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Abstract. We present a new method of bias correction for de-
riving reliable Tully-Fisher distances in a magnitude or diameter
selected sample of field galaxies.

This normalized distance method (NDM) is first presented
in a theoretical way using the formalism of bayesian statistics
and is further applied to three different Tully-Fisher samples
corresponding to three different passbands inB, I andr. Con-
straints imposed by the method, and influences of underlying
assumptions and measurement errors are discussed in detail.

A main feature of the methodology is to extract an unbiased
subsample from the parent sample. We show that by taking
into account all the components influencing the bias at a given
distance, the NDM method allows to extend the unbiased range
and to analyze peculiar velocities of galaxies within a sphere
out to 8000 km s−1 around the Local Group.

Finally, thanks to this tool, we show first evidences for
both frontside and backside large amplitude infall toward the
Perseus-Pisces supercluster. The strong convergent flow ex-
pected in the Great Attractor region is not confirmed, even if
infall centers are detected in this direction. The observed ve-
locity field rather corresponds to the cumulative pull of several
clusters present in this sky area.

Key words: galaxies: spiral – galaxies: distances and redshifts
– cosmology: distance scale

1. Introduction

This paper takes place in a series which intends to study the kine-
matics of the Local Universe by using the Tully-Fisher relation
(hereafter TF) as a distance indicator. Our research programme
has required numerous stages from data acquirement to statis-
tical and physical study of the distance criterion: in paper I and
II (Bottinelli et al. 1992, 1993), we have presented a set of 600
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new redshift measurements; in paper III (Paturel et al. 1994),
we have discussed the completeness of our largeB-band KLUN
TF sample (see Sect. 2); in paper IV (Theureau et al. 1997a),
we have shown evidence for a morphological type dependence
of the TF zero point and explained this behaviour in terms of
mass-luminosity structure; in paper V (Theureau et al. 1997b),
we have calibrated the direct TF relation and obtained a firm
value of the Hubble constant (H0=55 km s−1 Mpc−1) from an
unbiased sample of 400 field spiral galaxies; in particular, we
have shown that this value depends only on the primary calibra-
tion given by the Period-Luminosity relation of cepheids and is
in perfect agreement up toz=0.1 with the result given by SNIa
standard candles; in paper VI (Theureau 1998), we have shown
that the use of the mean surface brightness as an additionnal
parameter allows us to reduce the scatter of theB-band TF rela-
tion by 30%, and then to reduce both distance uncertainties and
statistical biases; hence, in paper VII (Theureau et al. 1998a)
were presented the data of our 2700 galaxies HI-observational
programme. On the basis of this careful step by step analysis,
we are now able to study peculiar velocities at the scale of the
Local Universe, i.e. for radial velocities up to 8000 km s−1.

We discuss herein a new application of the normalized dis-
tance method (hereafter NDM), whose main principle was early
presented by Bottinelli et al. (1986, 1988). Our main goal is the
building of a reliable method for correcting TF distances from
selection or Malmquist-like biases. In its most complete and up-
dated form (Theureau et al. 1997b, Theureau 1998), the NDM
method takes into account all observable astrophysical parame-
ters influencing the selection bias: i.e. the redshift, maximum of
rotational velocitylogVm, magnitude or diameter completeness
limit, internal and Galactic extinction corrections, morpholog-
ical type, and mean surface brightness. The NDM method has
proved to be an optimal tool for controling accurately the be-
haviour of this bias against distance.

We recall that the selection bias we are dicussing here is
different from the bias described by Malmquist in his 1920’s
paper, which can be understood essentially as a geometrical ef-
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fect. It has appeared in the literature under the following names:
”Problem I” (Kapteyn, 1914), ”Selection effect” (Han, 1992),
”Distance-dependent bias” (Sandage, 1994), ”Selection bias”
(Strauss & Willick, 1995), and ”Malmquist bias of the second
kind” (Teerikorpi, 1997). However, as well shown by Teeriko-
rpi (1997), this selection bias can be also understood as a parent
of the classical Malmquist bias, both refering to two opposite
points of view: we face a selection bias when we are concerned
with the average TF distance at a fixed true distance (e.g. a
given redshift); we face a geometrical bias when we are con-
cerned with the average true distance at a given TF distance
(e.g. a given observed couple(Bt, log Vm)). When estimating a
correction term, one has to choose either the former or the lat-
ter point of view, remembering that both have their advantages
and their disadvantages. In the former case, a strictly magnitude
complete or diameter complete sample is required for control-
ling the selection, i.e. one has to throw away an important part of
the sample. On the other hand, no assumption is required about
the spatial density distribution of the objects, and the uncertainty
on corrected TF distance moduli decreases naturally as the dis-
tance increases, as a consequence of the magnitude or diameter
cut off. In the latter case, no assumption is needed in terms of
magnitude or diameter completeness (the whole sample may
thus be used), but the spatial distribution has to be known (or
assumed uniform) as well as the precise value of the TF scatter
(in the uniform case, the bias∆d/d is proportional toσTF ), and
the uncertainty on distances remains large (εd/d ∝ σTF ).

In principle, by applying the appropriate normalization
along the redshift scale, the NDM method allows to extract
from the data the largest unbiased subsample as possible. By
unbiased subsample we mean that for a set of galaxies at a
given ”true distance” (or at a given redshift or kinematical
distance), the average TF distance of the group returns this
true distance. Furthermore, under a restricted set of conditions,
we show below that the bias can be expressed analytically
as a function of only one parameter: the normalized distance
dn=f(cz, log Vm,mlim, ag, ai, T,Σ) (see Sect. 3, and Eqs. 1
and 2). It thus becomes possible to construct a bias corrected
set of distances that extends farther and contains much more ob-
jects than the strictly unbiased range: about 50% of the parent
sample is usable (the strictly magnitude complete or diameter
complete part of the sample), while only 10-20% can be kept in
a purely unbiased subsample (equivalent to a volume complete
subsample for eachp=log Vm). In addition, while the unbiased
part is well populated only up tocz ∼ 3-4000 km s−1, the bias
corrected sample reaches the deepness of the parent catalogue,
i.e. cz ∼ 8000 km s−1. This corrected sample allows the study
of the peculiar velocity field over large scales, in particular in the
vicinity of some interesting region such as the Perseus-Pisces
supercluster (PP) or the putative so-called Great Attractor (GA).

In this paper, the method is applied to three independent
samples: our KLUNB-band TF-sample (6600 spirals dis-
tributed on the whole sky), theI-band TF-sample from Math-
ewson et al. (1992a) (1355 spirals in the Southern sky) and
ther-band TF-sample from Willick (1991) (320 galaxies in the
Perseus-Pisces region).

The values used for the direct TF slope and zero-point inB-
band are those calibrated by Theureau 1998, using as primary
calibrators a set of 15 pure cepheid extragalactic distances. In
agreement with this previous study, the TF zero-pointb(Σ) is a
function of the mean surface brightnessΣ of the galaxies. By
taking into account this dependence, the TF scatter was shown to
be reduced by 30%, which is an important improvement when
considering the Malmquist and selection bias effects as dis-
cussed further.I-band andr-band TF parameters have been
derived in a separate paper by Theureau et al (1998b).

