N
N

N

HAL

open science

Optimized Data Management for E-Learning in the
Clouds towards Cloodle

Mirna Adriani, Yeow Wei Choong, Ba-Hung Ngo, Laurent d’Orazio,

Dominique Laurent, Nicolas Spyratos, Bruno Bachelet, Christophe Duhamel,

Tao-Yuan Jen, Claudia Marinica, et al.

» To cite this version:

Mirna Adriani, Yeow Wei Choong, Ba-Hung Ngo, Laurent d’Orazio, Dominique Laurent, et al..
Optimized Data Management for E-Learning in the Clouds towards Cloodle.
Information and Communication Technology (SoICT), Dec 2013, Danang, Vietnam. pp.320-324,

10.1145/2542050.2542089 . hal-01704208

HAL Id: hal-01704208
https://hal.science/hal-01704208
Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

4th Symposium on

https://hal.science/hal-01704208
https://hal.archives-ouvertes.fr

Optimized Data Management for E-Learning in the Clouds
Towards Cloodle

Mirna Adriani
Faculty of Computer Science
University of Indonesia
Depok, Indonesia
mirna@cs.ui.ac.id

Laurent d’'Orazio
Clermont Université -
Université Blaise Pascal
CNRS - UMR 6158 LIMOS
Clermont-Ferrand, France
laurent.dorazio@univ-
bpclermont.fr

Yeow Wei Choong
HELP University
Kuala Lumpur, Malaisia

choongyw@help.edu.my

Dominique Laurent
Université du Grand Ouest
Parisien - Université de Cergy
Pontoise
CNRS - UMR 8051 ETIS
Cergy Pontoise, France

dominique.laurent@u-

Ba Hung Ngo
Can Tho University
CNRS - UMR 8623 LRI
Cantho, Vietnam
nbhung@cit.ctu.edu.vn

Nicolas Spyratos
UniverSud Paris - Université
Paris Sud
CNRS - UMR 8623 LRI
Orsay, France
nicolas.spyratos@lri.fr

cergy.fr

ABSTRACT

Cloud computing provides access to "infinite” storage and
computing resources, offering promising perspectives for
many applications, particularly e-learning. However, this
new paradigm requires rethinking of database management
principles in order to allow deployment on scalable, easy
to access infrastructures, applying a pay-as-you-go model in
which failures are not exceptions but rather the norm. The
GOD project aims to provide an optimized data manage-
ment system for e-learning in the cloud by rethinking tradi-
tional database management techniques, extending them to
consider the specificities of this paradigm.

Categories and Subject Descriptors

H.2.4 [Systems]: Distributed databases, Parallel databases;
H.3.4 [Systems and Software]: Distributed systems

General Terms
Algorithms, Design

Keywords

Data Management, Cloud Computing, Big Data, Optimiza-
tion, E-Learning

1. INTRODUCTION

Cloud computing [6] aims to tackle increasing needs of
computing and storage resources, in a userfriendly way and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SoICT 13, December 05 - 06 2013, Danang, Viet Nam

Copyright 2013 ACM 978-1-4503-2454-0/13/12$15.00.
http://dx.doi.org/10.1145/2542050.2542065

has attracted increasing interest, in particular by major IT
companies (Google, Microsoft or Amazon). Clouds thus en-
able to envison data management at an unexpected scale and
in diverse contexts. In particular, clouds are quite promising
for e-learning, referring to educational technology for learn-
ing and teaching.

However, clouds’ performance usually relies on brute force
(i.e. using more nodes and more powerful nodes) thus
leading to high cost and suboptimal resource management.
Performance optimization has been studied for years in
databases using methods such as indexing, view material-
ization or cache. These methods could also help improve
the performance in the cloud. In particular, materialized
views and semantic cache could enable to rewrite queries
so that to reuse results from previous requests. However,
existing solutions, relying on well known languages (SQL,
Xpath, etc.) or data models (relational, object, etc.), are
not suited to cloud data management, which uses key-value
stores or analysis systems based on large scale distributed
file systems.

The GOD project aims to propose Cloodle, an optimized
cloud version of the Moodle e-learning environment. The
main contributions of Cloodle are an e-learning system rely-
ing on a cloud data back end, an adaptable semantic cache
to be used with rewriting rules, cost- and preference-aware
query processing.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates the GOD project. Then Sections 3 and 4
detail sophisticated caching strategies while Sections 5 and
Section 6 focus on cost- and preference-aware query process-
ing. Finally, in Section 7, we conclude the paper.

