N

N
N

HAL

open science

Runtime correctness checking for emerging

programming paradigms
Joachim Protze, Christian Terboven, Matthias Miiller, Serge Petiton, Nahid
Emad, Hitoshi Murai, Taisuke Boku

» To cite this version:

Joachim Protze, Christian Terboven, Matthias Miiller, Serge Petiton, Nahid Emad, et al.. Runtime
correctness checking for emerging programming paradigms. Correctness’l7 - the First International
Workshop on Software Correctness for HPC Applications, IEEE and ACM Supercomputing 2017, Nov
2017, Denver, CO, United States. pp.21-27, 10.1145/3145344.3145490 . hal-01704205

HAL Id: hal-01704205
https://hal.science/hal-01704205
Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01704205
https://hal.archives-ouvertes.fr

Runtime Correctness Checking for Emerging Programming
Paradigms

Joachim Protze
RWTH Aachen University
Aachen, Germany
protze@itc.rwth-aachen.de

Serge Petiton
Maison de la Simulation
Saclay, France
University of Lille
Lille, France
serge.petiton@univ-lille1.fr

Christian Terboven
RWTH Aachen University
Aachen, Germany
terboven@itc.rwth-aachen.de

Nahid Emad
Maison de la Simulation
Saclay, France
University of Versailles
Versailles, France
nahid.emad@uvsq.fr

Matthias S. Miiller
RWTH Aachen University
Aachen, Germany
mueller@itc.rwth-aachen.de

Hitoshi Murai
RIKEN AICS
Kobe, Japan

h-murai@riken.jp

Taisuke Boku
University of Tsukuba
Tsukuba, Japan
taisuke@cs.tsukuba.ac.jp

ABSTRACT

With rapidly increasing concurrency, the HPC community is look-
ing for new parallel programming paradigms to make best use
of current and up-coming machines. Under the Japanese CREST
funding program, the post-petascale HPC project developed the
XMP programming paradigm, a pragma-based partitioned global
address space (PGAS) approach. Good tool support for debugging
and performance analysis is crucial for the productivity and there-
fore acceptance of a new programming paradigm. In this work we
investigate which properties of a parallel programing language spec-
ification may help tools to highlight correctness and performance
issues or help to avoid common issues in parallel programming in
the first place. In this paper we exercise these investigations on the
example of XMP. We also investigate the question how to improve
the reusability of existing correctness and performance analysis
tools.

CCS CONCEPTS

« Software and its engineering — Correctness; Parallel pro-
gramming languages; Software maintenance tools;

ACM Reference Format:

Joachim Protze, Christian Terboven, Matthias S. Miiller, Serge Petiton,
Nahid Emad, Hitoshi Murai, and Taisuke Boku. 2017. Runtime Correct-
ness Checking for Emerging Programming Paradigms. In Proceedings of
Correctness’17: First International Workshop on Software Correctness for
HPC Applications (Correctness’17). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3145344.3145490

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Correctness’17, November 12-17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5127-0/17/11.

https://doi.org/10.1145/3145344.3145490

1 MOTIVATION

In this paper we discuss three research questions: First, which prop-
erties of a language or parallelization paradigm are required to en-
able effective automatic correctness checking and possibly to avoid
errors in the first place; second, how can existing specifications or
APIs be extended to provide the necessary semantic information for
the correctness checking tool; finally, to what extent can existing
tools be reused and mapped to such a new programming paradigm.

We exercise this evaluation based on XcalableMP (XMP). XMP
is a partitioned global address space (PGAS) approach driven by
the Japanese exascale initiative.

As a PGAS aproach, XMP combines paradigms from shared and
distributed memory programming; XMP also utilizes pragma based
directives as well as API functions and base-language extensions.
With these properties, XMP represents most features that a PGAS,
distributed or shared memory programming paradigm would pro-
vide. This means similar analysis can be applied to many existing
or up-coming parallel programming approaches.

For correctness analysis, we distinguish three classes of analysis:

e Static analysis: This kind of analysis can be done by solely
inspecting the source code. Typically, this analysis is done
while compilation, but could also be part of a stand-alone tool.
Dynamic, local analysis: This kind of analysis needs informa-
tion from an actual execution of the program. The number of
executing parallel processes is one example for a value that is
specific for an actual execution.