The mathematical formalism and notations refer to a series
of papers by S.Rauzy, R.Triay, and M.Lachièze-Rey (Triay et
al. 1994, Rauzy&Triay 1996, Triay et al. 1996, Rauzy 1997)
devoted to the statistical analysis of the TF relation. We show
that the normalized distance method can be fully described and
understood in this context.

Main characteristics of the galaxy samples are summarized
in Sect. 2. In Sect. 3, we describe theoretically the (NDM)
method, using the mathematical formalism of probability den-
sities. The empirical test of the plateau (see Theureau et al.
1997b) is presented as a statistical test of the method and of the
assumptions used. Special attention is paid to the influences of
the underlying hypothesis, measurement errors and parameter
corrections. Sect. 4 is devoted to the construction of the cor-
rected samples, to their properties, and to the constraints that
the correction method imposes on further steps of the analysis.
In Sect. 5, we give some examples of kinematical studies in the
vicinity of some great mass concentrations such as the Perseus-
Pisces (PP) region, and the controversed Great Attractor (GA).
Sect. 6 finally contains elements of discussion on possible ap-
plications and prospects.

2. Data

The KLUN sample currently contains 6620 spiral galaxies hav-
ing measured isophotal diameterD25, HI line width, radial ve-
locity, and also partially (6158)B-magnitudes. The sample was
selected according apparent diameter; it is complete down to
D25 = 1.6 arcmin (see Paturel et al. 1994 for a detailled study
of the sample completeness) and covers the type range Sa-Sdm
(T=1-8). The data were extracted from LEDA (see e.g. Paturel
et al. 1997b) and complemented by our own observations (∼
600 optical and∼ 2250 HI spectra) with ESO and OHP optical
telescopes, and Nançay and Parkes radiotelescopes (Bottinelli
et al. 1992, 1993, di Nella et al. 1996, Theureau et al. 1998a).
They have been reduced to a standard and common system ac-
cording to Paturel et al. (1991, 1997a, 1997b) for photometric
data and Bottinelli et al. (1990) for HI data. IsophotalD25 di-
ameters and apparentB-magnitudes are corrected for galactic
extinction according to Fouqué&Paturel (1985), and for incli-
nation effect (i.e. opacity effect) in agreement with Bottinelli
et al. (1995). Errors on apparent magnitude are less than 0.4
mag, while errors on apparent diameter are less than 0.115 ar-
cmin. HI line widths, reduced to the standard levels of 20% and
50%, are corrected for internal velocity dispersion according to
Tully&Fouqué (1985). We recall that the observational errors
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on astrophysical parameters are computed in LEDA by taking
into account both the quality of individual measurements and
the standard deviation of these measurements from a weighted
mean.

TheI-band Mathewson, Ford, and Buchhorn (1992a) sam-
ple (hereafter MFB) contains 1355 spiral galaxies (SO-Sm) dis-
tributed in the Southern hemisphere. Accurate CCD photometry
was obtained in the Kron-CousinsI-passband. According to the
authors, the error in magnitude is less than 0.1 mag (' 0.03 on
average). Extinction inI was taken to be 42% of that inB
(using Burstein&Heiles 1984 system), and K-corrections were
taken from Schneider, Gunn, and Hoessel (1983). The sample is
complete in magnitude up toI=12.5 mag (see e.g. Federspiel et
al., 1994). Maximum of rotational velocity parameter (logVm)
were mainly derived from Hα rotation curves (for 965 objects)
obtained with a dual beam spectrograph attached to the 2.3 m
telescope. The resolution is 18 km s−1 per pixel at Hα. These
observations were complemented with 21-cm line widths ob-
tained with the 64 m radiotelescope of Parkes Observatory (551
objects). The HI spectral resolution after smoothing is 7 km s−1.

The whole sample compiled by Willick (1991) contains 320
spiral galaxies of the Perseus-Pisces region (hereafter W91PP).
It covers a small area on the sky, restricted to the main filamen-
tary structure of the supercluster, and extends in radial velocity
from cz ∼ 3000 km s−1 to cz ∼ 8000 km s−1. The photometric
data were carried out through a red filter centered onλ=0.67
µm (r-band). The sample appears complete in magnitude up
to r=14.3 mag. Extinction inr was taken to be 60% of that
in B (using Burstein&Heiles 1984 system), and K-corrections
were taken from Schneider, Gunn, and Hoessel (1983). HI line
widths, obtained with Arecibo radiotelescope, were got from
Giovanelli&Haynes (1985) and Giovanelli et al. (1986).

For the three samples, heliocentric radial velocities are cor-
rected to the centroid of the Local Group according to Yahil et
al. (1977). A kinematical distance scaledkin is built assuming
an infall velocity of the Local Group toward the Virgo cluster
v0 = 150 km s−1 and an observed radial velocity of Virgo
(V0)V ir = 980 km s−1 (Mould et al. 1980) and using Peebles’s
linear infall model (1976). Galaxies close to the galactic plane
(|b| ≤ 15◦ for KLUN galaxies,|b| ≤ 10◦ for MFB galaxies)
are excluded because of too large uncertainties in the galactic
extinction correction (see Paturel et al. 1997b). Face-on galax-
ies (logR25 < 0.07) are excluded because of the larger error on
logVm. We excluded also too close objects and those belonging
to the ”triple value region” around the Virgo core because of the
large uncertainties on their kinematical distance.

Finally, for fulfilling the condition H3 of Sect. 3.3, the
three samples are strictly cut off at their completeness limit, i.e.
at logD25,lim=1.2 (D25 expressed in 0.1 arcmin) for KLUN,
Ilim=12.5 mag for MFB, andrlim=14.3 for W91PP. After these
restrictions, we are left with 2454 galaxies for KLUN, 597
galaxies for MFB, and 167 galaxies for W91PP (see Figs. 7-
9).

3. Statistical approach

3.1. Problematic

The use of the Tully-Fisher relation is based on several param-
eters which appear in a statistical model as random variables.
These variables are listed below:

– the absolute magnitudeM
– the logarithm of the absolute or linear diameterlogD
– the apparent magnitudem in a given passband
– the logarithm of the photometric diameterlogD25

– the intrinsic parameterp = logVm, whereVm is the max-
imum of rotational velocity obtained either directly from
rotation curves or derived from the 21-cm line width

– the distance modulusµ = 5 log r + 25 (with the distancer
in Mpc). Thusµ = 5(logD − logD25) + 25 = m−M

– the TF residualζM or ζD, of zero mean and dispersionσζM

or σζD
equal to the TF intrinsic dispersion, which account

for intrinsic error in the TF relations

−M = aMp+ bM + ζM (magnitude version)

logD = aDp+ bD + ζD (diameter version)

