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ABSTRACT

When using optimization techniques based on mattieahanodels, we often need to make important sificptions. The
solution thus provided, even if proven to be théoadly one of the best, might not be so good iacgice. Simulation can
be used to evaluate the actual performance of thetien. We propose here a coupling between opttion and
simulation that tries to improve the solution paead by a mathematical model. This approach stli$es on optimizing
the theoretical objective function, contrary to tmanmon optimization-simulation coupling that foesn improving the
objective function evaluated from simulation. Wempose to illustrate this approach on a routing |enob and present
numerical results on the quality of the solutiod &me efficiency of both coupling approaches.

KEYWORDS
Optimization, discrete-event simulation, simulat@ptimization, routing problem.

1. Introduction

The goal of this paper is to discuss a way to imprthe practical quality of a solution provided &y optimization
process. There are several advanced optimizatabmiggues (mixed integer programming: branch-andadpbranch-and-
cut... [Nemhauser and Wolsey 1999], decompositi@thods: Benders, Dantzig-Wolfe... [Lasdon 19708t than solve
efficiently problems formalized with mathematicabdels. Major results have been stated to provefttienality or the
quality of the solution (approximation algorithmancensure the solution found to be close to thémaptsolution
according to a given precision [Hochbaum 19971y tmensure the efficiency of the techniques (tbhemplexity, their
speed to converge to a solution...).

However, these methods have significant drawbadiasnwooking for their practical implementation. tjrthey are not
robust to changes in the structure of the probladding a new kind of constraints might make thebjgnm unsolvable
with the previous optimization technique (e.g. #ineonstraints, solved with the simplex methodt beecome non-linear).
Secondly, and more of concern in this paper, majaplifications on the modeling of the problem ofteave to be
considered. As a result, a solution that is optimaheory may not be so good in practice.

Therefore, we propose an optimization-simulatiomptimg calledmodel enhancement, that attempts to reinforce the
mathematical model in order to make the solutiomemadapted to practice than a straightforward dp#tion. This
approach is mildly inspired by decomposition methoded for exact resolution of optimization proldeftke Benders’
decomposition or the column generation [Lasdon 1970

Section 2 recalls the common optimization-simulatiooupling sketch, usually calledmulation optimization, and
formalizes the problem that we propose to discosthis article. Section 3 explains what straightfard optimization
implies on the formulation and the solutions of pgneblem. Section 4 finally presents the idea oflei@@nhancement, its
goal and sketch. This proposition is illustratedSiection 5 through a routing problem. The approsigitesented in the
previous sections are implemented for this problamd, the quality of their solution and their congiignal efficiency are
compared.
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2. Simulation Optimization

An optimization problem can be expressed as findimg best solutiorx to a real problen{P,), i.e. minimizing or
maximizing a functiorf,(x). A solutionx fits problem(P;) if it satisfies a set of constraints that defitles spaceC, of
feasible solutions. For instancecan represent the route of a bus in a €}ythe constraints on this route (its length, the
streets it can use...), afi(k) represents the satisfaction of the customers ubegoutex.

optimize  f,(z)
()
subject to x € C,

During the modeling phase, the real problé®) must be approximated. The common formulation @fiutation
optimization is expressed by probldiy). The fact that a function (resp. a space of sohglib approximates another
function (resp. another space of solutiom®) denoted ~ a.

optimize  fs(x) = g(z,N), fs~ fr
(7) . x e Cy
subject to e A(z) } ~ C,
C, represents constraints on a solutiort usually defines the basic structure of a fel@ssolution (e.g. the route of the

bus must be a cycle in a graph representing tleetstiof the city)A is a vector of measures (e.g. the travel timethef
customers) that is returned by the simulation feolationx (cf. Figure 1).

N{X) is the set of feasible solutions far according to a given solution It is defined by implicit constraints of the
simulation model (given a solution the simulation returns the estimatia), and by explicit constraints on some
performance measures (e.g. the travel time of tistomers must not exceed a given limit). That mea(§ contains
either one solutionx(is feasible based on the simulation evaluation)n®@ solution X is not feasible based on the
simulation evaluation).