Dynamic, global analysis: This kind of analysis needs informa-
tion from multiple parallel executing processes. An example
are values provided to some collective constructs, that are
required to be the same between all participating processes.

If properties of a program can be checked statically, this should be
done by the compiler during the compilation of the application. An
alternative could be a separate tool, that parses the source code and

https://doi.org/10.1145/3145344.3145490
https://doi.org/10.1145/3145344.3145490

Correctness’17, November 12-17, 2017, Denver, CO, USA

applies the analysis. Generally speaking, the effort for implementa-
tion, analysis and usage is lower if the analysis is integrated into
the compiler, as the language specific parser can be reused and for
the user it is a single invocation.

Dynamic analysis could be done by the runtime library imple-
mentation—if there is any—or by an external tool. Looking at MPI,
that has quite a history in both specification and implementations, it
has shown, that runtime implementations often refrain from apply-
ing runtime checks to arguments in favor of less runtime overhead
and better preformance. We have seen some MPI implementations
applying a base set of runtime checks and faulting with some error
message. But the best, the programmer gets in these cases is an
error code along with a short error description and the name of
the MPI function in question. What the programmer doesn’t get in
most cases is debug level information like code line information,
values of all arguments or description for opaque handles. While
some MPI runtimes implement some local checks, we didn’t see
MPI runtimes implementing checks that need distributed or global
knowledge.

Creating a third party tool for dynamic analysis of restrictions
has several advantages:

o Reduction of implementation effort. A single tool implemen-
tation is reusable for multiple interface implementations.

e Runtime implementation can focus on performance and can
assume correct usage of the interface.

e An observing tool can add more resources and create a global
model of the execution on extra nodes. This helps to provide
scalable analysis for collective restrictions.

e A tool would be attached and active during development. Pro-
duction runs happen without the tool attached and therefore
without the overhead of runtime analysis.

Based on our runtime correctness checking tool MUST [3] that
analyzes MPI applications, we will try to reuse the tool with it’s
infrastructure and analyses. With that we investigate the question:
To what extent is it possible to map the analysis of new parallel
programming paradigms to existing tools?

2 BASIC CONCEPTS OF XMP

In this section we provide a very basic overview on key concepts
of XMP [5, 10, 12]. XMP supports Fortran and C as base language.
If not stated differently, examples in this paper are Fortran code.

2.1 Directives and Constructs

XMP is quite similar to OpenMP in the way that #pragma xmp
statements in C respectively ! $xmp prefixed comments in Fortran
can be added to serial source code to express parallelism. The XMP
specification differs between directives and constructs. Directives
are used to derive descriptors for parallel execution and data. The
descriptors created with directives compare with opaque handles
in MPL e.g., the handles for communicators. XMP constructs are
used for work sharing, communication and synchronization. Most
constructs reference descriptors or subsets of a descriptor to express
the applicable domain for the construct.

J. Protze et al.

2.2 XMP Programming Models

A typical XMP program executes in the SPMD model. Like an MPI
program, each process starts with the same executable. Processes
are called nodes, processes can be grouped into node-sets. Control
flow of the execution is directed by loop directives, that work on
distributed data and task directives that allow to execute code on
smaller node-sets that are subset of the current executing node-set.

XMP distinguishes between two kinds of data, global and local
data. Global data are data structures that are allocated in a dis-
tributed way and processes transparently work on the local share
of the distributed data. For data distribution, XMP also provides
mechanism to handle a halo area around the local share of the
global data. Local data is only accessible locally.

2.3 Global-View Programming

The global-view programming model allows to introduce domain
partitioning with distributed data structures that include a halo area
just by adding a few pragmas to serial code. The key concepts are
data mapping, work mapping and synchronization. Data mapping
directives like distribute describe how data is distributed across a
node-set. Work mapping directives like loop describe how work
is distributed across a node-set. Templates allow to specify a dis-
tribution that can be used for both, data and work mapping. For
global-view programming, all communication and synchronization
is explicitly expressed by the programmer, XMP does not introduce
additional communication.

