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dWilliam I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA

We consider inflation and supersymmetry breaking in the context of a minimal model of
supersymmetry in which the only “low” energy remnant of supersymmetry is the gravitino with
a mass of order an EeV. In this theory, the supersymmetry breaking scale is above the inflaton
mass, m ' 3 × 1013 GeV, as are all sfermion and gaugino masses. In particular, for a no-scale
formulation of Starobinsky-like inflation using the volume modulus T , we show that inflation
can be accommodated even when the supersymmetry breaking scale is very large. Reheating is
driven through a gravitational coupling to the two Higgs doublets and is enhanced by the large
µ-parameter. This leads to gravitino cold dark matter where the mass is constrained to be in the
range 0.1 EeV . m3/2 . 1000 EeV.

I. INTRODUCTION

While the Higgs boson was discovered at the LHC [1, 2]
and is consistent with predictions of low energy super-
symmetry (SUSY), [3–7], so far supersymmetry has not
been seen experimentally [8]. Whether supersymmetry is
waiting around the corner, or is broken at some high scale
(intermediate or above) is currently unknown. If indeed
supersymmetry is broken above the inflationary scale, it
may well be that the only remnant of supersymmetry at
low energies is the gravitino which may yet play the role
of dark matter [9, 10]1.

Below the Planck and grand unified theory (GUT)
scales, it would appear that there is an intermediate scale
(between the GUT scale and electroweak scale) associ-
ated with inflation. For the sake of definiteness, let us
consider the Starobinsky model of inflation as an example
[12–14]. The inflaton potential can be written as

V (t) =
3

4
m2
(

1− e−
√

2
3 t
)2

, (1)

where t is the canonically normalized inflaton field. The
inflaton mass scale, m, can be determined by the ampli-
tude of density fluctuations [15],

As =
3m2

8π2
sinh4(t∗/

√
6) = 2.1× 10−9 , (2)

where t∗ ≈ 5.35 corresponds to 55 efolds of inflation.
Solving for m in (2), we have m = 1.2 × 10−5MP ≈
3×1013 GeV, where MP = 1/

√
8πGN ' 2.4×1018 GeV.
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1 In this case supersymmetry is nonlinearly realized at lower ener-

gies [11].

Interestingly, the mass scale around 1013 GeV, may
also correspond to an intermediate scale gauge group
whose breaking may yield a large Majorana mass for
right-handed neutrinos, MR ' m, appropriate for the
see-saw mechanism [16].

Here, we consider the possibility that the supersymme-
try breaking scale is also of order the inflaton mass, m.
An example is provided by supersymmetry breaking via
a Polonyi sector which is achieved with a superpotential
of the form [17]

WP = m̃2(Z + b) , (3)

where Z is the chiral superfield responsible for breaking
supersymmetry with auxiliary field component F ≡ m̃2.
Of course if m̃ in (3) is of order the inflaton mass, m,
then the masses of the entire supersymmetric spectrum
would be of order the intermediate scale and clearly out
of reach of any accelerator search. However, the gravitino
mass,

m3/2 =
m̃2

√
3MP

, (4)

would be significantly lighter and could still provide for
the dark matter in the universe [9, 10]. In fact, to avoid
over production of gravitinos through the decay of the in-
flaton to R-parity = -1 matter fields (which subsequently
decay to gravitinos), it was argued [10], that the sparticle
spectrum should lie above the inflaton mass, thus provid-
ing a lower limit to the supersymmetry breaking scale and
hence a lower limit to the gravitino mass of m3/2 > 0.2
EeV. Only an EeV gravitino mass is left behind.

The EeV gravitino as a dark matter candidate is
produced after inflation in the process of reheating.
The common mechanism [18–32], for producing a sin-
gle gravitino in thermal scattering processes has a
cross section which is temperature independent and
scales as m2

SUSY/M
2
Pm

2
3/2, where mSUSY is a typical



2

sparticle mass. The rate therefore is roughly Γ ∼
T 3m2

SUSY/M
2
Pm

2
3/2, where we have assumed predomi-

nantly Goldstino production in the limit m3/2 � mSUSY.
If sparticle production is kinematically forbidden, sin-
gle gravitino production (which must be accompanied by
a massive sparticle (gluino), is not operative. Instead,
the rate for gravitino production during reheating is sup-
pressed, as only processes which produce two gravitinos
are allowed. This cross section is temperature depen-
dent and scales as 〈σv〉 ∝ T 6/F 4, so that the rate is
roughly Γ ∼ T 9/F 4. In this case, the final gravitino
abundance scales as n3/2/nγ ∼ Γ/H ∼ T 7MP /F

4 eval-
uated at the reheating temperature, in contrast to the
abundance for single gravitino production, n3/2/nγ ∼
Γ/H ∼ Tm2

SUSY/MPm
2
3/2. For reheating temperatures

of order 1010 GeV, the gravitino abundance matches the
CMB determined cold dark matter density [15]. It is
also possible that the inflaton can decay to two graviti-
nos, but this is more model dependent and we return to
this possibility in section III.D.