Optimization Method

Solution x I?stlmatlon A
l of performances

Simulation Evaluation

Figure 1: Simulation optimization sketch.

The objective functior, of the real problem is approximated fgyWe propose to parameterize this function on vexto
fs(X) = g(x,A). For instance)A can represent estimated times of travel for smiuk, and g(x,A) an estimation of the
satisfaction of the customers for solutioaccording to these times.

Simulation optimization explores the set of soln&i€; to optimizefs. For each solutior, the simulation estimates vector
A. If A satisfies all the constraints (x), the solutiorx is accepted, and the objective functgfr,A) is evaluated.

Several methods are proposed to solve prolfenA classification in four major approaches carfdaend in [Merkuryev
and Visipkov 1994] and [Azadivar 1992]: gradienséd search, stochastic approximation, responsacguaind heuristic
search. These methods are robust to changes objeetive function or in the constraints of the dean. However, they
only represent a few optimization techniques awdt tfficiency and convergence are not always estsur
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3. Straightforward Optimization

Optimization techniques, independent of simulatiosyally need a mathematical mod@}). This representation is also
an approximation of the real problém).

optimize fo('r)> Jor~ fr
(Po)
subject to x € C,,C, ~ C,

However, we can reasonably assume that the simonlatimization problen(Ps) is closer to the real problem than the
straightforward optimization probleK®,): in our example, the optimization mod@,) assumes that there is no waiting
time at the bus stops, contrary to the simulati@deh(Ps) that inherently takes this data into account. therpurpose of
model enhancement, we how make some assumptiothe @tructure ofP,).

optimize  fo(z) = g(x, \)
(Fo)

subject to x € C, D C
A€ A()(I>-, A() ~ As

e The constraint€; describe the basic structure of a feasible salutitence, we can reasonably assume that the
constraints definindC, are approximations, and even relaxations, of thesitaints definindCs. It means that
C, O C,. For instanceCCs can force a bus route to be an elementary direxyetd (i.e. without any loop), thus
simulation optimization will explore the space daflidions more easily; whereds, can allow any kind of
directed cycle, the space of solutions will be kigdput straightforward optimization will solve theoblem more
easily.

« We consider that the objective functidgsandf are identicalf,(x) = g(x,A). However, we assume that the space
of solutionsA, is an approximation of the space of solutidgswhich implicitly maked, an approximation df.
In our example/A(x) will be a statistical estimation of the travel &sof the customers, whergagx) will be a
deterministic computation.

Depending on the structure of the problem, variopmization techniques can be considered to s However,
once a particular methoah has been chosen to solve the problem, it is diffito deal with changes on the kind of
constraints of the problem. For model enhancemergqgse, we consider changes only on the constrdiatsdescribe\..
Let us denot&, the set of all the families of constraints thah t@ managed by methoa That means problei(®,) is
solvable by methoch only if A, O K.

4. Model Enhancement

From the previous assumptions A§(x) is never empty, all solutions(] C, are feasible solutions of problefR,). As
C, O C,, any solution of the simulation optimization pretnl (Ps) is a feasible solution dP,). In particular, any optimal
solution xs of (Py) is a feasible solution ofP,). The idea of model enhancement is to find the famif constraints
No O Ky, such that the optimal solution* of (P,) is one of the optimal solutiong* of (Ps). We can state the model
enhancement proble(R,) as follows.

optimize  fs(xk) = g(ak, \s)

(P.){ subject to A, € K, Ay ~ Ag
(xk; \) optimal solution of (P,)
As € Ag(xk)

(Pe) is a very hard problem. However, one way to fingbad solution to the problem may be to approxinatby A\, as
precisely as possible. Thus, andA,* will have similar values and the theoretical eatilbn g(X,*,Ao*) of the optimal
solutionxy* of problem(P,) will be close to its simulation evaluatigX,*,As).