2. CONTEXT AND MOTIVATION

E-learning is a term used to include all forms of educa-
tional technology for both learning and teaching. This ap-
proach in learning and teaching is particularly suitable for
distance learning since technologies can provide the solution
when the environment is as such that the source of knowl-
edge (i.e. information) and the learners are separated by

time or distance, or both.

The e-learning technologies have been evolving alongside
with the advancement of the World Wide Web. As more and
more courses are provided online through the Internet, one
can study without attending classes. Learners are able to
complete their studies whenever and wherever without hav-
ing to travel or to participate at specific time e.g. classes
according to the timetable provided. In the United States,
over a third of all students enrolled in postsecondary edu-
cation took an online course for credit in fall 2011 [7]. This
new model requires a massive data management system.

One of the widely used e-learning platforms for insti-
tutions of higher learning is Moodle *. This platform is
an Open Source Course Management System where de-
velopers are allowed to make modifications based on their
needs with certain terms and conditions. Moodle provides
blended learning opportunities as well as platforms for dis-
tance learning courses. Many universities and colleges use
Moodle as the online learning system in their daily learning
and teaching activities.

The main goal of the GOD project is to supply Cloodle, a
cloud version of Moodle relying on an optimized data man-
agement system. The first task of this project consists in
substituting the MySQL backend currently used in Moodle
with a cloud data management system with respect to the
data and the queries to be processed. Several systems ex-
ists. Some of them consists on large scale solutions provid-
ing a simplified query interface (usually a subset of SQL),
like Amazon SimpleDB [3] or DynamoDB [1]. Less scal-
able but fully relational approach are also available, such as
Amazon RDS [2] and SQL Azure [26]. Data intensive anal-
ysis tools such as Pig [28], Hive [32], SCOPE [10] or Jaql
[8], relying on massively parallel execution environment like
MapReduce [16], or its open source version Hadoop [5] have
been developped.

Cloud data management system’s performance usually re-
lies on brute force, using more nodes or/and more powerful
nodes. This leads to high cost and suboptimal resource man-
agement. Performance optimization has been studied for
years in databases. In this project, we particularly aims at
studying four techniques: semantic caching 3, rewriting 4,
cost-based optimization 5 and querying with preferences 6.

3. SEMANTIC CACHING

Semantic caching [23, 14] manages a cache as a set of
query results. When a query is posed, it is decomposed into
two disjoint queries: the probe query retrieves the result al-
ready present in the cache and the remainder query retrieve
missing objects.

Semantic caching has been studied in several contexts:
distributed databases [23, 14], web [11, 12, 25] and grid com-
puting [18]. These solutions differ in several ways. The cache
can thus store query results [14] called semantic regions or
semantic segments, objects to be strongly [23] or indepen-
dently [18] associated to and possibly shared by predicates.
Some of them focus on a specific data structure like XML
[11], [25]. Efficient research, via signature files has been pro-
posed for keyword based and conjunctive queries. In a previ-
ous work, we deployed P2P semantic caches, called CoopSC
[35] to highlight potential money savings in the cloud, in
addition to traditional time and bandwidth consumption re-

Thttps://moodle.org/

ductions. All these techniques are complementary to our
project and can be reused to provide finely tuned caches.

Using a cache framework, such as ACS [17], GOD data
management system will rely on tunable semantic caches,
particularly, two adaptable main functionalities: query anal-
ysis and query evaluation. Query analysis refers to the se-
mantic process of comparing submitted query with the con-
tent of the cache to deduce semantic overlap or mismatch,
and identifies one or more cache entries to be used to answer
a submitted query. Query evaluation consists of operators
(selection, projection, order, group by, etc.) to locally eval-
uate queries on the cache content.

4. REWRITING

The problem of optimizing semantically related queries
has received a lot of attention during the last decades. Main
references are presented into a wide survey on this topic
[20]. Our approach differs from these solutions in two main
ways. First, to the best of our knowledge, because [24] is
the first approach to OLAP query rewriting in which the
content of the cache is optimized. Second, our approach is
meant to take into account specificities of NoSQL systems
(considering not only the well known relational model) and
their associated query languages.