1 !$xmp nodes P(2,2)

2 1$xmp template T(100, 100)

3 1$xmp distribute T(block, block) onto P

4 real G(100, 100)

5 I$xmp align G(i, j) with T(i, jJ)

6 !$xmp shadow G(1, 1)

7

8 do iter=1,10

9 !$xmp loop (i, j) on T(i, jJ)

10 do i=1,100

11 do j=1,100

12 G(i, j) = .25 x (G(i-1, j-1) + G(i-1, j
+1) + G(i+1, j-1) + G(i+1, j-1))

13 enddo

14 enddo

15 !$xmp reflect (G) width (/periodic/1,/periodic/1)
16 enddo

The example describes an execution with 2x2 processes (1.1). The
template T is distributed block-wise in both dimensions (1.2-3). The
array G is distributed according to template T and has a shadow,
also known as halo, around each block of width 1 (1.4-6). The work
is distributed along template T, so that each process works on
the local share of G. The stencil access in line 12 reads from local
memory and shadow area. After each iteration, the shadow area is
updated in line 15.

In comparison to a serial version of the code, only several prag-
mas are necessary to run the code on distributed memory. Because

Runtime Correctness Checking for Emerging Programming Paradigms

of the notion of shadow area, handling the periodic boundary con-
dition is even easier than in serial code.

2.4 Local-View Programming

In the local-view programming model, each process works on local
data. For data exchange between nodes, XMP supports coarray as
defined in Fortran 2008. The first line declares two image arrays
of 10 elements on each node of the currently executing node-set.
The second line assigns a copy of the tenth image of B to the local
image of A.

1 real :: AC1Q)[:1, B(10)[:]
2 A = B[10]

The XMP specification provides a C language extension to use
coarray notation also in C base language. The following code exam-
ple depicts the usage of coarray notation in C, providing the same
semantics as above Fortran code:

1 float A[10]:[x], B[1@]:[*];
2 A[L:] =B[:]:[10];

3 DERIVING CORRECTNESS QUESTIONS
FROM API SPECIFICATION

The XMP language specification provides a list of restrictions for
each of the specified directives and constructs. These restrictions
provide the semantic specification of the XMP interface; they can
be grouped into the three categories static, dynamic local, and
dynamic global property. In this section, we report our evaluation
about correctness analysis based on these restrictions. Additionally
to these restrictions, we discuss the implications of data race and
deadlock in XMP. All parallel programming paradigms face these
two issues.

3.1 Examples of Restrictions in the XPM Spec

As an example, we exercise the restrictions that apply to the re-
flect construct. As sketched in the previous section is the reflect
construct used to update the helo of a distributed global array. The
XMP specification provides the following restrictions for the reflect
construct:

a) The arrays specified by the sequence of array-name’s must

be mapped onto the executing node-set.

b) The reflect width of each dimension specified by reflect-width

must not exceed the shadow width of the arrays.

¢) The reflect construct is global, which means that it must be

executed by all nodes in the current executing node-set, and
each local variable referenced in the construct must have the
same value among all of them.

d) async-id must be an expression of type default integer, in

XcalableMP Fortran, or type int, in XcalableMP C.

The selection of the executing node-set and the usage of the
reflect construct might be in distinct compilation units. Further,
both the node-set and array directives can be used with dynamic
runtime values. So the restriction a) needs evaluation at runtime.
Only local information is needed for this analysis.

Correctness’17, November 12-17, 2017, Denver, CO, USA

Both, the width used in the reflection directive and the width
used to specify the shadow of the array can be dynamic values. In
that case runtime analysis with local information is necessary for
restriction b). In the typical case where static values are used for
the width, also static analysis can be applied.

Restriction c) already describes that it defines a global property.
To analyze that all nodes of the executing node-set take part on
the reflect operation and all nodes use the same values, global
knowledge from all nodes is necessary.

Finally, for restriction d) compile time knowledge about the type
of the expression is necessary. The type information is typically not
contained in the executable, so this cannot be analyzed at runtime,
on the other side, all necessary information is available for static
analysis.

3.2 Common Threats of Parallel Execution

Parallel programming in general suffers from two major threats,
deadlocks and data races. In the following we discuss how these
may manifest in XMP.