This approach is inspired by decomposition methidds Benders’ decomposition or the column generafibasdon

1970], which propose to decompose a problem into parts: the relaxed master problem, which is axedlon of the

original problem and the auxiliary problem, whossalution provides useful information to enhance rilaxed master
problem. Through an iterative process, the resmiutif auxiliary problems will allow to add consti&s or variables
(depending on the decomposition approach) inta¢lexed master problem, which will tend progredsive the original

problem, and will provide an exact optimal solution
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We can propose a similar decomposition for modélaeanement(P,) is the relaxed master problem, and simulation
experiments act like resolutions of auxiliary peik that provide information to enhance the relaredter problem. In
our example,(P,) does not consider waiting times at bus stops. &veduationAs of its optimal solutionx,* using
simulation provides estimations of these waitimgets. Based on this information, we need to findag t® modifyA, so it
better approximateAs.

Solution (x,A,) Constraints A}

Optimization Method

Model Enhancement

. . Estimation A
Solution x, s

l of performances

Simulation Evaluation

Figure 2: Model enhancement heuristic.

Algorithm 1 and Figure 2 describe a heuristic apptofor model enhancement that iteratively modifigsbased on the
simulation evaluatiois of an optimal solution ofP,).

Algorithm 1: Model enhancement heuristic.
let n be the maxi mal nunber of iterations;
let A be an approxi mati on of A

r epeat

I et (X*,Ag*) be an optimal solution of (Py) with Ay= A
l et A be the sinulation eval uation of Xy*;

/\ok+1 « h(/\oky)\s);

k « k+1;

until |g(X*A*) - O(X*Ag) | <€ or k=n;

Functionh represents the way to modify, at each iteration. It needs to be defined moreigety for any specific
problem. In the next section, we propose to ilatgtthis heuristic with more details on the bugdinguproblem we mildly
use as example in the first part of the article.

5. Study of a Routing Problem

We propose now to study a bus routing problem deoto illustrate the discussion of the previougtieas. We detail the
simulation optimization method, a straightforwangtimization approach and the model enhancementidtieufor this
problem. We also present a practical comparisdaheaxfe three approaches.

5.1. Problem Presentation
We focus on the following problem: let us considegpublic transportation company in an urban netwstich as a bus
company. Basically, this company needs to desigrclast bus routes while satisfying potential custosn
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Let us consider a directed gra@= (V,E) whereV is the set of vertexes afidthe set of edges. Each vertex represents a
potential bus stop or a crossroad in the reald@®vork. Each edge represents a road between tws et crossroads.

We assume the customer demands are known, i.e. igardescription of the moves the customers tepdrform in the
urban network. A customer demadd] D is defined by a tupléod;sd;Qd;tdmi”;tdmax), whereoq OV is the origin of the
move, § [0V the destinationQ)q the throughput of customers for this demagld” andt,™ are reference times for the
demandt,™" is the time it takes to a vehicle (such as a bmshove fromoy to sy, andty™ is the time of travel of a

pedestrian fronog to s.
In this article, we limit the problem to find atisportation systerh that meets the following requirements:
« [ is aset of directed cycles in gra@h(for clarity reasons, we consider further only dus cycle);

< the length of the bus route, i.e. the time it tat@she bus to move along the route, must be less & given
thresholdT;

* [ should maximize the satisfaction of the customers.

Let us denotdy the time it takes to a customer with demahtb travel through the network. His satisfactiom dze
represented by a functioi(ty) defined as follows: ity < 2t,™" then the customer is fully satisfied adg(ty) = 1; if
ty = 2ty™ then the customer is not satisfied at all énty) = 0; and between these two limits, the closer to th@mum,
the better the customer is satisfied. Figure 3tthtes the satisfaction function.

