That property can be checked more thoroughly by means of

numerical simulations. We have obtained 100 samples from Monte

Carlo simulations assuming a Schechter luminosity function of

parameters ða ¼ 20:95, M* ¼ 219:50Þ and conserving the same

spatial distribution and the same cut-off in apparent magnitude as

for our selection of the SSRS2 spirals sample. For each of these

simulated samples, we estimated the minimum of the Tf test as well

as the best-fitting solution of the maximum likelihood technique.

The average over the 100 simulations gives ðkal ¼ 20:942;

kM*l ¼ 219:496Þ with a standard deviation of ðsa ¼ 20:099;

sM*
¼ 0:084Þ for the Tf test and ðkal ¼ 20:941; kM*l ¼ 219:497Þ

with a standard deviation of ðsa ¼ 20:089, sM*
¼ 0:067Þ for the

maximum likelihood technique. This shows that the Tf test as a

fitting technique is slightly less accurate, but still very close to the

optimal efficiency of the maximum likelihood technique. Note that

our modest number of simulations does not allow us to detect the

small bias in the maximum likelihood technique, previously

reported by Efstathiou et al. (1988) for example, which tends to

underestimate M*. The amplitude of this bias is however

substantially smaller than 1s and tends towards zero when the

number of sampled objects increases (i.e. maximum likelihood

estimators are asymptotically unbiased).

3.4 Gaussian luminosity function

The Schechter function has become, during the past decades, the

most popular candidate for describing the shape of the optical

luminosity function of the local population of galaxies (see for

example Marzke et al. 1998). However, the question of whether

alternative luminosity function models can also be admitted has not

been addressed so often in the literature. Here, we make use of our

test of fit to test the goodness-of-fit of a Gaussian luminosity

function model, i.e.

f ðMÞ ¼
1

sM

ffiffiffiffiffiffi
2p
p exp 2

ðM 2 M0Þ
2

2s2
M

� �
ð23Þ

with M0 the mean absolute magnitude and sM the intrinsic

dispersion.

The results of the test of fit applied to our selection of SSRS2

spirals are presented in Fig. 5. A region of parameter space cannot

be rejected on the basis of the goodness-of-fit test Tf. We have seen

in the previous subsection that the efficiency of the Tf statistic is

close to being optimal. It turns out that a Gaussian function is

effectively as good a model as a Schechter function to account for

the luminosity function of our selection of SSRS2 spirals, and that

to discriminate between the two models would essentially require a

larger sample.

In the present analysis, we have however discarded the nearby

galaxies of the SSRS2 sample in order to avoid severe

contamination of the redshifts by peculiar velocities. This

subsampling preferentially removes the very faint galaxies which

prove to be of importance for analysing the faint end of the

luminosity function, where the difference between a Gaussian and

Schechter function is more marked. In effect, our selection spans

five orders of magnitudes, from M . 222 to M . 217. We have

thus performed the goodness-of-fit test on the spirals of the SSRS2

sample with redshifts between 2000 and 15 000 km s21, pushing

Figure 5. Confidence levels of rejection associated with the goodness-of-fit

test Tf for the case of a Gaussian luminosity function of mean M0 and

dispersion sM. Bold and normal contours indicate respectively confidence

levels of 68 and 95 per cent. The shading represents increasing values of the

confidence level. Therefore, Gaussian models can account as well as

Schechter models for the luminosity function of our selection of SSRS2

spirals sample. The minimum of the Tf test indicated by the 1 sign is

ðsM ¼ 0:96, M0 ¼ 218:42Þ.

Figure 4. Maximum Likelihood estimate of the Schechter parameters a and

M*. The best-fitting solution indicated by the 1 sign is ða ¼ 20:99,

M* ¼ 219:50Þ. Bold and normal contours give respectively the 1s and 2s

errors ellipsoid associated to the maximum likelihood estimate. The

shading represents increasing values of the confidence level.
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the faint limit in absolute magnitude to M . 216:5 (the number of

galaxies increases to 2471 in that case). The Schechter model with

ða ¼ 20:94, M* ¼ 219:48Þ gives a confidence level of rejection

of T2
f ¼ 0:46 while the Gaussian model with ðsM ¼ 0:96;M0 ¼

218:42Þ can be rejected with a confidence level of T2
f ¼ 0:99.

Therefore, the inclusion of more nearby galaxies of the sample

favours in some way the Schechter model against the Gaussian one.