The phenomenology of this high scale supersymmetric
model is simple. The (not so) low energy spectrum con-
sists of the gravitino and perhaps the scalars associated
with the chiral superfield, Z. However, as we discuss in
section III.A, we expect that these are also hierarchically
more massive than the gravitino. As has been shown
recently [33, 34], even with a spectrum as massive as dis-
cussed here, a 125 GeV Higgs mass can still be attained
if tanβ is either small (close to 1) or large (above 60)

The clear drawback of such a model is its testability.
In fact, the model in its simplest and most minimal form
predicts no signatures in either accelerator searches, or
direct and indirect searches for dark matter. Of course if
supersymmetry is actually discovered at the LHC, then
this model can be ruled out. In a modest extension of the
model with R-parity violation in the lepton-Higgs sector,
the gravitino becomes unstable, though still suitably long
lived. The detection of very high energy neutrinos or pho-
tons at HAWC or the Pierre Auger Observatory would
be a signature of this model. Another possible signature
may come from the observation of non-gaussianities in
the CMB due to scalars with masses near the Hubble
scale during inflation [35].

The paper is organized as follows. In section II, we
discuss exemplary inflation models with high scale su-
persymmetry breaking. We focus on models based on
no-scale supergravity [36, 37] which lead to Starobinsky-
like potentials [38–51]. In particular, models which allow
for high scale supersymmetry breaking with stabilized
fields [38, 39, 41, 43, 45, 47] without spoiling the infla-
tionary properties of the potential. In section III, we
discuss the phenomenological aspects of the model2. We

2 For alternative approaches to inflation in high scale supersym-
metric models see [52, 53].

begin in section III.A with a model for gaugino and scalar
masses. The model utilizes the strong stabilization of the
Polonyi field [45, 54–61] used to generate large gaugino
masses. Scalar masses are then obtained through thresh-
old corrections as in gaugino mediation [62] or a more
strongly-coupled mediation mechanism [63, 64]. The re-
quirement that all sparticle masses lie above the inflaton
mass will set a constraint on the stabilization scale. The
effects of supersymmetry breaking on inflation is then
discussed in Section III.B. In section III.C we determine
the conditions under which we can obtain a Higgs mass
of 125 GeV, as well as preserving the stability of the
Higgs vacuum. The requirements for gravitino dark mat-
ter are outlined in section III.D. Our concluding remarks
are given in section IV.

II. INFLATION AND SUPERSYMMETRY
BREAKING

There are many ways to proceed in constructing a
model of inflation which incorporates supersymmetry
breaking. While it would be an overstatement to say
that recent Planck results [15] on the CMB spectrum
parameters, ns and r, corresponding to the tilt of the
scalar perturbation spectrum and the scalar to tensor ra-
tio, respectively predict Starobinsky-like inflation mod-
els, it is clear that these models are for now in very good
agreement with Planck results. In particular, we will use
formulations of the Starobinsky model based on no-scale
supergravity.

A. No-scale supergravity and Starobinsky-like
Inflation

The Kähler potential in the context of no-scale super-
gravity can be written in the form [36, 37],

K = −3 ln

(
T + T̄ − 1

3

∑
i

|φi|2
)
, (5)

where T is a volume modulus and the φi include all
matter fields and possibly a supersymmetry breaking
Polonyi-like field, Z [17]. The inflaton may be identi-
fied with either T or a matter-like field, φ. Equivalently,
we may use a set of field redefinitions [65] and write

K = −3 ln

(
1−

∑
i

|yi|2

3

)
, (6)

where the yi include all matter fields, moduli and the
inflaton. For now, let us ignore the matter fields, and
concentrate on a two-field model. There are at least two
independent families [41] of superpotentials which lead
to Starobinsky-like inflation. In the first, T is a modulus
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and φ is the inflaton with a Wess-Zumino (WZ) super-
potential written as [38]

W = m

(
φ2

2
− φ3

3
√

3

)
WZ , (7)

or in the symmetric basis

W = m

[
y2

1

2

(
1 +

y2√
3

)
− y3

1

3
√

3

]
WZ , (8)

which is a WZ model for the inflaton y1 with an interac-
tion term y2

1y2. In both bases, when φ (y1) is redefined
to a field x with a canonical kinetic term, the potential
is exactly of the form of the Starobinsky potential (1)
(with t identified as x), assuming that some dynamics
stabilizes and fixes T (y2): 〈T 〉 = 〈T ∗〉 = 1/2 (〈y2〉 = 0).
One way to accomplish this is by adding a quartic term
in the Kähler potential [41, 66].

The second family of models first formulated as an R2

extension to supergravity by Cecotti [67] can be written
as

W =
√

3mφ(T − 1/2) C , (9)

or

W = my1y2(1 + y2/
√

3) C , (10)

In this case, the inflaton is associated with T (y2) and it
must be assumed that φ (y1) is stabilized at the origin [39,
41]. Again, when T (y2) is normalized to give a proper
kinetic term, we get the Starobinsky potential shown in
Eq. (1) [39].

In either case (WZ or C), the mass parameter m is
related to the inflaton mass, and is set by the amplitude
of density fluctuations measured in the CMB through Eq.
(2).

B. Effects of supersymmetry breaking on Inflation

Supersymmetry breaking can be accomplished in vari-
ous ways, but in many of these, there are constraints on
the SUSY breaking scale due to its effect on the infla-
tionary potential. In general, SUSY breaking perturbs
the potential, but these effects may be small, if the su-
persymmetry breaking scale, m̃ � m. Indeed, this was
one of the initial motivations behind supersymmetric for-
mulations of inflation [68].