0

A

14

| |,

+ - T > 1 d
min max
2t, 2t,

Figure 3: Satisfaction function for demartl

Finally, we definen; the time customers are waiting at a bus st@ack to our notations of the previous sectidns, the
vector of all thety and thew; values.\, will be their theoretical estimation (from optiratzon) andAs their practical
estimation (from simulation).

Let us denote& a solution to the problem, i.e,= 1 if edgee s part of the bus route, ang= 0 otherwise. The objective is
to maximize the satisfaction of the customers fiuectiong(x,A) = Zyop Qg Py(ty)-

5.2. Simulation Optimization

We propose to solve the problem using the tabwheaaetaheuristic in the simulation optimizationtskgPs). The tabu
search was first introduced by [Glover and Lagu@f7] and [Herzt al. 1997]. It searches for a good solutioin the
space of solution€.. C; represents bus routes with their length belowloreover, we force the structure of the bus reute
in C; to be ageodesic (the search is thus facilitated). A geodesic diracted cycle defined by a given number of points
calledcontrol points. Each control point is connected to its successtite cycle by a shortest path (cf. Figure 4).

Figure 4: An example of 3-points geodesic.
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Neighborhood structures for the heuristic rely ooving, adding or deleting a control point. The tdisti contains the
control points that have been modified in the lest iterations. We have implemented a two-levelristic using

aspiration criteria (accepting a tabu move undenesgonditions) and diversification strategy (exjpigranother area of
the space of solutions).

For a given solutiorx of the simulation optimization probleiffs), simulation estimates the time of trawglof the
customers with demardiand their waiting timey, at bus stop (reminder: all these values are stored in vesjoBesides
the implicit constraints of simulation, we consiaer additional constraints ifs that can discard a solutiorbased on its

estimationA. That means any solution] C is a feasible solution ofP) (it is a necessary condition for model
enhancement to work).

Discrete-event simulation is used to simulate th&tesn, i.e. the bus and the customers are individotties, whose
moves are simulated to estimate the waiting tintethe bus stops and the travel times of the custertia order to
evaluate their satisfaction).

Figure 5: Graph modeling Clermont-Ferrand (France) downtown.

We consider now a graph witt09 vertexes an®92 edges that represents Clermont-Ferrand downtoWrFigure 5),
with 12 customer demands. Table 1 presents nunheesalts for the simulation optimization on thisiance. In order to
test various problem structures, the number ofrobmtoints in a geodesic varies. We also consigseral maximal
lengthsT for the bus route. The tabu search has been inguitsd with C++ and the simulation model with the+B+
Simulator frameworR (cf. Figure 6). The tests have been performed dfeatium Centrino 1.7 GHz with G++ 3.2
compiler.

! Information available att t p://frog.isima.fr/bruno/ ?2doc=bpp_l i brary+ch=si mul ator.
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B++ Simulator T\ RE SR | T Barbisserl y—RowHer Barbisss 5 prsél
clock i ) > & :

1223603000000

Measure Range

1000003000000

Replication

Status
|Paused..
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start | Pause

Reset | Close

Speed
< »
ga/100
Text Size
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_'IJ
name = Node 50 = Reading 'bpp tools/data/simulator/urban bus/clernomt.exp' Experiment File... B
native pointer = Ox100adadl
parent = City Map [>] Starting Experiment...
layer = 3
inside = no [*#] Replication l...
pogition = H15:598 (center) Creating Network...
Creating Nodes. ..
logation = City Map Creating Arcs...
children = 0O Creating Demands...
waiting time = L0&F.777776 Creating Mobile Objects...
customers = 9 Creating Bus Lines...
Creating Customer Factories...
¥ Raumning. . - =
4 .|‘| 7| | sl

Figure 6: Visual representation of the simulation.

Execution times can be more than a day. As ourqaghere is only to know good practical solutiangdmpare with
model enhancement's ones, we choose to limit thebeu of diversifications. Notice that the number sifhulation
evaluations to solvéPy) is high, and without our restriction, it can reaciore than100000 evaluations. Hence, the
solutions provided here are not always the best tret simulation optimization can provide.