Another approach to optimizing query processing is to
pre-compute queries, also known as materialized views, store
the corresponding answers in a cache and reuse them in the
query evaluation process. In [24], we have proposed novel so-
lutions to answer queries using views in a common formalism
based on the partition semantics [29]. Every OLAP query Q
is associated to a partition II(Q), whose blocks are the sets
of tuples that are grouped together by the GROUP BY clause
in Q when processing aggregates. Given a query @, the set
of all queries Q' associated with the same partition as Q
can be characterized using the functional dependencies that
hold on the database. In addition, partitions allow to com-
pare queries and such comparisons can be expressed using
functional dependencies. Contrary to all other approaches,
using such theoretical result in our solution, the answer to
Q is not stored , but it is augmented by (1) attributes oc-
curring in the closure of the attributed set of the answer
to @ and (2) attributes storing aggregate values not occur-
ring in Q. First, this makes it possible to rewrite as many
queries as possible using a given query @) with limited extra
storage. Then a provided actual rewriting method enable
to easily answer these queries. Finally, these rewriting tech-
niques can be used to efficiently manage the cache content,
storing mutually non redundant queries.

However, none of them takes into account properties such
as elasticity and pay-as-you-go.

5. COST MODELS AND OPTIMIZATION

GOD will consider deploying e-learning systems in pub-
lic clouds and a pay-as-you-go model. This model leads to
consider data management in general, and optimization par-
ticularly, from a novel point of view. Recent approaches [15,
22, 34] have addressed the challenge of selecting the opti-
mizations to implement and the way to price them in a data
shared environment. These solutions studied the optimiza-
tion in a shared environment at a higher level than we do
in the GOD project. Indeed, cloud providers such as Ama-
zon, Google, and Microsoft, supply a pool of resources, like

hardware (CPU, storage, networks), development platforms
or services. Each provider offers different pricing and ser-
vices. Then this pricing model may be consider from differ-
ent points of view.

One of our preliminary prior work provided cost mod-
els, inspired from AWS’s offer, for materialized views in the
cloud [27]. In our simplified model, the total cost C for cloud
data management is:

C=C.+Cs+Ch. (1)

In this model, C., Cs and C; are the sum respectively
of computing costs, storage costs and data transfer costs,
depending on several parameters such as the size of the data
set, the pricing model, the type and number of nodes or the
storage time.

In this project, we will first propose a uniform cost model
for data management in the cloud, taking into account the
pricing model of the main providers (Amazon, Microsoft and
Google) and extending it with their specificities (licences,
internal data transfers, etc.).

The GOD project will then consider cost-based optimiza-
tion in two distinct cases. The first one is about general
resources management, to provide the accurate level of re-
sources (type and number of virtual machines) for the e-
learning platform to supply a given level of quality of service.
The second one will focus on query processing in presence
of semantic caches and rewriting rules.

We will use multi-criteria optimization to enable users
specifying objectives: (1) minimizing the response time
given a fixed budget, (2) minimizing the cost given a dead-
line or (3) finding a trade-off between time and cost. Exact
solving methods, like Mixed Integer Programming (MIP)
techniques, and metaheuristics, like GRASP, will be consid-
ered to solve mono-objective problems. Metaheuristics like
NSGA-II will be studied to solve bi-objective problems.

6. PREFERENCES

An e-learning system usually consists of electronic cata-
logue. An electronic catalogue is simply a table describing
a set of items though their attributes. Users query the ta-
ble in search of items of interest. However, more often than
not, the answer set of a query contains several hundreds or
thousands of items, most of which might be of no interest
to the user. One solution to this problem is to present the
items of the answer set in a decreasing order with respect to
user preferences.

We call preference based query, or simply preference
query, an ordinary query together with a set of preferences
expressed by the user online, together with the query. Our
main objective is twofold: (1) present an approach to the
specification and evaluation of preference queries; (2) de-
scribe a user-friendly interface that allows a user to express
a preference query over tabular data, and receive an answer
set that is ordered in decreasing order of preference.

The specification and evaluation of preference queries has
received considerable attention in the past several decades,
mainly in the areas of decision support and databases. The
use of preferences for ranking alternative choices has been
around in decision making and social choice theory since
the 1950s (see [33] for a comprehensive survey). However,
the use of preferences in ranking query answers is quite re-
cent and their embodiment in a query language presents a

Serial | Make | Color | Mileage | Price | Year
1 BMW | Black 35000 3800 | 2002
2 Honda | Blue 63000 2900 | 2000

Table 1: Table T, an e-catalogue for the sale of used
cars (e.g. Autoreflex: http://pro.autoreflex.com/)

number of difficult problems (see [4], [13] and [21] for some
influential papers). We note here that the use of preferences
is also related to an important recent concept in databases,
namely to the so called “skyline queries” [9].