3.2.1 Potential for Deadlock in XMP. Although the usage of
pragmas makes it hard to generate deadlock, it is not impossible in
XMP. One situation that can be seen as deadlock is derived from
restriction c) in above example. If not all nodes of the executing
node-set reach and execute a global construct like reflect, but ex-
ecute a blocking construct instead, analysis can detect this as a
deadlock. Such a blocking construct might be a wait construct that
waits for a post construct on another node. If the other node reached
the global construct, there is a cyclic dependency between these
two nodes. The following listing depicts the situation where a single
node reaches the wait construct, while all other nodes reach the
reflect construct.

if (xmp_node_num().eq.1) then
I$xmp wait (P(2),23)
endif
1$xmp reflect (G) width (/periodic/1,/periodic/1)

A cyclic dependency can also occur with two or more nodes
reaching a wait construct as in:

1$xmp nodes P(*)
1$xmp wait (P((xmp_node_num()+1)%xmp_num_nodes()),23)

All nodes wait for an incoming post signal, but no node is ready
to reach the post.

3.2.2 Potential for Data Race in XMP. From MPI programming
we know two major classes of data race. While the MPI specification
does not name these faults data race, it simply states that a program
should not behave in that fashion. This is the case in the following
classes:

o For non-blocking communication the application should not
read or write the memory used as communication buffer
before synchronization using wait,

o for one-sided communication (RMA) there are several patterns
of unsynchronized remote memory access that could lead to
inconsistencies and are specified as undefined behavior.

Correctness’17, November 12-17, 2017, Denver, CO, USA

We can find both of these scenarios in XMP programs. In XMP,
non-blocking communication is started by a construct with async
clause and synchronized by the wait_async construct. The following
example initiates the shadow area exchange. In the meantime,
the nodes execute a stencil operation on the array. Depending
on whether the node already got an update of the shadow or not,
the node uses the old or the new remote value in the shadow cell.

1$xmp reflect (A) width (/periodic/1) async(10)
1$xmp loop on t(i)

doi=1, 100
A(L) = A(-T) ...
end do

I$xmp wait_async (10)

Remote memory access is available in XMP by using coarray. If
multiple nodes access the same coarray image without synchro-
nization, the outcome is non-deterministic. In the following code,
all nodes write the local storage of A to the same image 10 of B,
that is the image on the 10th node of the node-set:

real :: AC1@)[:]1, B(10)[:]
A[f10] = B

4 CONSTRUCTION OF XMPT API

In the previous section we presented the restrictions described by
the XMP specification and how common threats of parallel program-
ming might manifest in XMP programs. From this consideration
we now derive a tools interface (XMPT) that is capable of trans-
porting the necessary information to a runtime analysis tool. This
tools interface is modeled after experiences from the OpenMP tools
interface (OMPT). At runtime initialization time, the XMP runtime
library is looking for an available tool, that implements the XMPT
initialization function. During the initialization, the tool has the
possibility to register callback functions for events of interest to
the tool. During the execution of the program, the XMP imple-
mentation calls the registered callbacks when execution reaches
an event that is coupled to the callback. The arguments provided
to the callback transport the information necessary for the tool to
apply the analysis.

4.1 Handling XMP Descriptors

As briefly touched in Section 2, directives are used to derive descrip-
tors for nodes, templates, distribution and arrays. Detailed analysis
of the restrictions provided for directives has shown that most
restrictions describe static properties which need compile-time in-
formation. A few restrictions might need runtime analysis, if the
values are not set statically; most of these restrictions state that the
array elements need to be non-negative. This is a property that the
runtime library can easily check during execution. On the other
side, the XMP specification already provides inquiry functions to
query the runtime for properties of descriptors.

Since there is no need to pass information from creation of
descriptors to the tool for further analysis and all necessary infor-
mation is available using inquiry functions, we decided that there
is no need to describe events for directives.