Assuming that there is no evolution effect for the galaxy
population investigated (i.e. neitherM norD depends on the
distance modulusµ) and that theN galaxies of the sample are
independent events, the probability densitydPM (for the mag-
nitude relation) ordPD (for the diameter relation) of a sampled
galaxy is expressed as follows:

dPM ∝ Ψ(m, p, µ)F (M,p)dMdph(µ)dµf(v,x)dv

dPD ∝ Ψ(logD25, p, µ)F (logD, p)d(logD)dp

× h(µ)dµf(v,x)dv

Where:

– F (M,p) (resp.F (logD, p)) is the distribution function of
the coupled variables(M,p) (resp.(logD, p))

– h(µ) is the spatial density distribution function along the
line-of-sight pointing toward galactic coordinates(l, b)

– Ψ(m, p, µ) is the selection function applied to the sample; it
takes into account the actual observational selection of the
sample, and possible choices of subsampling related to the
method of analysis

– f(v,x) is the spatial distribution function of peculiar ve-
locities; it generally depends on the spatial position of the
galaxyx = (r cos l cos b, r sin l cos b, r sin b)

The characteristics of these functions motivate the choice of
working hypotheses and so determine the method of analysis. In
particular, constraints are different if one wants to calibrate the
TF relation in the field or in a cluster, calculateH0, or compute
the peculiar velocity field from individual TF distances.
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3.2. Normalized distance method and plateau technique

The normalized distance method was first elaborated by Bot-
tinelli et al. (1986), and updated in its complete form by
Theureau et al. (1997b). The original aim of this semi-empirical
method was to extract an unbiased subsample from the data of a
strictly magnitude or diameter limited sample, in the most rig-
orous and efficient way. We will show further that, since it is
possible to predict the general behaviour of the selection bias
as a function of the normalized distance, it becomes natural to
extrapolate the unbiased range and to build, for a given parent
sample, an intrinsic correction method of TF distances.

Obviously, due to the existence of a completeness limit, in
magnitude or in diameter, for any sample of galaxies, the lu-
minosity or size distribution function of the objects present in
the catalogue (e.g. corresponding to a given value of the in-
trinsic parameterp) is fully traced by the sample only up to
a fixed distance limit. Above this limit, the distribution func-
tion (or the distribution of the TF residuals) is truncated in its
fainter part, and the average luminosity or size of the objects
sampled no more corresponds to the value set by the TF re-
lation. This effect results in a progressive under-estimation of
derived distances. Moreover, the distance limit, or the shape of
the bias curve against distance, not only depends onp, σTF

and the magnitude (or diameter) limit, but also on the Galactic
extinction and opacity, and on the morphological type and the
mean surface brightness of the objects. The normalized distance
method allows to treat all these influences in a coherent way.

The normalized distancedn is defined as follows:

dn = dkin · 100.2aM (2.7−log Vm) · 100.2ai(logR25,T ) · 100.2ag ·
100.2(m0−mlim(T )) · 10−0.2(b(T )−b(6)), (1)

for the magnitude relation, and for the diameter relation

dn = dkin · 10aD(2.7−log Vm) · 10−C log R · 100.094ag ·
10(log Dlim−log D0) · 10−(b(T )−b(6)), (2)

whereaM or aD is the TF slope; the factorai(logR25, T ) or
the constantC takes care of the influence of the opacity cor-
rection on the observed magnitude or diameter; the term inag

is the extinction correction; the term inmlim orDlim accounts
for the catalog limit and its variations with the morphological
type; the term withb(T ) takes care of the TF zero-point varia-
tion with morphological type (it can be replaced byb(Σ) when
considering rather the mean surface brightness dependence);
anddkin = V/VV irgo is the kinematical distance in units of the
Virgo cluster distance (see Sect. 2).

The technique consists in replacing, in the diagramlogH =
log(V/dTF ) vs. d, the distanced by the normalized distance
dn using the above formulae. The bias curves〈logH〉(d) cor-
responding to the various classes of objects (differentlogVm,
different inclination, different Galactic latitude, different mor-
phological type or mean surface brightness) are then superim-
posed, and the bias effect〈logH〉(d)− logH0 is only a function
of the normalized distance. Doing so, the unbiased subsample
appears as a plateau in this diagram (see figs. 1 and 2), provided

the sample is complete either in magnitude or diameter. The
consistency of this method depends on the good knowledge of
the completeness limit, and on the influence of peculiar veloc-
ities on the sharpness of the plateau limit. These aspects are
discussed in the next subsection.

3.3. Formal analysis

The direct (i.e. forward) TF relation is characterized by the inde-
pendency of the residualsζ with respect to thep parameter (the
covarianceCov(p, ζ) is assumed equal to zero). In the case of
the magnitude TF relation, it implies that the functionF (M,p)
rewritesF (M,p)dMdp = fp(p)g(ζ)dpdζ, wherefp(p) is the
distribution function of the variablep andg(ζ) is the distribu-
tion of residuals. One gets the same kind of formula in the case
of the diameter TF relation.

We now consider the following hypothesis:

– H1 : the radial velocity fieldV obtained after subtraction
of a peculiar velocity field modelVp(x) (herein the Virgo
infall) reduces to a pure Hubble flow.

V = cz − Vp(x) = H0 r (3)

– H2 : the global selection functionΨ(m, p, µ) can be split
into Ψ(m, p, µ) = ψm(m)ψp,µ(p, µ)

– H3 : the sample is complete and strictly magnitude limited
(i.e. ψm(m) = θ(mlim − m) with θ(x) the Heaveside or
step function).

– H4 : the distribution functiong(ζ) is a gaussian of zero mean
and constant dispersionσζ equal to the standard deviation
σTF of the TF relation

g(ζ) ≡ gG(ζ; 0, σζ) =
1√

2π σζ

exp[− (ζ − 0)2

2σ2
ζ

] (4)

Under these assumptions, the probability density of a sampled
galaxy reads as follows:

dP =
1

A
θ(mlim −m)ψp,µ(p, µ)fp(p)gG(ζ)dpdζ h(µ)dµ (5)

whereA is the normalization factor warranting
∫

dP = 1.

3.3.1. Bias correction

Let us now expressdP for a subsample of galaxies having the
same normalized distancedn = d0. By using definition of Eq.
(1) and assumption H1 of Eq. (3),dn may be written in its most
simple form as:

5 log dn = (µ− aMp+ aMp0) + Cte1 = m+ ζ + Cte (6)

where influences of opacity, extinction and type or brightness
may be understood as variations of the magnitude limitmlim

or variations of the normalisation constantp0. At this stage, it
is convenient to introduce the functionω(d):

ω(d) = 5 log d− Cte (7)
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such thatdn = d0 impliesm+ ζ = ω(dn) = ω(d0) = ω0. Ap-
plying conditional probability to Eq. (5), the probability density
dPd0

of a sample at a given normalized distanced0 reads:

dPd0
=

1

Ad0

θ(ζ − (ω0 −mlim))gG(ζ; 0, σζ)dζ × J(p)dp (8)

with J(p) = ψp,µ(p, ω0 + ap + b)fp(p)h(ω0 + ap + b) and
Ad0

the normalization factor:

Ad0
=

∫ +∞

ω0−mlim

gG(ζ; 0, σζ) dζ ×
∫ +∞

−∞

J(p) dp

This is mind, one can now calculate the average bias on the
random variablelogH = log(V/dTF ) as a function of the nor-
malized distancedn. The rough TF distance modulus estimate
µTF is defined as:

µTF = 5 log dTF + 25 = m+ aMp+ bM (9)

Following assumption H1,logH thus reads:

logH = log V − log dTF = logH0 + 0.2 ζ (10)

It implies that, for a given normalized distancedn = d0, one
gets〈logH〉(d0) = logH0 + 0.2E(ζ) with E(ζ) the mathe-
matical expectancy ofζ at a givend0 (i.e.E(ζ) =

∫

ζ dPd0
).