The simplest possibility we can consider is adding a
constant, w0 to the superpotential. In most low energy
models of SUSY phenomenology, we would relate w0 to
the weak scale through w0 = m̃M2

P and the gravitino
mass is just

m3/2 =
w0

(T + T̄ )3/2
= m̃ , (11)

with T + T̄ = 1, in Planck units. However, in this case
low energy SUSY breaking parameters such as soft scalar
masses, m0, trilinear A-terms and the bi-linear B0 are all
proportional tom3/2 (m0 = 0 for untwisted matter fields)
[45, 69]. The gaugino mass in this case is

M1/2 =

∣∣∣∣12eG/2 f̄T
Ref

(G−1)TTG
T

∣∣∣∣ =

∣∣∣∣12w0
f̄T

Re f

∣∣∣∣ , (12)

where fαβ = fδαβ is the gauge kinetic function. For
T + T̄ = 1, it is unlikely that we get a hierarchy m3/2 �
M1/2. Moreover, we would like to relate the supersym-
metry breaking scale to the inflationary scale m̃ = m.
However, a priori, we can set w0 to be either m̃M2

P , or
m̃2MP , or m̃3, giving m3/2 = m,m2/MP ≈ 0.4 EeV,

or m3/M2
P ≈ 5 TeV (though the latter may be of phe-

nomenological interest at the LHC).

In [50], a linear term a2φ for the inflaton in the WZ
model given in (7) was proposed, making the association
between the inflaton and Polonyi field. For small a, the
theory works quite well, and thus predicts a small (weak
scale) gravitino mass. The inflationary capability of the
theory breaks down when a & 5× 10−5 corresponding to
an upper limit on the gravitino mass of m3/2 = a4/2m .
106 GeV.

Next we can consider adding a strongly stabilized
(twisted) Polonyi field to the WZ model,

w0 → m̃2(z + b)(T + 1/2)p , (13)

with

K ⊃ zz̄ − (zz̄)2

Λ2
z

. (14)

The factor (T + 1/2)p is needed to avoid a deSitter vac-
uum with weak scale energy density and we will take
p = 3 as an example here [45]. Choosing b ' 1/

√
3 gives

a minimum with zero vacuum energy at 〈z〉 ' Λ2
z/
√

12.
The mass of the Polonyi field is now hierarchically larger
than the gravitino mass

m2
z =

12m2
3/2M

2
P

Λ2
z

. (15)

Once again, for m̃2 � mMP , this works quite well so
long as Λz is not too small (Λz & 2(m̃2/mMP ).3). In-
creasing m̃, leads to the formation of a new minimum
at large field values (of the canonically normalized in-
flaton), which quickly becomes the global minimum. In
Fig. 1, we show the potential for fixed p = 3, Λz = 10−2,
and several values of m̃. For m̃2/m < 10−8MP , the
potential is indistinguishable from that shown as 10−8.
For m ≈ 10−5MP , we see that this model works fine
for weak scale supersymmetry breaking, and for scales
as large as m̃2/MP . 10−12MP ∼ 3 PeV, correspond-

ing to a gravitino mass of m3/2 ' m̃2/
√

3MP . 1.7
PeV. In particular, m3/2 = 0.2 EeV would correspond
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FIG. 1. Projections of the effective inflationary potential for
the model (7) with the Polonyi sector ((13) and (14)), for
p = 3. Here 〈T 〉 = 1/2, 〈z〉 ' Λ2

z/
√

12 and b ' 1/
√

3, and we
use the nominal value Λz = 10−2. Shown is the potential for
different choices of m̃2/m = 10−8, 10−7, 2×10−7, 5×10−7 (in
Planck units) in black, blue, green, and red.

to m̃2/m ≈ 10−5MP which would badly spoil the infla-
tionary potential.

While the WZ models are perfectly acceptable for low
scale supersymmetry breaking, our objective here is high
scale breaking and thus we turn our attention to the case
C, for the superpotential given by (9). To achieve super-
symmetry breaking and generate a finite gravitino mass,
we can again add a constant, w0 to the superpotential.
In this case, if w0 � m, the minimum is shifted slightly
to [45]

〈T 〉 =
1

2
− w2

0

m2
, 〈φ〉 =

√
3
w0

m
, (16)

but the vacuum energy density is necessarily negative,
V0 = −3〈eG〉 = −3m2w2

0/(m
2 − 3w2

0) < 0.

However, adding an untwisted Polonyi field, so that
the Kähler potential becomes

K = −3 ln

(
T + T̄ − 1

3

∑
i

|φi|2 −
1

3
|z|2 +

|z|4

Λ2
z

)
,

(17)
with the superpotential given in (13) with p = 0 leaves
the Starobinsky potential (now a function of T ) un-
changed, save for a shift in the minimum to

〈T 〉 ' 1

2
+

1

3

(
m̃2

mMP

)2

, 〈φ〉 ' m̃2

m
,

〈z〉 ' Λ2
z

6
√

3
, b ' 1√

3

(
1− 1

6

(
m̃2

mMP

)2
)
, (18)

when m̃2/(mMP ),Λz/MP � 1. The mass of z is
√

3
times larger than the twisted Polonyi mass given in Eq.
(15).

Alternatively, one can add a twisted Polonyi field with

Kähler potential

K = −3 ln

(
T + T̄ − 1

3

∑
i

|φi|2
)

+ |z|2 − |z|
4

Λ2
z

, (19)

and the same superpotential (9). This also leaves the
Starobinsky potential unchanged, with a similar shift in
the minimum to [45]

〈T 〉 ' 1

2
+

2

3

(
m̃2

mMP

)2

, 〈φ〉 ' m̃2

m
,

〈z〉 ' Λ2
z

2
√

3
, b ' 1√

3

(
1− 1

2

(
m̃2

mMP

)2
)
, (20)

Unlike the WZ case discussed above, the inflationary
potential maintains its form even for large m̃, and arbi-
trarily small Λz. For example, in Fig. 2, we show the
inflationary potential with m̃2 = 0.9mMP and Λz =
10−3MP both the twisted (solid) and untwisted (dashed)

Polonyi models. Here t =
√

3/2 ln(2T ) is the canonically
normalized inflaton. In the figure, 〈z〉 and b have been
fixed at the approximate values given in (18) and (20),
respectively (higher order terms in (18) cannot be ne-
glected).