J. Protze et al.

But we introduce two new tools interface functions to enable
tools to bind internal knowledge about descriptors to the descriptor
handle:

int xmpt_desc_get_data(xmp_desc_t desc, void*xdata);
int xmpt_desc_set_data(xmp_desc_t desc, void *data);

The tool data field which is bound to the descriptor is initialized
to 0 by the XMP runtime. This enables the tool to detect the first
appearance of a descriptor within an execution. The tool then builds
an internal representation of the descriptor and queries properties
about the descriptor from the runtime. Finally, the tool binds the ad-
dress of the object that stores the internal representation to the tool
data field using xmpt_desc_set_data. If the descriptor was seen
before, the tool directly has access to the internal representation
using xmpt_desc_get_data.

4.2 Handling XMP Descriptor References

A common pattern in XMP constructs is the use of nodes-ref and
template-ref. While the references can have various forms, they all
can be transformed to the normalized form nodes-name (nodes-
subscript [, nodes-subscript]*) with as many nodes-subscripts as
nodes-name has dimensions. The other representations provided
by the XMP specification are short-cuts to provide a more compact
way of expression. The information to transport for a tool consists
of the descriptor and the subscript description. For the subscript
we use the following definition:

typedef struct xmpt_subscript_t

{
int ndims; /* number of dimensions */
int omit; /* flag omitted optional clause */
int[] lbound; /* lower bound of the subscript */
int[] ubound; /* upper bound of the subscript */
int[] marker; /* mark periodic or step */

3

The ndims entry seems to be redundant, since the dimension
can also be derived from the descriptor. But it improves the ro-
bustness of this part of the interface, since it describes the length
of the subsequent arrays in this structure. For some constructs
like the barrier construct it is optional to have a clause that uses a
descriptor reference; for these constructs, the omit flag would be
set on omission. For the three arrays in the structure, an XMPT
implementation can decide whether the structure only contains
pointers to the arrays—which might directly point to internal data
structures—, or the structure contains an fixed-size array with the
maximum supported array size—which might be 7 to be compatible
with Fortran 90. The XMPT implementation just needs to write
down the implementation decision in the xmpt. h file.

4.3 Handling XMP Work Mapping Constructs

The work mapping constructs in XMP are the task, tasks, loop, and
array construct. The tasks construct doesn’t have any arguments
or restrictions, but a tool still needs to know about the tasks re-
gion to understand and reason about the concurrency semantics

Runtime Correctness Checking for Emerging Programming Paradigms

of construct. The callback invoked for a tasks construct doesn’t
provide further arguments and only tells about the start and end
of the tasks region. The task construct allows to limit execution
of the task region to a subset of the currently executing node-set,
therefore it takes a nodes-ref or template-ref as argument; the task
callback consequently provides a descriptor handle and a subscript:

void xmpt_event_task_begin (
xmp_desc_t desc, /* descriptor for nodes or
template */

xmpt_subscript_t subsc, /% subscript */

xmpt_tool_data_t* data /* pointer to store tool
specific data */

);

To support tools in matching begin and end events, all callbacks
have a tool data pointer—tool data is defined to be a void pointer—,
where the tool can store information at the begin event; the tool gets
the information back in the callback for the end event. The other
work mapping constructs loop and array are covered by callbacks
similar to the callbacks for the task construct.

4.4 Handling XMP Communication and
Synchronization Constructs

Most constructs in this category have an optional async clause,
that takes an async-id value as identifier and makes the execution
of the construct asynchronous. In this case, the construct is then
synchronized by an wait_async construct with the same async-
id value. In favor of a clean interface, XMPT defines two distinct
callbacks for the synchronous and asynchronous version of the
constructs. Both versions share the same end-event. The following
listing shows the callback for the asynchronous version of the
callback for the reflect construct, that is used to update the shadow
area of an array as discussed in section 2.3:

void xmpt_event_reflect_begin_async (
xmp_desc_t array_desc, /* descriptor for the
array to be updated */

xmpt_subscript_t width, /* reflect-width %/

xmpt_async_id_t async_id, /* async-id */

xmpt_tool_data_t* data /* pointer to store tool
specific data */

)s

In this callback, the subscript structure is reused to describe the
width of the shadow to update. The width clause allows to only
update a part of the shadow area as specified for the array and can
be different on the lower and upper end of the array dimension. The
marker gives information whether periodic boundary was specified
for this dimension.