The calculation gives1:

E(ζ) = C(ω0) = 2σ2
ζ

1√
2π σζ

exp − (ω0−mlim)2

2 σ2
ζ

1 + erf(ω0−mlim√
2 σζ

)
(11)

whereerf(x) = 2√
π

∫ x

0
exp (−t2) dt. It thus turns out that if

hypotheses H1, H2, H3 and H4 are satisfied by the sample, the
averagedlogH by bins of normalized distancedn verifies:

〈logH〉(dn) = logH0 + 0.2C(ω(dn)) (12)

where functionsω andC are respectively defined Eq. (7) and
Eq. (11). We thus expect first a plateau at short distances (i.e. at
dn such thatω(dn)−mlim << σζ) corresponding to〈logH〉 '
logH0, followed by a progressive divergence oflogH from this
plateau asdn increases (see Fig. 1).

Note that the term0.2C(ω(dn)) involved in the quantity
〈logH〉(dn) of Eq. (12) appears in fact as a bias correction. It
suggests to introduce the following bias corrected quantity as a
distance indicator:

µ̃ND = µTF +C(ω(dn)) = m+ aMp+ bM +C(ω(dn))(13)

whereC(ω(dn)) has to be understood as an averaged correction
term, at a given normalized distancedn, for the rough TF dis-
tance modulus estimateµTF . For a subsample of galaxies with
the samedn, one can check that the distance modulus estima-
tor µ̃ND verifiesE(µ̃ND − µ |dn) = 0 (i.e. the average of the
µ̃ND ’s coincidates with the mean true distance modulus〈µ〉 of
the sample. This unbiased distance modulus estimator will be
used hereafter Sects. 4 and 5 as a starting point for kinematical
analyses.

1 The form of the functionC herein defined is comparable to the
expression of the ”average bias at a given true distance” as calculated
by Teerikorpi (1984), assuming a gaussian luminosity function and a
gaussian distribution of the residuals of the inverse TF relation.

3.3.2. The unbiased plateau

In practice, the extraction of the unbiased plateau (cf. Sect. 3.2.)
is performed through the following subsampling. For a given
value ofp, the cut-off in absolute magnitudeMlim = mlim −µ
should not be closer than 3σζ to the mean−M(p) = aMp+bM .
It corresponds to add the following extra selection function to
ψp,µ(p, µ):

ψp,µ(p, µ) = θ(Mlim − 3σζ −M(p))φp,µ(p, µ) (14)

Such a subsampling is equivalent to a selection in normalized
distancedn, e.g.dn ≤ d0 with ω(d0) = mlim − 3σζ :

ψp,µ(p, µ) = θ(mlim − 3σζ −m− ζ)φp,µ(p, µ) (15)

where Eqs. (6,7) have been used. We now remark that the first
factorθ(mlim − 3σζ −m− ζ) in the above expression is more
stringent (e.g. at 3σ) than the apparent magnitude sample selec-
tion ψm(m) = θ(mlim − m). It thus turns out that the global
selection function of the unbiased plateau can be expressed as
follows:

Ψpl(m, p, µ) = θ(mlim −m)ψp,µ(p, µ) ' ψp,µ(p, µ) (16)

and the probability density of Eq. (5) for a galaxy belonging to
the plateau rewrites as:

dPpl ' 1

Apl

ψp,µ(p, µ)fp(p)h(µ) dpdµ× gG(ζ; 0, σζ)dζ (17)

It implies that the sample constituted of plateau galaxies verifies
the 3 following properties:

E(ζ) ' 0 (a); Cov(p, ζ) ' 0 (b); Cov(µ, ζ) ' 0 (c). (18)

Note that these 3 properties are valid whatever the specific shape
of the functionsh(µ),fp(p), andφp,µ(p, µ), i.e. respectively the
distribution of galaxies along the line-of-sight, the distribution
function of thep’s, and the observational selection inp and
distance modulusµ.

Property (18a) results from the fact that residualsζ follow
a distribution centered on 0. We remark that, according to Eqs.
(11,12), one obtains〈logH〉 ' logH0 for the plateau galax-
ies. Property (18b) permits the estimation of the direct TF slope
aM by means of a least square direct TF regression. These re-
sults constitute the theoretical basis of the normalized distance
method used by Bottinelli et al. (1986), Theureau et al. (1997a,
1997b) and Theureau (1998).

Finally, when used with the appropriate selection function,
the plateau method consists in selecting a set of data for which
the covarianceCov(µ, ζ) is zero (property (18c)), or in other
words, for which the TF residuals are independent of the dis-
tance. Consequently, the plot ofCov(µ, ζ) as a function of
dn,lim (the plateau limit adopted) provides us with a statistical
test of the method, i.e. of the selection of the unbiased range,
and then a test of the actual completeness of the sample (in mag-
nitude or in diameter) as required from the hypothesis H3. The
method provides us also with a test of the velocity field model
used to correct radial velocities from the Virgo infall component:
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the dispersionσ(logH) is minimized when the correct param-
etersVGL and VV irgo are used (cf Sect. 2). An application,
leading toVGL=200± 30 km s−1, may be found in Theureau et
al. (1997b). Influences of assumptions and measurement errors
are discussed in the following subsection.

3.4. Checking of observational errors and assumptions

The least square direct TF regression supposes that all errors
are along the magnitude (resp. diameter) axis, i.e. that the
slopea of the TF relation is calculated by solving the equation
Cov(p, ζ) = 0. Because there are only a few primary calibra-
tors available (' 20 extragalactic cepheid distances), the slope
is estimated using field galaxies, assuming that the kinemati-
cal distance scale (moduloH0 and corrected for a Virgo infall
component) provides us with a satisfying relative distance scale.

From Cov(p, ζ) = 0, one gets for the magnitude relation
the slope:

aM =
Cov(p, µ) − Cov(p,m)

Cov(p, p)
(19)

or, for the diameter relation:

aD =
Cov(p, 5 logD25) + Cov(p, µ)

5Cov(p, p)
(20)

whereµ = 5 log cz + const.