5 10 15 20

0.2

0.4

0.6

0.8

1.0
V/m2

t

FIG. 2. Projections of the effective inflationary potential for
the model (9) with the Polonyi sector ((13) and (17)), with
p = 0. We use the nominal values Λz = 10−3 with m̃2/m =
0.9. The values 〈z〉, b, and 〈φ〉 are given approximately by
(18) (shown by the dashed curve), and by (20) (shown by the
solid curve).

The gravitino mass for small Λz can be written as

m3/2 = m
5m̃6 + 6m̃2m2M2

P

2(3m2M2
P + m̃4)3/2

untwisted , (21)

m3/2 = m
4m̃6 + 2m̃2m3MP

2
√

3(m2M2
P + m̃4)3/2

twisted , (22)

which in the limit of small m̃2/mMP for both cases gives

the expected result m3/2 = m̃2/
√

3MP . Indeed, for m̃2 =

0.9mMP , we obtain m3/2 ∼ 1013 GeV. It is indeed rather
surprising that even for a large Polonyi mass scale, the
inflationary dynamics are little affected. This is only true
for case C given by Eq. (9). Thus we are free to make
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the simple choice of m̃ = m ≈ 10−5MP . In this case, the
gravitino mass is

m3/2 =
m2

√
3MP

≈ 0.2 EeV. (23)

Furthermore, it was shown in the first reference of [47]
that one also needs to impose m3/2 < H in order to keep
perturbative control of the Kähler potential. In what fol-
lows, we will restrict our attention to the twisted Polonyi
model.

To avoid the production of the Polonyi field during re-
heating, we can derive an upper limit on Λz from the
requirement that mz =

√
12m3/2MP /Λz > m. This

limit is shown by the blue dashed line in Fig. 3. An-
other upper limit on Λz is obtained by requiring that the
branching ratio of inflaton decays to gravitinos does not
lead to an excess abundance of gravitinos (discussed in
more detail in section III.D). This constraint is shown
by the negatively sloped pink dot-dashed line. Accept-
able parameters lie below both lines (blue dashed and
pink dot-dashed) Finally, we also have a lower bound
on Λz, stemming from our effective correction to the
Kähler potential which imposes F < 〈z〉 < Λ2

z or
1/2 log(m3/2/MP ) < log(Λz/MP ). This lower bound is
shown by the green dotted line in Fig. 3, and all values
of 10−5 < m3/2/m < 10−1 are allowed so long as Λz lies
in the pale shaded region.

III. THE PARTICLE SPECTRUM

A. Gaugino and Scalar masses

We next discuss ways to generate gaugino and scalar
masses via perturbative mediations of supersymmetry
breaking, and then we will turn to more strongly-coupled
mediation mechanisms.

One perturbative possibility for mediation of super-
symmetry breaking is via gaugino mediation [62]. New
physics at a messenger mass scale M generates a cou-
pling of the supersymmetry breaking field, Z = z + θ2F
(ignoring fermionic components) to the gauge fields∫

d2θ

(
f0 + f1

Z

M

)
trWαWα , (24)

where at leading order f0 = 1/(4g2). This will give rise
to gaugino masses of order

M1/2 ∼ g2f1
F

M
. (25)

Scalar masses are then generated by SM loop correc-
tions and will be of order

m2
0 ∼

g2

16π2
M2

1/2 , (26)

-7

-6

-5

-4

-3

-2

-1

0

-7 -6 -5 -4 -3 -2 -1 0

Log m3/2/m

Lo
g 
Λ

z/M
P

FIG. 3. Bounds on the stabilization parameter Λz as a func-
tion of the gravitino mass. The blue dashed line shows the
upper limit on Λz from the requirement that the mass of the
Polonyi field lies above the inflaton mass. The pink dot-dashed
line (negatively sloped) is an upper limit on Λz derived from
an upper limit on the branching ratio of inflaton decays to
gravitinos. The green dotted line shows the lower limit on Λz,
assuming F < Λ2

z. The shaded region is allowed by all con-
straints. Note, however, that there are lower bounds on the
gravitino mass given in Eqs. (27) and (30).

where g is a SM gauge coupling. Usually there is a log
enhancement of the scalar masses due to the running be-
tween the mediation scale M and the scale of the su-
perpartners. In our case however, since the superpart-
ners are very heavy there is not much running, so nu-
merically we can use as an order of magnitude estimate
m0 ∼ (α/g)M1/2 ∼ 0.06M1/2. In order for the effec-
tive field theory to be well-defined (higher-dimensional
operators are negligible), one needs to impose F < M2.
We also forbid inflaton decays into superpartners, which
roughly requires m0 > 3×1013 GeV. Under such assump-
tions with

√
F ∼ M , one obtains

√
F > 5 × 1014 GeV

and therefore the minimum value of the gravitino mass
in such a scenario is

m3/2 > 6× 1010 GeV = 60 EeV . (27)

It seems difficult to decrease the gravitino mass much
below 100 EeV with known perturbative mediations of
supersymmetry breaking. For example, in a model based
on gauge mediation, scalar masses would be expected to
be of order the gaugino masses such that m0 ∼ M1/2 ∼
(g2/16π2)F/M (hence there is no relative loop suppres-
sion). The lower limit on m3/2 is then increased to

m3/2 > 2 × 1013 GeV , which is essentially incompati-
ble with the required upper limit, m3/2 < m.