Since we found that we need to apply dynamic local or global
analysis on all arguments provided to the clauses on these con-
structs, we decided to pass all arguments through the related call-
back to the runtime tool. Therefore, the other callback functions
provide one or two descriptors along with a subscript and additional
information specific for the related construct.

Correctness’17, November 12-17, 2017, Denver, CO, USA

4.5 Handling XMP Coarray

With respect to correctness analysis, coarray access is mainly rele-
vant to analyze potential data races or detect the use of uninitialized
memory. For these analyses, the tool needs information about the
memory access semantics, the order of accesses and about the rele-
vant synchronization. In a coarray assignment the left side performs
write, the right side performs read semantics to the coarray. For
this case, XMPT provides two events, one for the read access and
one for the write access. Furthermore, XMPT provides separate
events for local and remote access. Listing 1 shows an example
event for remote write access to a coarray. The XMP specification

Listing 1: Example of an XMP coarray event

void xmpt_event_remote_write(
xmpt_coarray_id_t c,
xmpt_subscript_t subsc,
xmpt_subscript_t cosubsc,
xmpt_tool_data_tx data

)5

does not describe the concept of an descriptor for coarrays, therfore
we introduced in XMPT with xmpt_coarray_id_t a descriptor for
coarrays. Also, XMPT provides inquiry functions to derive informa-
tion from a coarray descriptor. The subsc argument describes the
array section of the memory access, the cosubsc argument describes
image addressing for the remote coarray image. The callbacks for
local coarray access do not contain the cosubsc argument. A tool
can use the data argument to correlate the two memory access
events of an assignment statement.

4.6 Other Use Cases for XMPT

XMPT was designed to not only be used for correctness checking,
but also performance analysis in mind. Therefore most commu-
nication events provide a matching pair of begin and end events.
These can be used for critical path analysis as well as estimating
communication overhead or visualization of communication pat-
tern. The performance analysis tools Scalasca [2, 13] and Extrae [4]
announced early prototypes of XMPT support in their tools [1].

5 RUNTIME CORRECTNESS ANALYSIS

As earlier stated, one of the driving questions for this work is
to which extent can we reuse existing tools to analyze emerging
parallel programming paradigms. For our experiments, we build
on our MPI runtime correctness checking tool MUST. For MPI
this tool can analyze the execution behavior of an application and
check whether the code executes within the parameters provided
by the MPI spec. For MPI this covers trivial things like non-negative
arguments, but also type matching, resource leaks, data races and
deadlock. To answer the question about re-usability, we will revisit
in the following the examples given in section 3 and discuss their
analysis with MUST.

5.1 Analysis of Constraints from Restrictions

Restriction 3.1 a) requires for a reflect construct, the nodes-set to
which the array is mapped to be equal to the currently executing

Correctness’17, November 12-17, 2017, Denver, CO, USA

nodes-set. For this analysis the tool needs to track the executing
nodes-set. While the concept of nodes-sets is similar to commu-
nicators in MPI, the explicit concept of an executing nodes-set is
different. By tracking the events for work mapping constructs, the
tool is able to track the currently executing node set. From the ar-
ray descriptor provided in the reflect event, the tool can derive the
nodes-set to which the array binds. For MPI our tool already tracks
handles for communicators, groups, data types, and so on. Because
of the similarity of nodes-set and communicators—especially Carte-
sian communicators—, the class which tracks communicators needs
only small extension to track nodes-sets.

Restriction 3.1 b) requires the shadow width provided in the
reflect construct to not exceed the shadow width declared for the
array. This is an integer in range analysis which is also typical in
the MPI interface; for example a rank provided in a communication
call must be within the size of the provided communicator.

Restriction 3.1 c) requires that reflect—which is a global con-
struct—is executed by all nodes of the currently executing nodes-set
and all nodes provide the same arguments. This requirement is the
same for MPI collective communication functions like MPI_Bcast.
We add the information about the executing nodes-set as the "com-
municator” to the reflect event information and apply a collective
completion analysis. This analysis aggregates incoming event infor-
mation from neighboring processes, compares the provided argu-
ments for consistency, keeps a representative event and makes sure
to collect events from all relevant processes, before forwarding the
representative event in the analysis tree towards the analysis root.