3.4.1. Influence of the peculiar velocity field

We have calculated the TF slope and estimated the unbiased
range limit, assuming in first approximation that the velocity
field is described by a pure Hubble flow. Hereafter the measured
radial velocitycz is decomposed as follows:

cz = H0r + Vp + εv (21)

whereH0r is the pure expansion component,Vp is the sum of
contributions of sytematic peculiar motions due to the gravi-
tational environment (Local Anomaly, Virgo infall, Great At-
tractor, constant field, ...), andεv takes into account both a
random velocity component and measurement errors (εv is as-
sumed to be described by a gaussian law centered on 0, with
a standard deviationσεv

). The observed kinematical distance
modulusµ̂ = 5 log cz−5 logH0 +25 is then related to the true
distance modulusµ as follows:

µ̂ = µ− 1

α
ln(1 − Vp + εv

cz
) ≈ µ+

1

α

Vp + εv

cz
+ ... (22)

whereα = 0.2 ln 10 and the last term is the approximation of
the formula at its first order (this approximation will be hereafter
considered as a fair one).

Then, the presence of peculiar velocities influences slope
estimation as well as plateau limit. The measured TF slopeâ is
related to the true one by the following formula:

â ≈ a+
1

α

Cov(p,
Vp+εv

cz
)

Cov(p, p)
(23)

The additional term is roughly zero, if we exclude from the sam-
ple galaxies close to the center of rich clusters, where peculiar
motions are more important, and where tidal effects may change
the internal dynamics and the neutral hydrogen gas distribution
in the disc.

For the plateau condition, we get:

Cov(µ̂, ζ) ≈ Cov(µ, ζ) +
1

α2
Cov(

Vp + εv

cz
,
Vp + εv

cz
) (24)

Note that the influence of peculiar velocities (right term) is re-
duced when:

1) a velocity field model is used to correct for the Virgo infall:
with the right infall parametersVGL and(V0)V ir, |Vp+εv

cz
|

is minimized.
2) peculiar velocities are small with respect to Hubble expan-

sion: this is the case when galaxies with observed radial
velocity smaller than 700 km s−1 are excluded.

3.4.2. Measurement errors and their correlations

Hereafter variables with hat denote the measured variables while
those without hat are the true ones:

. µ̂ = µ + εµ with εµ ≈ 1
α

Vp+εv

cz
is due to the presence of

peculiar velocities.
. m̂ = m + εm whereεm are the measurement errors onm

(of dispersionσεm
).

. p̂ = p + εp whereεp are the measurement errors onp (of
dispersionσεp

).

In the case of the direct TF relation, all errors are supposed
to be on the magnitude axis; this is not true, even if the error

ratio between the two axis,εm+ 1
α

Vp+εv

cz

aεp
, favours this asumption.

Note also that it is generally assumed that measurement errors
on both axis are not correlated; this is not true either.

We know from Eq. (19) that the derived TF slope depends
on the three following terms which can be developed as:

Cov(m̂, p̂) = Cov(m, p)

+ Cov(m, εp) + Cov(εm, p) + Cov(εm, εp)

Cov(p̂, µ̂) = Cov(p, µ)

+ Cov(εp, εµ) + Cov(p, εµ) + Cov(εp, µ)

Cov(p̂, p̂) = Cov(p, p) + Cov(εp, εp) + 2Cov(p, εp)

The following points have then to be taken into account:

– Cov(εm, εp) /= 0, because the inclination (or the axis ratio)
of the galaxy is used both to correctp = log Vm for projec-
tion effect, and to correct magnitudes for internal extinction
effect. However, in the case of the diameter relation,εlog D is
poorly correlated withεp, due to the very small opacity cor-
rection for apparent diameters (see Bottinelli et al. 1995),
and the effect can be neglected.
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– Cov(εp, εp) = σ2
εp

differs from zero, the average ofσεp

over the whole sample is roughly 0.1; even if small, this
effect has to be taken into account.

– Cov(εp, εµ) /= 0 because the measurement errorsεp andεv

are correlated, bothp andcz being carried out from the same
HI profile. However, the influence ofεv

cz
vanishes rapidly

when the distance increases.
– Cov(p, εµ), Cov(µ, εp) andCov(p, εp) may not be null due

to the coupled selection effects inp andµ.

3.4.3. On the assumptionσTF (p) = const.

The use of the normalized distance method requires that the
TF dispersion is constant whatever the value ofp = log Vm

(H4,Sect. 3.3.), but this is not necessarily true... Obviously,
when in the case of theB-band TF relation no correlation is
observed between TF residuals and thep parameter (Theureau
et al. 1997b), there is a marginal correlation when ther-band
is used (see Willick et al., 1997), and a significant effect in the
case of theI-band TF relation (about 0.2 mag from slowest to
fast rotators, see e.g. Theureau et al. 1998b). Giovanelli et al.
(1997) showed that this component is mainly intrinsic and could
result from variety of sources, such as ”asymmetries in the spi-
ral disks” light distribution and velocity field, and differences
in the formation and histories of galaxies”.

Such a systematically changing character of the TF scatter
might have important effects in the estimates of our bias correc-
tions. It first introduces some ”fuzzyness” on the plateau selec-
tion, which then must be chosen more conservative. It also leads
to larger uncertainties on derived peculiar velocities, which in
the case of theI-band sample are slightly overestimated for
smallp and slightly under-estimated for largep. This may re-
sult in a second order systematic effect creating at large dis-
tances a spurious enhancement of the infall pattern in its back-
side (Sect. 5).

In more formal terms, becauseζ2 is correlated withp, the
Eq. (8) which gives the normalization factor is no more verified.
E(ζ) then cannot be calculated as in Eq. (11), since its value
depends on the shape ofJ(p), i.e. on the galaxy spatial distribu-
tion, on thep distribution function, and on the selection effects
in p andµ. This means that, for using theI-band TF relation in
a proper way, one should treat separately the differentp ranges,
provided a sufficiently large and statistically reliable sample.
Finally, one notes that if theσζ dependancy onp affects the def-
inition of the plateau limit, it does not modify Eq. (17) and thus
properties (18a,18b,18c); i.e. the calibration of TF slope and
zero-point using plateau galaxies is insensitive to a TF scatter
dependancy onp.

4. Corrected distances

We have shown in Sect. 3.2. that since the selection bias∆µ
on the estimated TF distance modulus depends on the set of
parameters (p, dkin, ag(l, b), ai(logR25, T ), T or Σ), it can
be only expressed as a function of the normalized distancedn.
We recall that this is true only in the case of strictly magnitude

Fig. 1. logH vs.dn diagram for the KLUN sample. Open circles rep-
resent the average value oflogH for a series ofdn bins. Error bars
denote the statistical error on this mean value. The full line fitted to the
data is the theoretical bias curve, as obtained from Eq. (14).

Fig. 2. logH vs. dn diagram for the KLUN sample. Each point rep-
resents an individual galaxy. As in Fig. 1, the full line fitted is the
theoretical bias curve, as obtained from Eq. (14).

complete or diameter complete sample. To this end, the samples
are cut off at their completeness limit (see Sect. 2). In addition,
due to the use of kinematical distances as a reference distance
scale, it is also required that the integral over all the directions
(l, b) of the functionf(v,x) describing the peculiar velocities is
the unity, i.e. except the cosmic expansion there is no coherent
velocity field at the scale of the sample. Such an hypothesis
requires either a large sky coverage of the sample (typically as
KLUN), or a reasonably deep survey, otherwise it is not possible
to fit safely the theoretical bias curve to the data.