3.5 Luminosity evolution

It remains to illustrate the major advantage of the goodness-of-fit

test Tf over fitting techniques in general. We consider below a toy

model characterized by the evolution of the luminosity function

with time. At a given redshift z, the conditional luminosity function

is a Gaussian of fixed dispersion sM ¼ 1:25 mag with a mean

absolute magnitude M̄(z) linearly evolving with the redshift, i.e.

f ðMjzÞ ¼
1

sM

ffiffiffiffiffiffi
2p
p exp 2

½M 2 �MðzÞ�2

2s2
M

� �
with

�MðzÞ ¼ M0 1 b
z

0:05
and sM ¼ 1:25 mag ð24Þ

The two parameters of our toy model are thus M0 and the evolution

parameter b.

We want to emphasize that our goal is not herein to detect some

evolution in the luminosity function of the SSRS2 spirals. First we

have seen in the previous section that a Schechter function (and to

some lesser extent a Gaussian function) with no evolution can

perfectly account for the luminosity function of the sample.

Secondly since we have discarded far away galaxies (i.e.

cz , 15 000 km s21, which corresponds to a look-back time of

1 Gyr if H0 ¼ 50 km s21 Mpc21Þ, we do not expect any drastic

evolution of the luminosity function within this range of cosmic

time. As a matter of fact, we choose our time evolving toy model

exactly with the intention of showing that it may be rejected by the

Tf test as a good descriptor of the sample luminosity function.

We applied first the maximum likelihood fitting technique for

obtaining the best-fitting solution of the evolution model. The error

ellipsoids are shown in Fig. 6. The best-fitting solution ðb ¼ 2:68,

M0 ¼ 218:56Þ corresponds to strong evolution of the mean

absolute magnitude, about 3 mag between z ¼ 0 (i.e. t ¼ 0Þ and

z ¼ 0:05 (i.e. t ¼ 1 Gyr if H0 ¼ 50 km s21 Mpc21Þ. The maximum

likelihood fitting technique is, however, unable to assess the

adequacy of that solution to the data.

We show in Appendix B that the formalism presented Section 2

can be easily generalized to account for variation of the specific

characteristics of the luminosity function with time (e.g. mean

absolute magnitude, shape). The goodness-of-fit test Tf can

therefore be used to check the adequacy of any luminosity function

evolution model, as long as this time dependency is of course

specified. The results of the Tf test for our toy model of evolution

are shown in Fig. 7. As expected, our evolution model is rejected as

a whole (none of the b and M0 parameters values gives a

confidence level of rejection below 90 per cent).

4 S U M M A RY

We have proposed a goodness-of-fit test Tf which allow to check

whether a luminosity function model can account for the intrinsic

luminosity distribution of the galaxies of a magnitude–redshift

sample complete in apparent magnitude. The model can include

luminosity evolution of the population. No a priori assumptions are

required concerning the redshift-space distribution of the sources.

Figure 6. Maximum likelihood estimate of the parameters b and M0

characterizing the toy model of luminosity evolution (see equation 21 for

description). The best-fitting solution marked by the 1 sign occurs for

ðb ¼ 2:68, M0 ¼ 218:56Þ. Bold and normal contours give respectively the

1s and 2s error ellipsoids. The shading represents increasing values of the

confidence level.

Figure 7. Confidence levels of rejection associated to the goodness-of-fit

test Tf for the toy model of luminosity evolution. The bold contour indicates

a confidence level of rejection of 95 per cent and the normal contour a level

of 99 per cent. The shading represents increasing values of the confidence

level. The 1 sign is the best-fitting estimate obtained by the maximum

likelihood technique. None of the b and M0 parameters values gives a

confidence level of rejection below 90 per cent. That luminosity evolution

model can therefore be rejected on the basis of the Tf results.
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This means in particular that neither clustering nor evolution of the

mean number density of the galaxies with time affects the

conclusions of the goodness-of-fit test. The statistical efficiency of

the Tf test, if used as a fitting technique for estimating the best-

fitting solution of a parametric luminosity function model, is

comparable to the optimal efficiency of the standard maximum

likelihood fitting technique of Sandage et al. (1979). However, the

major advantage of the goodness-of-fit test lies in its capacity to

assess the adequacy of the proposed parametric model to the data.

The computational implementation of the Tf statistic is

straightforward and is comparable in CPU time with the maximum

likelihood technique proposed by Sandage et al. (1979). We

reiterate finally that the results of the test are reliable to the extent

that the analysed sample meet the following criteria.

(i) The various corrections entering the definition of the absolute

magnitude of the galaxies (e.g. k-correction, galactic extinction)

are reasonably accurate.