One issue related to preference queries is the kind of pref-
erences that a user can express. The nature of preferences
can be either quantitative or absolute (e.g. Ilike BMW 80%,
I like VW 70%, ...) difficult to express by casual users but
easy to compute, or qualitative (e.g. I like BMW more than
VW) easy to express by casual users and easy to infer by a
machine. The persistence in time of preferences can be long
term, discovered by the system (unobtrusively, from query
logs) or declared explicitly by the user and stored in the so
called user’s profile, or short term, expressed online explic-
itly by the user. The nature and persistence in time are
orthogonal features of preferences. In this work we focus on
short term, qualitative preferences (i.e. online preferences).
In what follows, we sketch our approach through an exam-
ple.

Consider the electronic catalogue T of an Internet com-
pany selling used cars (shown in Table 1). Each line of this
table corresponds to a car (i.e. each tuple is the metadata
record of a car), and the table might contain several thou-
sands or even tens of thousands of tuples.

Consider now a usual query Q = VW V BMW over T with
preference P = Red — Black (meaning “Red is preferred to
Black” as a color).

The system may output first a table Treq containing all
red cars which are either VW or BMW and then a table
TBiack containing all black cars which are either VW or
BMW.In that case, the user can “consume” the answer one
“piece” at a time, in descending order of preference and stop
“consumption” at any time.

One advantage of doing so is that the system can adapt
to preferences. For example, if the preference Red — Black
is replaced by Black — Red then T'Biqcr Will be shown first,
followed by Treq. To be able to support such an interac-
tion with the user, we can follow one of the following two
approaches:

1. First compute the answer to Q and then use the prefer-
ence P to partition the answer set into the tables Treq
and TBieck to be shown to the user in that order.

2. First use the preference P to rewrite QQ into two queries
QRred and QBiack SO that their answers are the tables
Trea and TBiack-

The first approach is commonly used in the literature. In our
work we propose to use the second approach, in the spirit of
[19] [30].

7. CONCLUSION

In this paper, we presented data management in the GOD
project. We introduced e-learning in the cloud. Then we

presented techniques to optimize data management, partic-
ularly caching strategies and rewriting rules, cost-based op-
timization using cloud-aware cost models and querying with
preferences. In the near future, we will provide more details
about the prototypes and results on the project Web site
[31].

8. ACKNOWLEDGMENTS

Thanks to all the colleagues in CTU, ETIS, HELP Univer-
sity, LIMOS, LRI and University of Indonesia all the inter-
esting discussions and for their extremely insightful remarks
for improving this paper. This work is supported in part by
the Ministere des Affaires étrangeres and the CNRS (under
grant STIC-Asie-12-GOD).

9. ADDITIONAL AUTHORS

Additional authors: Bruno Bachelet (Université Blaise
Pascal, email: bruno.bachelet@univ-bpclermont.fr),
Christophe Duhamel (Université Blaise Pascal, email:
christophe.duhamel@univ-bpclermont.fr), Tao-Yuan
Jen (Université de Cergy-Pontoise, email: jen@u-
cergy.fr), Claudia Marinica (Université de Cergy-
Pontoise, email: claudia.marinica@u-cergy.fr), Thuong
Cang Phan (Université Blaise Pascal, email: cang@univ-
bpclermont.fr), Gilbert Ooi Sin Cheak (HELP University,
email: gilbert.ooi@helpcat.edu.my), Romain Perriot
(Université Blaise Pascal, email: romain.perriot@univ-
bpclermont.fr), Tran Thi To Quyen (Can Tho University,
email: tranthitoquyen@cit.ctu.edu.vn) and Loic
Yon (Université Blaise Pascal, email: loic.yon@univ-
bpclermont.fr).

10. REFERENCES
[1] Amazon. Dynamodb. web page.

http://aws.amazon.com/dynamodb/.

[2] Amazon. Rds. web page.
http://aws.amazon.com/rds/.

[3] Amazon. Simpledb. web page.
http://aws.amazon.com/simpledb/.