Using the normalized distance method, all the bias curves
〈logH〉(dkin) associated to the various parameters are super-
imposed in a unique curve〈logH〉(dn) traced by a function
∆H = 0.2C(ω(dn)) where functionsC andω are defined Eqs.
(11) and (7). Note that the bias∆H is independent of the galaxy
space distributionh(µ). Its general form, which takes into ac-
count all the parameters implied, requires to replacemlim by
the effective magnitude limit:

mlim,eff = mlim(T ) − ag(l, b) − ai(logR25, T )
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Fig. 3. logH vs. Vrad diagram for the corrected distance sample
(KLUN).

Fig. 4. logH vs.Vrad diagram for the unbiased sample only (KLUN).

And the normalisation termp0 by:

p0,eff = p0 +
1

a
(b(T ) − b(6))

or

p0,eff = p0 +
1

a
(b(Σ) − b(10.))

The corrected distance is finally given by the following equation:

log dcorr = log dTF + 0.2C(ω(dn)) =

0.2(m+ aTF p+ bTF − 25) + 0.2C
(

5 log dkin + a(p− p0)

+ag(l, b) + ai(logR25, T ) + (m0 −mlim(T ))

−(b(T ) − b(6)) − 25
)

Figs. 1 and 2 show the bias curve (logH0 + 0.2C(ω(dn)))
fitted to a series of average points〈logH〉(dn) and to individual
points(logH, dn) respectively, using the KLUN sample. Note
the clear plateau region, at short normalized distance, which
defines the unbiased range. For comparison, we plot in Figs. 3
and 4 the corrected sample and the extracted unbiased subsam-
ple in alogH vs.Vrad (radial velocity) diagram. As expected,
〈logH〉 = 〈log(Vrad/dTF )〉appears now constant whatever the
distance is, up toVrad ∼ 8000 km s−1, whereas the unbiased
subsample is limited toVrad ∼ 3000 km s−1. Note in Fig. 2
the small set of galaxies lying at smalllog (H) (∼ 1.3), clearly
out of the main cloud of points. These galaxies have a radial
velocity between 300 and 700 km s−1 and belong essentially

Fig. 5.As in Fig. 2, but for the MFBI-band sample

Fig. 6.As in Fig. 2, but for the W91PPr-band sample

to the Local (Coma-Sculptor) Cloud. They take part in the Lo-
cal Anomaly, a local bulk flow discovered by Faber&Burstein
(1988). Figs. 5 and 6 are the equivalent of Fig. 2, for the MFB
and W91PP samples respectively. Due to the smaller dispersion
of the TF relation inI andr, the unbiased range is deeper and
the bias curve shallower than inB. However, the corresponding
corrected distance samples are less populated and less deep than
for ourB-sample, and only a few objects are available at large
distances.

the corrected distance sample contains 2454, 597, and 167
galaxies for the KLUN sample, the MFB sample, and the
W91PP sample, respectively. The Aitoff projection of these
three samples is displayed on Figs. 7, 8, and 9.

5. Toward a kinematical study of the Local Universe

5.1. V against d or d against V ?

There are two ways for investigating aV (velocity) vs.d (dis-
tance) diagram from the direct TF relation: the plot ofV against
d or ofd againstV . It was shown by Teerikorpi (1993) that both
points of view hide some specific problems, and that special
care is needed for interpreting such diagrams in the search for
systematic peculiar motions. Difficulties are due to the large TF
intrinsic scatter, which makes distance uncertainties large (15%



G. Theureau et al.: Kinematics of the local universe. VIII 29

Fig. 7. Aitoff projection of the KLUN cor-
rected distance sample in galactic coordi-
nates (2454 galaxies)

Fig. 8. Aitoff projection of the MFB cor-
rected distance sample in galactic coordi-
nates (597 galaxies)

Fig. 9. Aitoff projection of the W91PP cor-
rected distance sample in galactic coordi-
nates (167 galaxies)

to 25%, depending on the passband) and forces us to smooth
the derived peculiar velocity field for extracting reliable infor-
mations.

Fig. 10 shows the Hubble diagram obtained from the KLUN
sample, together with the average points〈dcorr〉(V ) (open cir-
cles, upper panel) and〈V 〉(dcorr) (open squares, lower panel).
The first series of points follows quite well the uniform Hubble
law up to a distance of 130-140 Mpc. These points are sta-

tistically correct, given the construction of the corrected dis-
tance scale, because corrected distancesdcorr were built so that
〈V/dcorr〉 = H0 for every normalized distancedn, and conse-
quently for every kinematical distancedkin or radial velocity
Vrad. In this way〈dcorr〉 = 〈dtrue〉 whatever the radial velocity.
This last assertion is not valid with the second series of mean
points, because corrected distances are correct ”on average”,
and in principle, they cannot be used as ”individual” distances,
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Fig. 10.Hubble diagram obtained from the KLUN sample. Radial ve-
locity corrected for a Virgo infall component is plotted against the
corrected TF distance. On top panel, the open circles represent the
mean points〈dcorr〉(V ) obtained within bins of 250 km s−1; on bot-
tom panel, the open squares represent the mean points〈V 〉(dcorr)
obtained within bins of 5 Mpc. The straight line corresponds toH0=
57 km s−1 Mpc−1

for bining the distance axis. Moreover, they suffer from what
could be called a ”Gould effect” (Gould, 1993) due to a selec-
tion effect in redshift space: beyondV ' 8000 km s−1 redshifts
measurements are lacking, and〈V 〉(dcorr) diverges beyondd '
100 Mpc (see Fig. 10).

5.2. V vs. d diagram in the direction of a cluster

Our bias correction method assumes that in first approximation
the kinematical distance well represents the true distance of a
galaxy, i.e. that the velocity field is a pure Hubble flow. This is
no more true if the galaxy takes part in a bulk motion like an in-
fall motion toward the center of a cluster. When approaching the
cluster from its front side, observed radial velocities of galaxies
become greater and greater with respect to their cosmic com-
ponentH0d; when going away from the back side of the clus-
ter, observed radial velocities of galaxies become smaller than
their cosmic component. As a consequence, when approach-
ing a cluster, we tend to over-correct TF distances (the true
distance is overestimated); and when going away beyond the
cluster, we tend to under-correct TF distances (the true distance
is under-estimated). Translated in terms of peculiar velocities,

this means that the observed infall amplitude traced by the series
〈dcorr〉(V ) is reduced, compared to the true infall motion. On
the other hand, if such an infall pattern is observed (the typical
”S-curve”), we are sure of the existence of an important mass
overdensity in the region sighted.

Concerning the second series of points (〈V 〉(dcorr)), the ob-
served infall pattern is strongly biased by the convolution of the
galaxy density gradient (due to the cluster) and the distribution
function of the TF residuals. The overdensity region appears
more extended, and the infall motion is magnified by the bias.
It has the advantage of revealing infall motions, even of small
amplitudes, and the location of their center.