Control | Length Bound | Best Evaluation Number of | CPU Time

Points T fs(z) Evaluations (hours)
5 700000 10.33 3793 5h04
5 800000 10.30 5203 7h04
5 900000 10.32 4807 6h08
5 1000000 10.32 7573 9h44
7 700000 10.32 8201 10h44
7 800000 10.34 6092 8h16
7 900000 10.32 6749 8h56
7 1000000 10.31 7883 10h28
10 700000 10.32 8843 11h20
10 800000 10.33 9706 10h12
10 900000 10.31 10732 13h52
10 1000000 10.34 8812 11h04
15 700000 10.31 6074 8h20
15 800000 10.32 8759 10h08
15 900000 10.33 10699 11h16
15 1000000 10.33 10302 11h08

Table 1: Simulation optimization numerical results.
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5.3. Straightforward Optimization

Our bus routing problem is strongly related to thell-known Vehicle Routing Problem (VRP) class. el
straightforward optimization techniques can be @®red to solve the problem [Toth and Vigo 2004pé&cially, [Yonet

al. 2003] propose a mixed integer programming fornioatThey show that the tabu search (as defingtiernprevious
section) can provide solutions very close to thénegd solution (when known) or to the best knowruson (when it
takes to much time or memory to get an optimaltgmiuising mixed integer programming).

Thus, we prefer to choose the tabu search as otivoohe to solve the optimization proble(R,). It still searches a good
solution x, but this time in the space of solutioBs. With mixed integer programming;, would be larger thaiCg
(C, O Cy), because instead of forcing the solution to lgeedesic, it would look for any directed cycle. kviabu search,
it is easier to keep the geodesic structureé; soCs.

N\o is an approximation of\s. The implicit constraints of simulation that defifs are replaced by constraints to estimate
the time of travety of the customers with demaud Other constraints fix the waiting timegto zero for any bus stdp
due to the assumption that there will be enougled®os the bus route for the waiting times to bagiiicant. To sum up,
N\, approximates the way to estimate the travel tiaressets the waiting times to zero.

Length Straightforward Optimization Simulation Optimization
Control Bound Theoretical Eval. | Simulation Eval. Best Evaluation CPU Time
Points T fo(z?) fs(x?) fs(a%) (seconds)
5 700000 11.99 10.29 (-0.4%) 10.33 5.0
5 800000 11.99 10.25 (-0.5%) 10.30 5.0
5 900000 11.99 9.62 (-6.8%) 10.32 5.1
5 1000000 11.99 10.08 (-2.4%) 10.32 5.3
7 700000 11.99 10.31 (-0.1%) 10.32 6.8
7 800000 11.99 9.92 (-4.1%) 10.34 7.1
7 900000 11.98 9.79 (-5.1%) 10.32 7.5
7 1000000 12.00 9.43 (-8.5%) 10.31 7.6
10 700000 11.97 10.18 (-1.4%) 10.32 7.7
10 800000 11.99 9.92 (-4.0%) 10.33 8.9
10 900000 11.99 10.05 (-2.5%) 10.31 9.4
10 1000000 12.00 9.33 (-9.8%) 10.34 10.3
15 700000 11.99 10.29 (-0.2%) 10.31 8.0
15 800000 11.99 10.01 (-3.0%) 10.32 9.0
15 900000 11.99 9.85 (-4.6%) 10.33 9.8
15 1000000 12.00 9.56 (-7.5%) 10.33 10.8

Table 2: Straightforward optimization humerical results.