(ii) The (luminosity) distances of the galaxies are known, which

implies that the cosmological world model {H0, V0, L0} has to be

specified and that the contribution of peculiar velocities to

observed redshifts can be safely neglected.

(iii) The sample must be strictly complete in apparent

magnitude. This criterion can be checked independently by using

the test for completeness proposed in Rauzy (2001). Note that

surveys selected following a sparse-sampling strategy meet this

criterion.

(iv) The luminosity function of the population can evolve with

time but environmental effects are not present.
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A P P E N D I X A : S U F F I C I E N C Y O F T H E T E S T

O F F I T

We show below that the only function entering the definition of z

given in equation (9) which verifies properties P1 and P2 is the

cumulative luminosity function F(M).

Let assume that, for the sample described by the probability

distribution function dP of equation (8), we have found a

normalized function g(M) (and its associated cumulative

distribution function GðMÞ ¼
ÐM

21
gðxÞ dx with Gð11Þ ¼ 1Þ such

that the random variable j defined as

j ¼ jðM; ZÞ ¼
GðMÞ

G½MlimðZÞ�
ðA1Þ

verifies P1 (j is uniformly distributed between 0 and 1) and P2 [j

and (Z, l, b) are statistically independent]. Property P2 implies that

dP may be written as

dP ¼ kðZ; l; bÞ dl db dZ � jðjÞ dj ðA2Þ

with k(Z, l, b) and j(j) two unknown functions. Property P1 implies

that jðjÞ dj ¼ uðjÞuð1 2 jÞ dj, i.e.

dP ¼ kðZ; l; bÞ dl db dZ � uðjÞuð1 2 jÞ dj ðA3Þ

From the definition of j, we have

dl db dZ dj ¼
gðMÞ

G½MlimðZÞ�
dl db dZ dM ðA4Þ

which allows to rewrite dP as

dP ¼ kðZ; l; bÞ dl db dZ
gðMÞ

G½MlimðZÞ�
dMu½MlimðZÞ2 M� ðA5Þ
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The identification of equation (A5) with equation (8) implies that

gðMÞ

f ðMÞ
¼

1

A

hðZ; l; bÞG½MlimðZÞ�

kðZ; l; bÞ
: ðA6Þ

Because the left-hand term of this equation depends only on M and

the right-hand term only on (Z, l, b), it follows that the ratio

gðMÞ/ f ðMÞ is constant. Adding to that the normalization condition

Gð11Þ ¼ Fð11Þ ¼ 1, we obtain

g ; f ; ðA7Þ

which proves that the only function verifying properties P1 and P2

is the cumulative luminosity function F(M). Note that no

assumptions have been made concerning the distribution function

h(Z, l, b) introduced in equation (8). This implies the existence of a

sufficient statistic for recovering the luminosity function without

specifying the 3D redshift-space distribution of the population

r(z, l, b) and the selection function f(z, l, b) introduced in equation

(2).

A P P E N D I X B : L U M I N O S I T Y E VO L U T I O N

In this appendix we generalize the result obtained in Section 2 for

the case of time-dependent luminosity functions. We also include

an additional upper cut-off minf in raw apparent magnitude for the

selection effects in observation.

The luminosity function is now defined as the probability

distribution function ft(M) of the absolute magnitude M depending

on the epoch t or equivalently on the redshift z (so herein we

consider that the cosmological world model is given and that the

influence of peculiar velocities on the redshifts can be neglected),

i.e.

f tðMÞ ¼ f ðMjtÞ;f ðMjzÞ ðB1Þ

The above notation emphasizes that f(Mjz) is defined as the

conditional probability density function of M given z, which

implies that at any redshift z the luminosity function is normalized

(i.e.
Ð

f ðMjzÞ dM ¼ 1Þ. Without accounting for selection effects in

observation, the probability density describing the population may

be written as

dPzM/rðz; l; bÞ dl db dzf ðMjzÞ dM ðB2Þ

where r(z, l, b) is the 3D redshift-space distribution function of the

sources along the past light-cone. Note that the term r(z, l, b) then

includes the density evolution part of the luminosity function.

The model now accounts for the spatial fluctuations of the

galaxy density (clustering, large-scale structure, etc.), for the

variation of the mean galaxy density with redshift or equivalently

with time, and through f(Mjz) for the evolution of the specific

characteristics of the luminosity function with time (e.g. mean

absolute magnitude, shape). On the other hand, equation (B2) fails

to describe environmental effects.