We give below two examples of kinematical study in the di-
rection of the Perseus-Pisces supercluster and toward the Great
Attractor.

5.3. An infall pattern in the Perseus-Pisces region

The Perseus-Pisces (PP) supercluster is a massive, filamentary
structure concentrated at a redshift of about 5000 km s−1 in
the direction(l, b) ∼ (120◦,-30◦) (Haynes&Giovanelli,1988).
The deepness of the KLUN sample (redshifts up to 10,000 km
s−1) covering a wide solid angle, is particularly well adapted
for studying peculiar velocities in this region, which is rich in
spiral galaxies.

The Perseus-Pisces region has been studied by numerous
authors, without any definitive conclusion about a possible bulk
flow of galaxies in its direction, though it is a proeminent fea-
ture of our Local Universe. However, on the basis of a sample of
274 spiral galaxies spanning the right ascension range 21h40m-
4h and the declination range 21.5◦-33.5◦, Willick (1990) con-
cluded that the region can be described by small scale motions,
most likely due to the pull of the PP filament and the push of the
foreground void, superposed on a large scale flow revealed by
an excess of negative peculiar velocities. This overall motion of
galaxies in PP, was found to be in about the same direction as the
large scale flow modeled by the Great Attractor. On the basis of
the same sample, but using a different method based on Monte-
Carlo simulations for controling biases, Freudling et al. (1995)
revealed a significant infall into the PP supercluster complex.
This result was further confirmed by Da Costa et al. (1996) from
a whole sky sample of 1300 field galaxies. An other study by
Han & Mould (1992), on the basis of 21 clusters distributed on
the whole sky (among them five in the direction of PP), showed
that the kinematics of our Local Universe can be described by
a model in which galaxies are infalling to two mass concentra-
tions, one in PP and one in Hydra-Centaurus. Finally, this region
was studied recently by Hudson et al. (1998), using the inverse
Fundamental Plane (FP) relation and a set of 103 ellipticals dis-
tributed in several clusters. For one of the background clusters,
these authors evidenced a marginal backside infall toward the
center of the PP complex, the latter being found roughly at rest
with respect to the CMB frame.

We show in Fig. 11 the Hubble diagram obtained with the
KLUN corrected distance sample in the direction of PP. The
region surveyed covers the area (90◦ < l < 155◦; -45◦ < b <
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Fig. 11.Hubble diagram obtained from the KLUN sample, in the di-
rection of thePerseus-Piscessupercluster (see text). Radial velocity
corrected for a Virgo infall component is plotted against the corrected
TF distance. The open circles represent the mean points〈dcorr〉(V )
obtained within bins of 250 km s−1; the open squares represent the
mean points〈V 〉(dcorr) obtained within bins of 5 Mpc. The straight
line corresponds toH0= 57 km s−1 Mpc−1

-15◦). Open circles and open squares correspond to the mean
points described in Sects. 5.1. and 5.2.. A large amplitude infall
pattern is clearly revealed by the two sets of points, exhibiting
for the first time both front-side and back-side infalls. According
to the discussion of Sect. 5.2, the true ”S-curve”, corresponding
to the true density distribution, is somewhere between the two
patterns traced by the two series of points.

A similar result is obtained with ther-band W91PP sample
(Fig. 12), even if this sample covers a too narrow area on the
sky for actually tracing the infall motion in the suroundings of
the PP supercluster. In addition, a non negligible part of the ob-
jects belongs to the triple value region, and disturbe the pattern.
However, due to the smaller scatter of the TF relation inr-band,
the ”open square curve” is here less affected by the bias than
with the KLUNB-band sample.

The center of the infall is located atd ' 90 Mpc orVrad '
4850 km s−1, and the dynamical influence extends from∼ 40
Mpc up to∼ 140 Mpc. This large scale flow is probably not
only due to the PP supercluster, but also to the gravitational pull
of numerous dense clusters in the surveyed region (Pegasus and
A400 clusters are for example located close to the PP direction).

5.4. On the Great Attractor debate

The existence of a Great Attractor dominating the kinematics
of the Local Universe has been a long and controversial debate.
First report on a large scale coherence in the field of peculiar
velocities goes back 10 years ago, with a paper from Dressler
et al. (1987). The authors showed evidence that galaxies over a
large volume of space share the Local Group’s motion of∼ 600
km s−1 with respect to the microwave background radiation.
Lynden-Bell et al. (1988) proposed a model where the appar-

Fig. 12.Hubble diagram obtained from theW91PP sample(see text
and Fig. 9). Radial velocity corrected for a Virgo infall component
is plotted against the corrected TF distance. Open circles, and open
squares are defined as in Fig. 11. The straight line corresponds toH0=
51 km s−1 Mpc−1

ently high-amplitude bulk flow was due to the gravitational pull
of a so-called Great Attractor, an extended overdense region cen-
tered at∼ 4300-4500 km s−1 in the direction(l, b) ∼ (307◦,9◦).
More extensively, this region includes the Hydra-Centaurus su-
percluster and some important concentrations in Pavo-Indus and
Antlia. The GA model became a challenge to structure forma-
tion model based on hot or cold dark matter, both unable to
generate such large fluctuations in the mass distribution.

Another difficulty comes from the fact that the putative cen-
ter of this attractor is close to the Galactic plane in a region where
dust and gas hide background galaxies when observing in the
usual passbandsB andV . Thanks to some recent and system-
atic blind surveys at 21-cm in this zone (e.g. Kraan-Korteweg,
1996; Bottinelli et al. 1993), which have searched for the mass
conterpart responsible for the observed flow. These investiga-
tions have revealed some new extragalactic features, such as the
Puppis cluster and Abell 3627 cluster, accounting for at most
10% of the mass required by the GA model.

Note that a variant of the GA model has been proposed by
several authors (Mathewson et al. 1992b, Rauzy et al. 1992,
Willick 1990), concluding that our local region and the GA
itself could take part in a larger scale but constant velocity field.

We show in Fig. 13 the Hubble diagram obtained with the
KLUN corrected distance sample in the direction of the GA.
As in Mathewson et al. (1992b), the region surveyed covers the
sky area (260◦ < l < 330◦; -40◦ < b < +45◦). Unfortunately,
due to large extinction effects inB-band and consequently large
uncertrainties on magnitude, objects belonging to the Zone of
Avoidance (i.e. the area 15◦ appart from the Galactic plane) have
been excluded, and the region is consequently poorly sampled.
However, the large bulk flow implied by the GA should be well
revealed by this plot, especially because the noisy triple value
region has been naturally excluded by the selection. Indeed, such
a large flow is not evidenced by our KLUN sample, and only a
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Fig. 13.Hubble diagram obtained from the KLUN sample, in the direc-
tion of the putativeGA (260◦ < l < 330◦; -40◦ < b < +45◦). Radial
velocity corrected for a Virgo infall component is plotted against the
corrected TF distance. Open circles, and open squares are defined as
in Fig. 11. The straight line corresponds toH0= 57 km s−1 Mpc−1

hint of infall pattern can be guessed, centered roughly around
a redshift of 3000 km s−1. This redshift range is compatible
with the location of the Hydra-Centaurus complex, which is
contained in the area investigated. Nothing is detected at the
expected redshift of 4500 km s−1.