In order to decrease the viable values of the gravitino
mass, some strong coupling effects seem to be needed,
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like for example in holographic models of supersymmetry
breaking of the type described in [63], or general gauge
mediation [64]. In more generic terms, this means a me-
diation mechanism with no loop suppression in the gen-
eration of visible sector soft masses, so that we obtain
m0 ∼ M1/2 ∼ F/M . Thus we can start with the same
gauge kinetic function as in (24), namely

fαβ =

(
f0 + f1

Z

M

)
δαβ , (28)

and generate squark/slepton/Higgs soft masses through
operators of the type∫

d4θ
Z†Z

M2
Q†Q , (29)

where Q denotes a generic MSSM chiral superfield. In
this case, we recover the limit

m3/2 > 0.2 EeV , (30)

and corresponds to the bound derived in [10]. Perturba-

tivity of the correction to gauge couplings f1
〈z〉
M < f0 ,

together with the requirement, M1/2 > m leads to the
new lower limit

m3/2 >
4〈z〉√

3

m

MP
. (31)

However, this constraint is easily satisfied, once the other
constraints, such as F ≤M2 are taken into account.

Note that at the lower gravitino mass limit (30) we
obtain the bound g2f1 & 1. Since mediation is strongly
coupled, this is not really surprising. In both holographic
models and general gauge mediation setups, additional
states of mass, M and heavier are expected. In order
to not perturb our single-field inflation framework, the
masses of these states should be above the Hubble scaleH
during inflation3, which implies generically M > H. This
condition is satisfied by the range of gravitino masses in
Fig. 3 and is saturated at the lower bound.

Finally, we comment on the partial wave unitarity limit
arising from the scattering of two gluons into two grav-
itinos [70]. For gaugino mediation, tree-level unitarity is
violated at a scale ' 17/(g2f1)M , which for g2f1 . 17
is above the messenger scale M (where new degrees of
freedom should appear), and therefore compatible with
the constraint arising from the gravitino mass limit (30).

B. Constraints on the scale of supersymmetry
breaking from reheating

Reheating proceeds by coupling the inflaton to the
MSSM sector. Since all superpartners are above the infla-
ton mass and reheating temperature, reheating produces

3 It is also possible that all additional scalars obtain Hubble scale
masses during inflation, therefore avoiding this condition.

predominantly SM particles (the abundance of graviti-
nos is discussed in section III.D). Radiative corrections
with MSSM fields in loops correct the inflaton potential.
In low-energy supersymmetry such corrections are tiny,
since they are proportional to the scale of supersymme-
try breaking [68]. In our case with high-scale supersym-
metry breaking, there may be large radiative corrections
that can spoil flatness of the inflaton potential. Such con-
straints can put upper limits on the superpartner masses
and therefore on the gravitino mass.

For example, a direct coupling (through the gauge ki-
netic function) of the inflaton, t to gauge fields, f 3
h1t/MP , would induce quadratic and quartic corrections
of magnitude

δm2 ∼ h2
1

16π2
M2

1/2 , (32)

δλ ∼ h4
1

16π2

M2
1/2

M2
P

, (33)

which both place non-trivial bounds on the coupling h1.
For reheating dominated decays to gauge bosons, this can
be translated into a limit on the reheating temperature
and eventually the gravitino abundance.

As we discuss in more detail in section III.D, reheating
in this model proceeds via the gravitational coupling of
the inflaton to two Higgs bosons. The coupling of the
inflaton field, t to MSSM fields was derived in [45], and
the relevant bosonic coupling is

Leff 3
ReT√

3
(nI + nL − 3)W ILW̄LJΦIΦ̄

J ,

∼ µ2e
√

2
3 t(|hu|2 + |hd|2) , (34)

where nI,J are modular weights4 of the superfields ΦI,J
and should be taken to be equal to one for untwisted
Higgs fields. The coupling for the Higgs fields is then
µ2/
√

3MP , where µ is the MSSM Higgs mixing mass,
which is now expected to be of order the scalar masses.
The quadratic and quartic corrections in Eqs. (32)-(33)
are found with the replacement h1 → µ2/mMP . Re-
quiring δm2 � m2 and δλ � 10−14 sets a rough bound
on µ/m . 102 which we will see below is satisfied when
µ is adjusted to give the correct gravitino relic density.
However a more model-independent statement is that re-
heating sets constraints on inflaton couplings to MSSM
fields. Once we fix such couplings, the requirement that
quantum corrections do not spoil flatness of the inflaton
potential generically set upper bounds on superpartner
masses. Such bounds are dependent on the inflationary
model and details of reheating, but they typically indi-
cate that the scale of supersymmetry breaking should not
be too much higher than the inflationary mass scale.

4 Note that the definition of modular weights in our paper is op-
posite in sign with respect to the standard convention.
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C. The Higgs mass and vacuum stability

The fact that the sfermion, gaugino and Higgsino
masses are above 3×1013 GeV, leads to important impli-
cations for the Higgs boson mass and vacuum stability.
It is well-known that to obtain the 125 GeV Higgs mass
for tanβ . 50, the maximum supersymmetry breaking
scale is approximately 1010 GeV. However in Ref. [33],
it was noted that the supersymmetry breaking scale can
be increased to the GUT scale (∼ 1016 GeV), for very
large values of tanβ ∼ 200. This assumes a degener-
ate superpartner spectrum (at m̃), with a bottom su-
perpotential Yukawa coupling, ŷb = yb/ cosβ such that
α̂b = ŷ2

b/(4π) ∼ 0.5. Even though this coupling is pertur-
bative, a very close Landau pole develops at Λ ∼ 10m̃.