The selection function c describing observational selection

effects is taken as

cðm; z; l; bÞ;uðmlim 2 mÞuðm 2 minfÞ � fðz; l; bÞ ðB3Þ

We thus assume that the sample is strictly complete in raw apparent

magnitude up to a given magnitude limit mlim, and we allow for an

upper cut-off minf in magnitude, discarding the brightest galaxies of

the sample. The function f(z, l, b) describes some eventual mask in

angular position and pure selection or subsampling in redshift, as

well as sparse-sampling strategy. Accounting for selection effects

in observation, the probability density describing the sample may

be written as

dP ¼
1

A
fðz; l; bÞrðz; l; bÞ dl db dzf ðMjzÞ dMSmlim

minf
ðmÞ ðB4Þ

with Smlim
minf
ðmÞ ¼ uðmlim 2 mÞuðm 2 minfÞ the selection in raw

apparent magnitude and A the normalization factor warrantingÐ
dP ¼ 1.

The absolute magnitude M, corrected apparent magnitude mcor

and variable Z are obtained following equations (4, 5, 6). The

maximum Mlim(Z) and minimum Minf(Z) absolute magnitudes for

which a galaxy at a given Z would be visible in the sample are

uniquely defined, i.e.

MlimðZÞ ¼ mlim 2 Z; MinfðZÞ ¼ minf 2 Z: ðB5Þ

The selection in raw apparent magnitude can be expressed using

this notation as Smlim
minf
ðmÞ;SMlim

Minf
ðM; ZÞ with

SMlim

Minf
ðM; ZÞ ¼ u½MlimðZÞ2 M�u½M 2 MinfðZÞ� ðB6Þ

and the probability density of equation (B4) rewritten as

dP ¼
1

A
hðZ; l; bÞ dl db dZf ðMjzÞ dMSMlim

Minf
ðM; ZÞ; ðB7Þ

where the distribution function h(Z, l, b) depends on the functions

r(z, l, b), f(z, l, b) and on the definition of Z given equation (6).

The random variable z is now defined as

z ¼ zðM; Z; zÞ ¼
FðMjzÞ2 FðMinfðZÞjzÞ

FðMlimðZÞjzÞ2 FðMinfðZÞjzÞ
; ðB8Þ

where F(Mjz) is the conditional cumulative luminosity function of

M given z, i.e.

FðMjzÞ ¼

ðM

21

f ðxjzÞ dx: ðB9Þ

Note that providing the two-variable function F(Mjz) is known, the

random variable z is computable from the observable quantities

(M, Z, z). By definition the random variable z of a sampled galaxy

belongs to the interval [0, 1], i.e.

SMlim

Minf
ðM; ZÞ;uðzÞuð1 2 zÞ: ðB10Þ

Because ›Z/›M ¼ ›l/›M ¼ ›b/›M ¼ 0, the Jacobian of the

variable transformation ðz; Z; l; bÞ 7! ðM; Z; l; bÞ reduces to

›z

›M

���� ���� ¼ f ðMjzÞ

F½MlimðZÞjz�2 F½MinfðZÞjz�
ðB11Þ

and the volume element of equation (B7) rewrites as

dl db dZ dz ¼
›z

›M

���� ���� dl db dZ dM: ðB12Þ

Finally by introducing the function

kðZ; l; bÞ ¼
1

A
hðZ; l; bÞ½FðMlimðZÞjzÞ2 FðMinfðZÞjzÞ�: ðB13Þ

The probability density of equation (B7) reduces therefore to

dP ¼ kðZ; l; bÞ dl db dZ � uðzÞuð1 2 zÞ dz; ðB14Þ

which implies that

(i) P1: z is uniformly distributed between 0 and 1,

(ii) P2: z and (Z, l, b) are statistically independent.
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We thus have shown that any candidate function for describing

the conditional cumulative distribution function F(Mjz) of the

population must necessarily verify properties P1 and P2. By

following the same calculations as presented in Appendix A, it is

straightforward to check the sufficiency of this condition. It thus

turns out that the goodness-of-fit test Tf presented Section 2.3

allows to assess the adequacy to the data of a proposed time

dependent luminosity function model f(Mjz).

During the analysis, no assumptions have been made concerning

the distribution function h(Z, l, b) introduced equation (B7). This

means in particular that the 3D redshift-space distribution r(z, l, b),

which also describes the evolution of the mean galaxy density with

time, does not require to be modelled in order to apply the

goodness-of-fit test Tf. It implies that the evolution of the shape of

the luminosity function can thus be detected independently of

density evolution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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