Under the same conditions than probl@®y), tests have been performed {8). The problem is solved with tabu search.
Table 2 shows the theoretical evaluatfgix,*) of the best solutiong,* found for (P,), and their simulation evaluation
f{(%.*). The resolution is quite fast (aroud@ seconds) compared to simulation optimization (s&vlours), but the
solutions do not always have good simulation evalna. Inside parenthesis is indicated the relatifference( fy(xq*) -

fo(xs) ) 1 fs(xs*)-

5.4. Model Enhancement

Simulation optimization provides good practicalutimns, but needs a very long time to execute Table 4). At the
opposite, straightforward optimization is very falstit provides poor practical solutions. We desenifow the model
enhancement heuristic (as proposed in Section @ljeapto our bus routing problem, in order to impeahe contraints
defining/\, so problen{P,) provides good practical solutions.

In problem(P,), we assumed that the waiting timgsare set to zero at any bus stophese constraints may makg a
poor approximation of\s. As the method used to sol{fe,) can deal with any constant waiting timest 0, we propose to
modify these theoretical waiting times at eachaitien of model enhancement (in order to maAke better approximation
of Ay).

Let us denotev* the waiting times for problertP,) at iterationk, andAs= (wt), composed of vectons = (W);ov (the
estimated waiting times) artd= (tg)qp (the estimated travel times), the simulation eatidun of the current theoretical
solutionx.*. If w; Z0, that means was effectively used as a bus stop during the Isitiom. Thus, we propose to teng**

to w; as follows:w*"* — w*+ A(w, - w). If w,= 0, that means is a vertex where customers never stop. However, w
propose to tena“"* to the meaM of the waiting times (estimated since the starthef algorithm) as followsy<"* —

Wik + A(M - Wik).
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A <1is a progression step that needs to be tunedc@mehoosé either constant, or variable according to the nemnub
iterations (in order to ensure some convergenom).this routing problem, we choose a constant 0.1 and decide to
stop the model enhancement after 100 iterations, or when there is some convergencethesdifference between the
theoretical evaluatiofy(X;*) = g(x.*,A.*) and the simulation evaluatidgix,*) = g(x.*,As) is less tham = 0.01. Algorithm 2
summarizes the model enhancement heuristic fobosirouting problem.

Algorithm 2: Model enhancement heuristic for bus routing prnoble
for each vertex iV do Wik - 0

r epeat

k « k+1;

solve (Py) with waiting times Wik, gV

Il et (X*,Ag*) be an optimal solution of (Py);

let As= (Wt) be the sinulation evaluation of X,
update mean M of the estimated waiting tines;

for each vertex iV do
if wz0 then W' — w*+ Aw - w");
el se W — wf+ AM - w);

end for;

until |g(X*A*) - O(X*Ag) | <€ or k=n;

Under the same conditions than problefRg and (P,), tests have been performed for model enhancermaie 3
indicates the theoretical evaluation of the bekitEmsx* found. It shows that it is very close to the siatidn evaluation
of the same solution. In parenthesis, it indicéitesrelative improvement of the practical qualifyttee solution compared
to straightforward optimizatior(fs(xe*) - fo(%*) ) / fs(Xs*). The number of iterations of the model enhancementess is
also provided.

Length Model Enhancement Straight. | Simulation CPU

Control Bound Theoretical Simulation Nb Opti. Opti. Time
Points T folzk) fs(zd) Tter. fs(xd) fs(xd) (minutes)