0.6 0.8 1.0 1.2 1.4 1.6
tan(β)

-0.06

-0.04

-0.02

λH

FIG. 4. The Higgs quartic coupling, λH at the matching scale
m̃ = 5 × 1013 GeV, as a function of tanβ. The solid blue
line is the difference between the SM and tree-level SUSY val-
ues, with the dashed lines indicating the ±3σ contours due
to the error in the top-quark Yukawa coupling yt(mt), where
mt = 173.1±0.7 GeV [72]. The green line shows the one-loop
threshold correction arising from our superpartner spectrum.

Instead, Ref. [34] considered non-degenerate super-
partner masses, and showed that GUT scale masses
can in fact be accommodated for much smaller val-
ues of tanβ. In particular, assuming m̃ = mQ̃L,3

=

mt̃R
= 1016 GeV and tanβ = 1, a scan of gaugino

and first/second generation sfermion masses in the range
[m̃, 100m̃], and Higgsino masses in the range [ m̃100 , m̃]
gives rise to the required threshold corrections of the
Higgs quartic coupling.

The analysis in Ref. [34] suggests that our superpartner
spectrum can give rise to similar threshold corrections
needed for a 125 GeV Higgs mass. For concreteness we
will consider a gaugino-mediated spectrum, and expect
similar qualitative features for a spectrum generated by a
more strongly-coupled mediation mechanism. Identifying
the right-handed stau mass with the scale m̃ = mτ̃R ∼ 5×
1013 GeV, will then determine the size of the remaining
sfermion and gaugino masses. Assuming that the gaugino
masses are generated at a scale m < µ0 ≤ 1016 GeV, the

sfermion masses are then approximately given by

m2
Q̃
' 1

16π2

(
32

3
g2

3 + 6g2
2 +

2

15
g2

1

)
M2

1/2 log
µ0

m̃
, (35)

m2
ũ '

1

16π2

(
32

3
g2

3 +
32

15
g2

1

)
M2

1/2 log
µ0

m̃
, (36)

m2
d̃
' 1

16π2

(
32

3
g2

3 +
8

15
g2

1

)
M2

1/2 log
µ0

m̃
, (37)

m2
L̃
' 1

16π2

(
6g2

2 +
6

5
g2

1

)
M2

1/2 log
µ0

m̃
, (38)

m2
ẽ '

1

16π2

(
24

5
g2

1

)
M2

1/2 log
µ0

m̃
. (39)

Other soft parameters such as At, Bµ and m2
Hu,d

are also

generated radiatively. Using this approximate spectrum
we can then compute the one-loop threshold corrections
as given in Ref. [34, 71]. The result in shown in Figure 4.
The contribution to the Higgs quartic coupling from our
superpartner spectrum overlaps with the ±3σ band of
the λH coupling provided that 0.75 . tanβ . 1.34.

However, note that the one-loop threshold correction
matches at a negative value of the Higgs quartic coupling.
This occurs because of our somewhat compressed spec-
trum, mQ̃/m̃ ∼ 1.9,M1/2/m̃ ∼ 2, µ/m̃ ∼ 1.5, and the

fact that the gaugino/Higgsinos contribute negatively,
while the positive stop contribution is suppressed by mix-
ing near tanβ ∼ 1. A more detailed determination of the
superpartner spectrum that gives different mass ratios
may lead to a positive correction and then the matching
could occur for positive values of λH .

Nevertheless even with a positive one-loop threshold
correction from our superpartner spectrum, the value of
the top quark Yukawa coupling, yt(mt) would need to be
near its −3σ extreme value that is allowed by the large
uncertainty in the top-quark mass measurement. Other-
wise one needs to rely on other threshold effects to stabi-
lize the Higgs potential below the scale m̃. For instance
this could be due to the inflaton coupling to the Higgs,

yI ∼ 1√
3

µ2

mMp
∼ 10−3. However, assuming that the su-

persymmetric and soft contributions to the inflaton mass
are of the same order, this coupling causes a shift [73]
in the Higgs quartic coupling by an amount given by
δλH ' y2

I sin2 2β ≤ y2
I ∼ 10−6, which is negligibly small.

Alternatively, a heavy scalar singlet with a quartic cou-
pling to the Higgs, could be introduced that is related to
the generation of the neutrino masses [74].5 If this cor-
rection causes the Higgs quartic to be large and positive
at the SUSY scale m̃, then a negative one-loop threshold
correction would not be a problem, since it could then
be absorbed by the SUSY tree-level contribution for suf-

5 In [75], an additional SU(2)L triplet was introduced to insure
stability and aid in keeping the Higgs mass at 125 GeV.
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ficiently large tanβ. Nonetheless this does require an ex-
tra tuning in the model in order that this scalar singlet
remains light (at an intermediate scale).

Another potential concern is that the required tanβ
values in Figure 4 are near one, and normally in the
MSSM this would cause a Landau pole in the top quark
Yukawa coupling to appear below the GUT scale. How-
ever since our sparticle spectrum is quite heavy, the top
quark Yukawa coupling is reduced by a factor of two at
the scale m̃ ' 5× 1013 GeV. The matching condition for
the top Yukawa coupling yt = ŷt sinβ, where ŷt is the
superpotential Yukawa coupling, then allows for a lower
value of tanβ, with a corresponding larger value of ŷt.
Since there is relatively little running in our high-scale
SUSY model above the scale m̃, the larger ŷt value can
remain perturbative below the GUT scale.