[4] H. Andréka, M. Ryan, and P.-Y. Schobbens.
Operators and laws for combining preference relations.
J. Log. Comput., 12(1):13-53, 2002.

[5] Apache. Hadoop. web page.
http://hadoop.apache.org/.

[6] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and Others. A view of cloud computing.
Communications of the ACM, 53(4):50-58, 2010.

[7] Babson. Babson survey research group. Babson Survey
Research Group.

[8] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J.
Shekita. Jaql: A scripting language for large scale
semistructured data analysis. PVLDB,
4(12):1272-1283, 2011.

[9] S. Borzsonyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421-430, Heidelberg,
Germany, 2001.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
PVLDB, 1(2):1265-1276, 2008.

[11] L. Chen, E. A. Rundensteiner, and S. Wang. Xcache:
a semantic caching system for xml queries. In
SIGMOD, page 618, Madison, Wisconsin, USA, 2002.

[12] B. Chidlovskii and U. M. Borghoff. Semantic caching
of web queries. VLDBJ, 9(1):2-17, 2000.

[13] J. Chomicki. Preference formulas in relational queries.
ACM TODS, 28(4):427-466, 2003.

[14] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava,
and M. Tan. Semantic data caching and replacement.
In VLDB, pages 330-341, Bombay, India, 1996.

[15] D. Dash, V. Kantere, and A. Ailamaki. An economic
model for self-tuned cloud caching. In ICDE, pages
1687-1693, Shanghai, China, 2009.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137-150, San Francisco, California, USA, 2004.

[17] L. d’Orazio, C. Roncancio, and C. Labbé. Adaptable
cache service and application to grid caching.
Concurrency and Computation: Practice and
Ezxperience, 22(9):1118-1137, 2010.

[18] L. d’Orazio and M. K. Traore. Semantic cache for
pervasive grids. In IDEAS, pages 227-233, Cetraro,
Italy, 2009.

[19] P. Georgiadis, I. Kapantaidakis, V. Christophides,

E. M. Nguer, and N. Spyratos. Efficient rewriting
algorithms for preference queries. In ICDE, pages
1101-1110, Cancin, México, 2008.

[20] A.Y. Halevy. Answering queries using views: A
survey. VLDBJ, 10(4):270-294, 2001.

[21] S. Holland and W. Kiefling. Situated preferences and
preference repositories for personalized database
applications. In ER, pages 511-523, Shanghai, China,
2004.

[22] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki.
Predicting cost amortization for query services. In
SIGMOD, pages 325-336, Athens, Greece, 2011.

[23] A. M. Keller and J. Basu. A predicate-based caching
scheme for client-server database architectures.
VLDBJ, 5(1):35-47, 1996.

[24] D. Laurent and N. Spyratos. Rewriting aggregate
queries using functional dependencies. In MEDES,
pages 40-47, San Francisco, CA, USA, 2011.

[25] K. Lillis and E. Pitoura. Cooperative xpath caching.
In SIGMOD, pages 327-338, Vancouver, BC, Canada,
2008.

[26] Microsoft. Sql azure. web page.
http://www.windowsazure.com/en-
us/home/features/data-management/.

[27] T.-V.-A. Nguyen, S. Bimonte, L. d’Orazio, and
J. Darmont. Cost models for view materialization in
the cloud. In DanaC@QEDBT, pages 47-54, Berlin,
Germany, 2012.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, pages 1099-1110,
Vancouver, BC, Canada, 2008.

[29] N. Spyratos. The partition model: A deductive
database model. ACM TODS, 12:1-37, 1987.

[30] N. Spyratos, T. Sugibuchi, and J. Yang. Personalizing
queries over large data tables. In ADBIS, pages
271-284, Vienna, Austria, 2011.

[31] G. Team. God. web page. http://home.isima.fr/god/.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Z. 0002, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
ICDE, pages 996-1005, Long Beach, California, USA,
2010.

[33] A. Tsoukias. From decision theory to decision aiding
methodology. European Journal of Operational

(34]

35]

Research, 187(1):138-161, 2008.

P. Upadhyaya, M. Balazinska, and D. Suciu. How to
price shared optimizations in the cloud. PVLDB,
5(6):562-573, 2012.

A. Vancea, G. S. Machado, L. d’Orazio, and B. Stiller.
Cooperative database caching within cloud
environments. In AIMS, pages 14-25, Luxembourg,
Luxembourg, 2012.