This result is confirmed by a study of the same region with
the MFB I-band sample which extends closer to the Galactic
plane (down to|b|= 8◦). Fig. 14 shows the Hubble diagram in
the direction of the GA, for two different solid angle around its
center (θ <45◦ andθ <25◦). Thanks to the smaller TF scatter
in I-band, and a better sampling of the area, a clear though
small amplitude infall pattern is seen on both panels. The infall
center corresponds in both panels to a reshift of∼ 3000 km s−1.
However, a second possible center is seen on the top panel (for
a larger sky coverage) at a redshift of∼ 4200 km s−1 (d ∼ 62
Mpc,H0=51). Contrarily to the conclusions by Mathewson et
al. (1992) with the same sample, a significant backside infall
is detected up to redshifts of 6000 km s−1. Rather than a great
attractor, the results are in better agreement with a cumulative
pull of the numerous mass concentrations roughly aligned in
this direction, reinforcing the conclusions by Federspiel et al.
(1994).

Mathewson et al. (1992b) did not detect any backside infall,
but a large bulk flow with large positive peculiar velocities up
to the limit of the sample. Thanks to the good quality of their
data, and of the use of the less scatteredI-band TF relation, the
authors claimed that the classical GA model of a large conver-
gent flow was definitely ruled out. They used the TF relation
as distance criterion, and corrected their derived distances from
the Malmquist bias of the first kind (Teerikorpi 1994, 1997) by
applying to the whole sample a correction factor of 8% deduced
from the classical Malmquist formula∆M = 1.382σ2.

We recall that this kind of correction is valid only in the case
of a homogeneous spatial distribution of galaxies. However, it

Fig. 14.Hubble diagram obtained from the MFB sample (see Fig. 8)
for two solid angle (θ < 45◦ andθ < 25◦) around theGA direction
(l, b)=(307◦,9◦). Radial velocity corrected for a Virgo infall component
is plotted against the corrected TF distance. Open circles, and open
squares are defined as in Fig. 11. The straight line corresponds toH0=
51 km s−1 Mpc−1

is free from selection effects on magnitudes, and thus does not
require the extraction of a strictly magnitude limited sample.
These corrected distancesdhom. = dTF exp (7

2α
2σ2

TF ) are
unbiased in the sense that for a givendhom., i.e. for a given
couple(m, p), the mean true distance is equal todhom.. It is
then the mean points〈V 〉(dhom.) which trace either the Hub-
ble law, or the infall pattern we are interested in. Moreover, if
one instead uses the other series of mean points〈dhom.〉(V ),
one gets negative peculiar velocities at short distances and pos-
itive peculiar velocities at large distances, because for a fixed
true distancedtrue, dhom. overestimatesdtrue at short distances
and under-estimatesdtrue at large distances. Indeed, the bias
〈log dhom.〉 − log dtrue ' 7

2ασ
2
TF − 0.2C(ω(dn)) (cf Sect. 3)

depends differentially on the true distance, i.e. on the redshift,
and also on the completeness limit of the sample.

We plotted on Fig. 15 the Hubble diagram in the direction
of the Great Attractor region, using for the TF scatterσTF the
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Fig. 15.Hubble diagram obtained from the MFB sample (within a solid
angleθ < 45◦ around(l, b)=(307◦,9◦) in theGA direction, when using
the homogeneous Malmquist correction factor. Open circles, and open
squares are defined as in Fig. 11. The straight line corresponds toH0=
56 km s−1 Mpc−1

observed value of 0.43, which leads to a homogeneous correc-
tion of 14.7% on TF distances. Even if more scattered than in
Fig. 14, the plot indicates three possible centers of infall atV ∼
3000 km s−1, V ∼ 3700 km s−1, andV ∼ 4500 km s−1 as
traced by the open squares. The Hubble constantH0 estimated
using these corrections is also slightly different from the one
estimated from the unbiased part only (56 instead of 51 km s−1

Mpc−1 with the NDM method). These value is less sensitive
to the influence of peculiar velocities, but it is valid only un-
der the assumption of the homogeneity of the galaxies space
distribution.

Notice that using a TF scatter of 0.32 mag, derived from TF
regressions in clusters (where selection effects reduce the ob-
served magnitude dispersion), Mathewson et al. (1992b) have
under-estimated the effect of the Malmquist bias, and then
under-estimated the correction to be applied. Moreover, because
they sliced their plot (in their Fig. 1) into horizontal bins, i.e.
according to redshifts, they obtained a biased sequence of points
(the open circles in Fig. 15) that diverges toward spurious posi-
tive peculiar velocities at large distances, and hides any backside
infall behind the GA region.

6. Conclusions and further prospects

In the present paper, we address the problem of TF calibration
and distance determination using a strictly apparent magnitude
or diameter complete sample. On the basis of a safe statistical
analysis, we show that:

– In contrary to other standard technics, the NDM calibration
step does not require any bias correction, i.e. thanks to the
introduction of normalized distances, we extract from the
parent sample an unbiased subsample (the plateau data) for
which the galaxy distribution in the (M,p) plane of the TF
relation is not truncated by selection effects.

– The method allows us to define an unbiased distance indica-
tor valid for the whole parent sample, as long as complete-
ness in magnitude (resp. in apparent diameter) is verified.

– This NDM distance indicator is robust since no assumption
is required neither on the spatial density distribution of the
galaxies, nor on thep and luminosity distribution functions.
In addition, this distance estimate is also independent of
selection effects inp and distance modulusµ.

A first application of this new tool to kinematical analysis leads
to the following results:

– We showed evidence for a large amplitude convergent flow
in the direction of the Perseus-Pisces supercluster. For the
first time, thanks to our reliable correction method, a back-
side infall was detected.

– The expected large convergent infall toward the putative
”Great Attractor” was not confirmed, neither a large con-
stant bulk flow in the same direction proposed by some au-
thors. However, centers of infall were clearly detected, in
the region (260◦ < l < 330◦;-40◦ < b < +45◦), and it
seems that the peculiar velocity field may be essentially de-
scribed by the cumulative pull of several structures such as
Hydra-Centaurus complex, Antlia and Pavo-Indus clusters.

Our kinematical study set the preliminary steps of a more
general dynamical analysis, where the method will be applied
to various mass concentrations. Tolman-Bondi simulations will
allow us to compare the derived infall pattern (for different angu-
lar distances from the infall center) with theoretical ”S-curves”,
providing us with informations on cluster mass distribution and
cluster mass-to-light ratio (Hanski et al. in preparation).

Peculiar velocity field reconstruction, such as POTENT (see
e.g. Dekel, 1994), still requires a large and homogeneous all sky
TF sample with reduced distance uncertainties. This should be
achieved in the next years with current NIR surveys such as
DENIS and the associated spectrometric programmes 6dF (6
degree Field multi-fibers spectrograph) and FORT-Key-project
(with the refurbished Nançay radiotelescope).
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