Furthermore, to radiatively break electroweak symme-

try requires that at some scale,
dm2

Hu

dt = 0, or ŷtmQ̃ ∼
g2M2. In the gaugino-mediated model this condition oc-
curs when tanβ ∼ 0.5, which is incompatible with the
range required in Figure 4 6. However if there were a
new positive contribution to the Higgs quartic coupling
then it may be possible to also achieve radiative elec-
troweak symmetry breaking. For instance, starting the
running above the GUT scale 1016 GeV would give dif-
ferent sfermion mass ratios to make δλH positive and/or
allow m2

Hu
to run negative before m̃. The details of these

possibilities are beyond the scope of this paper and will
be left for future work.

D. Dark Matter

One of the main motivations of our high-scale SUSY
model is its ability to account for the dark matter in
the form of gravitinos with masses m3/2 & 0.2 EeV. Be-
cause the supersymmetric particle spectrum lies above
the inflaton mass, the dominant mechanism for gravitino
production becomes SM + SM → 2 gravitinos with lon-
gitudinal polarizations [9, 10] or the decay of the inflaton
directly to gravitinos depending on the reheating tem-
perature.

6 In addition, requiring that there is no color-breaking minimum
deeper than the electroweak minimum [71], leads to tanβ & 0.6
for our spectrum.

The gravitino production rate was derived in [9]

R = n2〈σv〉 ' 21.65× T 12

F 4
, (40)

where n is the number density of incoming states. This
temperature dependence can be understood as follows:
one uses n ∝ T 3, and we expect the gravitino production
cross section to scale as 〈σv〉 ∝ T 6/F 4. From the rate
R(T ), we can determine that Γ ∼ R/n ∼ T 9/M4

Pm
4
3/2

(assuming m3/2 � m̃) leading to a gravitino abundance

n3/2/nγ ∼ Γ/H ∼ T 7/M3
Pm

4
3/2 evaluated at T = TRH or

Ω3/2h
2 ' 0.11

(
0.1 EeV

m3/2

)3(
TRH

2.0× 1010 GeV

)7

, (41)

assuming instantaneous decay and thermalization. Thus,
thermal production of gravitinos with m3/2 > 0.2 EeV

would require TRH > 3× 1010 GeV.

It is known however, that the reheating process is not
instantaneous, and that the temperature of the Universe
during inflaton decay can exceed TRH by orders of magni-
tude [32, 76] up to a value Tmax. Due to the strong tem-
perature dependence of the gravitino production cross
section, there will be significant production of gravitinos
at Tmax, which is not fully diluted by the entropy pro-
duced in subsequent decays. The final gravitino abun-
dance in this case (with σ ∝ T 6) relative to the instan-
taneous approximation is [77]

r3/2 =
56

5
ln

(
Tmax
TRH

)
, (42)

where

Tmax ' 0.5

(
m

ΓT

)1/4

TRH , (43)

for inflationary models of this type, where ΓT is the total
inflaton decay rate.

For the inflationary model discussed above, there are
many possible decay channels all of which are Planck
suppressed. The decay channel given in Eq. (34) is or-
dinarily (with weak scale supersymmetry breaking) neg-
ligible as µ2/(mMP ) � 1. However, in our case, since
µ > m, this is actually the dominant inflaton decay mode
t → Hu,dH

∗d,u which ultimately corresponds to a decay
of t → hh where h is the SM Higgs boson. The decay
rate to two Higgs bosons is [45]

Γ2h =
µ4

384πmM2
P

sin2 2β , (44)

where an additional factor of 1/16 has been included in

writing H0
u = h/

√
2 sinα, and H0

d = h/
√

2 cosα, and
noting that α = β in the high scale SUSY limit 7.

7 We note that parametric resonance effects such as those studied
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If we define an effective Yukawa-like coupling, yI =

µ2/(4
√

3mMP ), such that Γ2h =
y2I
8πm, we can express

the reheating temperature in terms of yI [10, 30, 32]

TRH =

(
10

gs

)1/4(
2Γ2hMP

π c

)1/2

= 0.5
yI
2π

(mMP )
1/2

,

(45)
where gs is the effective number of light degrees of free-
dom, in this case set by the Standard Model, gs = 427/4
and c ≈ 1.2 is a constant. We can then re-express the
relic abundance (41) as

Ω3/2h
2 ' 0.11 r3/2

(
0.1 EeV

m3/2

)3(
m

3× 1013 GeV

)7/2

×
(

yI
2.9× 10−5

)7

,

= 0.11 r3/2

(
0.1 EeV

m3/2

)3(
3× 1013 GeV

m

)7/2

×
(

µ

1.2× 1014 GeV

)14

, (46)

where we have included the enhancement factor r3/2 from
Eq. (42). The enhancement factor depends on lnµ, and
for the range of µ values considered here (roughly 1014−
1015 GeV), r3/2 varies very little and we take it as a
constant r3/2 = 25.

The value of µ needed to obtain the correct relic den-
sity of gravitinos is shown by the solid line in Fig. 5 using
Eq. (46). It is rather amazing that independent of the
supersymmetric particle spectrum discussed above, the
value of µ needed for the correct abundance of gravitinos
is in the range of roughly 3-30 times the inflaton mass.
This is exactly where one might expect the Higgsino mass
to lie given our spectrum of heavy scalars and gauginos.