5 700000 10.48 10.48 (+1.8%) 51 10.29 10.33 746

5 800000 10.38 10.38 (+1.3%) 51 10.25 10.30 747

5 900000 10.20 10.20 (4+6.0%) 45 9.62 10.32 6’53

5 1000000 10.23 10.23 (4+1.5%) 49 10.08 10.32 720

7 700000 10.49 10.49 (+1.7%) 46 10.31 10.32 824

7 800000 10.40 10.41 (+4.9%) 46 9.92 10.34 8’33

7 900000 10.21 10.22 (+4.4%) 52 9.79 10.32 928

7 1000000 10.21 10.21 (4-8.3%) 33 9.43 10.31 6’09

10 700000 10.47 10.47 (+2.8%) 50 10.18 10.32 908

10 800000 10.41 10.41 (+4.9%) 33 9.92 10.33 701

10 900000 10.12 10.12 (4+0.7%) 56 10.05 10.31 12’18

10 1000000 10.05 10.05 (4+7.7%) 64 9.33 10.34 15’00

15 700000 10.48 10.49 (+1.9%) 51 10.29 10.31 10°02

15 800000 10.42 10.42 (+4.0%) 44 10.01 10.32 9’17

15 900000 10.22 10.22 (4+4.0%) 56 9.85 10.33 12’35

15 1000000 10.06 10.06 (45.2%) 61 9.56 10.33 14’41

Table 3: Model enhancement numerical results.

The resolution is slower than straightforward ojation, but is really faster that simulation optiation (cf. Table 4). In
fact, few calls to simulation evaluation are reqdircontrary to simulation optimization that needtarge amount of
evaluations. The quality of the solution providgdnbodel enhancement is usually close to the oneigeed by simulation
optimization, and always improves the solution jed by straightforward optimization.
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Control | Length Bound Simulation Straightforward Model

Points T Optimization Optimization Enhancement
5 700000 5h04 0h00’05s 0h07’46s
5 800000 7h04 0h00’05s 0h07°47s
5 900000 6h08 0h00’05s 0h06°53s
5 1000000 9h44 0h00’05s 0h07°20s
7 700000 10h44 0h00’07s 0h08’24s
7 800000 8h16 0h00’07s 0h08’33s
7 900000 8h56 0h00’08s 0h09’28s
7 1000000 10h28 0h00’08s 0h06°09s
10 700000 11h20 0h00’08s 0h09°08s
10 800000 10h12 0h00’09s 0h07°01s
10 900000 13h52 0h00’09s 0h12’18s
10 1000000 11h04 0h00°10s 0h15°00s
15 700000 8h20 0h00’08s 0h10°02s
15 800000 10h08 0h00’09s 0h09°17s
15 900000 11h16 0h00’10s 0h12’35s
15 1000000 11h08 0h00’11s Oh14°41s

Table 4: Execution times comparison.

Figure 7 shows the evolution and the convergendeotif theoretical and simulation evaluations ofisoh x,;* at each
iterationk of the model enhancement process, for the sedral0-points geodesic with= 1000000. At the beginning,
the theoretical evaluation is far from the simulatbne, it is due to the fact that all the waitiimges are considered to be
zero in the theoretical model. Progressively, tteting times information is injected into the thetical model, which
makes the theoretical optimization to provide vasi@ptimal solutions (that are not always very googractice, which
explains the variations in the first iterationsinatly, a good solution is found, with its theooati evaluation very close to
the simulation one.
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Figure 7: Solution estimation evolution with model enhancaetnease 1.

The convergence seems to be achieved quite eaditysi case. However, Figure 8 shows the same dfirvolution for
the search of a 7-points geodesic witk 1000000. As shown in this figure, the heuristic sometinossillates between
several good solutions, thus the convergence ig mhfficult to achieve.
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Figure 8: Solution estimation evolution with model enhancatnease 2.

6. Conclusion

Simulation optimization provides good practicalimns. However, it may take a long time to executéh lots of
simulation evaluations. At the opposite, for somebfems, like the routing problem presented heffigient theoretical
approaches can efficiently solve simplified forntidas. But, usually, they find solutions that ace 80 good in practice.

We propose in this article an approach cattedlel enhancement that still focuses on the theoretical problem, &ies to
improve its formulation in order to take into acnbpractical aspects (estimated by simulation). fitn@ goal is for the
theoretical approach to provide good practical tsohs.

We formalize model enhancement as prob{@g) which, in some conditions, should provide the lpsttical solution
(according to simulation evaluation). This probleseems actually very hard to solve. It proposes nlesiess a different
way to think of optimization and simulation couginTherefore, we present a quite simple heuristic rhodel

enhancement, illustrated on a routing problem. Ermpntal results show the potential of model enkament, which
needs further investigation.
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