It is also possible that µ takes values below the solid
line in Fig. 5. In that case, the abundance of gravitinos
is below the needed relic density of dark matter (by the
same token, values of µ above the solid line are excluded
as they yield a relic density in excess of the observed one).
Nevertheless, it is still possible to recover the correct relic
density through inflaton decay to gravitinos. The grav-
itino abundance produced by inflaton decay for a given
branching fraction to gravitinos, B3/2 = Γ3/2/Γ2h, was
computed in [10]

Ωdecay3/2 h2 = 0.11

(
B3/2

1.3× 10−13

)(
yI

2.9× 10−5

)
(47)

×
( m3/2

0.1 EeV

)(3× 1013 GeV

m

)1/2

.

in [78] are not effective in this model. The adiabatic condition
ṁh/m

2
h > 1 is at best satisfied during the first inflaton oscilla-

tion, where mh is the t-dependent Higgs mass. One can easily
check that ṁh/m

2
h ∼ Am/µMP , where A . MP is the ampli-

tude of inflaton oscillations and we require m < µ.

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0

Log m3/2/m

Lo
g 
μ

/m

thermal

Log Λz/MP = -4-2 -3-1

-3.5-2.5-1.5

FIG. 5. The value of µ relative to the inflaton mass needed to
obtain the correct relic density of gravitinos thermally through
reheating (solid line) as a function of the gravitino mass. Also
shown (dashed lines) are the values of µ needed to obtain the
correct relic density of gravitinos through inflaton decays for
a given value of log Λz/MP as labelled.

The decay of the inflaton to two gravitinos was computed
in [45] with

Γ3/2 =

(
Λz
MP

)4 3m2
3/2m

256πM2
P

, (48)

so that

B3/2 =
9

2

(
Λz
MP

)4 (m3/2

m

)2
(
m

µ

)4

. (49)

Using Eq. (48), inputting B3/2 and yI , we obtain the
correct relic density of gravitinos along the sloped dashed
and dotted lines for different values of Λz/MP as labelled.

As one can see from Fig.5, the value of the abundance
of gravitinos from the decay of the inflaton is strongly
dependent on the value of Λz as this scale controls the
branching ratio B3/2. As a consequence, we can derive
an upper limit to Λz

Λz
MP

≤ 2.4× 10−4

(
m

m3/2

)9/14

, (50)

which is shown in Fig. 3 by the negatively sloped pink
dot-dashed line. This upper limit in turn imposes an
upper limit to the gravitino mass m3/2 . 0.1m.
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IV. CONCLUSIONS

It may be that supersymmetry is not physically real-
ized at energy scales accessible to the LHC. The hierarchy
problem and naturalness biased our expectations that the
supersymmetry mass scale was at or near the weak scale
making experimental discovery all but inevitable. Such
is not (yet) the case, and the mass scale of the super-
symmetric spectrum remains unknown. It is therefore
plausible to consider the possibility that nearly the en-
tire supersymmetric spectrum lies at very high energies.
If it is above the inflationary scale it is quite possible
that the rich spectrum of supersymmetric partners were
never produced in the early universe after inflationary
reheating.

The exception could be the gravitino whose mass may
remain below the inflaton mass. In this case, gravitinos
could be produced (in pairs) during reheating [9, 10] and
because of the strong sensitivity to temperature, have
enhanced production at the start of reheating when the
temperature of the radiation plasma is above the reheat-
ing scale [77]. For a sufficiently high reheating tempera-
ture (TRH & 1010 GeV), thermally produced gravitinos
would have the correct relic density to account for the
observed cold dark matter in the Universe.

In this paper, we have constructed a working model
incorporating both inflation and supersymmetry break-
ing which leads to the heavy supersymmetric spectrum
with gravitino dark matter. Our starting point is no-scale
supergravity [36, 37]. In the family of models formu-
lated in Ref. [67], the inflaton is associated with the vol-
ume modulus, T , and the scalar potential is identical to
that derived in the Starobinsky model [12]. Supersymme-
try breaking is achieved by adding a strongly stabilized
Polonyi field which preserves the potential for inflation.
Reheating occurs through the gravitational coupling of
the inflaton to the Standard Model Higgs scalars. Be-
cause supersymmetry breaking occurs at a high scale, the
µ parameter is large (larger than the inflaton mass) and
the dominant decay channel is to two Higgs bosons. De-
pending on the value of µ, gravitinos may be produced
through reheating with the correct relic density over a
wide range of gravitino masses. For smaller values of µ

(but still larger than the inflaton mass), the correct relic
density may be obtained via the decays of the inflaton di-
rectly to gravitinos. All constraints are satisfied for grav-
itino masses in the range 0.1 EeV . m3/2 . 1000 EeV.

While we have shown that the Higgs mass in this class
of models can be compatible with the experimental value
when tanβ ≈ 1, we leave open for future study the ques-
tions of vacuum stability, and radiative electroweak sym-
metry breaking - two attractive features normally asso-
ciated with supersymmetric models. Both stability and
symmetry breaking can be achieved without supersym-
metry via an intermediate scale such as in SO(10) grand
unification [79], and therefore suggests that in models
of high scale supersymmetry breaking, grand unification
plays a crucial role in determining the Higgs mass.

Finally, the minimal setup of our model predicts no sig-
natures in either collider or direct/indirect dark matter
searches. Instead, scalars with masses near the Hubble
scale during inflation could lead to non-gaussianities in
the CMB that may eventually be observed. Alternatively,
by introducing R-parity violation in the lepton-Higgs sec-
tor, the gravitino can become unstable with a suitably
long-lived decay. The detection of the decay products,
such as very high energy neutrinos or photons at HAWC
or the Pierre Auger Observatory, would then be a possible
sign of high scale supersymmetry with an EeV gravitino,
and thus these types of signatures are worthy of further
study.
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