For other constructs, the restrictions are similar and most anal-
yses map into the discussed classes. A few constructs have the
additional restriction that the nodes-set specified by the nodes-ref
or template-ref must be a subset of the currently executing node-set.
This analysis is also new for the tool, since the MPI specification
does not have such a requirement.

5.2 Analysis of Deadlock

For deadlock analysis MUST uses a two-fold strategy. A distributed
state transition system is used to detect deadlock in a distributed
and scalable way [7]; a centralized graph-based analysis provides
root case information in form of a reduced waiting-for-graph which
highlights the deadlock situation [8].

The state transition system processes the incoming events con-
currently, that means the analysis selects the next available event
from a random node for processing, if a transition rule is applica-
ble for this event. The transition rules are defined in a way, that
applicability of a rule implies that an MPI communication could
finish. The state transition system detects deadlock, if no transition
can be applied, but all processes have an event ready for analysis.

We extend the state transition system to accept and process rel-
evant XMP specific events. This includes global constructs that
have equivalent semantics as MPI collective communication calls.
Constructs with async clause are handled like MPI-3 non-blocking
collective communication [9]; the information is stored and acti-
vated by a matching wait construct. The post and wait construct
express point to point synchronization. The analysis processes the
post construct like a buffered send, the wait construct like a receive
in MPI point to point communication.

J. Protze et al.

For the lock and unlock construct a new kind of transition is
necessary.

A node can enter the lock-acquiring state without precondition,
when the lock-begin event is received. The lock-acquired state can
be entered, if the lock-begin event is received and no other node
is holding the lock. The latter condition enforces that the release
event at the other node is processed before the acquired event. By
entering the lock-acquired state, the lock is also marked to be owned
by this node. A node can release the lock without precondition,
when the node receives the unlock event; the lock is marked to be
available in this transition.

The graph analysis needs extension to understand the additional
dependencies coming from XMP communication semantics.

The graph analysis needs extension to understand the additional
dependencies coming from XMP communication semantics.

5.3 Analysis of Data Race

For MPI, MUST applies data race analysis at various levels. At the
level of non-blocking communication, the tool analyses concurrent
use of overlapping buffers in independent communication calls.
We are currently integrating MUST with the data race detection
tool Archer [6], which is based on ThreadSanitizer that comes
with recent versions of clang and gcc compilers. The goal of this
integration is to detect various kinds of data races that come from
multi-level parallelism and are currently not covered by any known
tool. An example for such a data race is an unsynchronized memory
access by a thread, while another thread is using the memory in
inter-node communication. We are also working on support of
data race analysis for one-sided MPI communication. The challenge
here is, that the information about the concurrent remote memory
accesses need to be sent around for analysis, while the target process
has no idea of the remote memory access. We are confident that we
will be able to feed these new MPI analyses with information coming
from the XMPT interface and apply the same analysis for XMP
applications. The events for coarrays provide similar information
as an MPI function like MPI_Put, therefore the analysis should map
quite easily.

6 CONCLUSIONS

In this paper we have shown the importance of a clear interface
definition for a parallel programming paradigm as the basis for
automatic correctness analysis. Based on the restrictions described
in the interface specification of XMP we derived a classification for
correctness analysis. The analyses divide into static analysis, local
and global dynamic analysis. Because of the already existing inquiry
functions for XMP descriptors, the tools interface XMPT only needs
to provide events for work-mapping and communication constructs,
but not for housekeeping directives. Regarding reusability, the study
has shown that a tool can be reused to the extent to which the
concepts of the language map. The concept of an executing nodes-
set and also of locks has no related concepts in MPI. For these new
concepts, also new analyses need to be introduced. Other analyses
can be reused after being slightly adopted. At this point we cannot
provide reliable overhead measurements, therefore we refer to the
published results for the analysis of MPI applications. Overhead
resulting from data race analysis is reported in [11] to be less than

Runtime Correctness Checking for Emerging Programming Paradigms

80 % for a worst case benchmark with high-frequent collective
communication, overhead for deadlock detection is reported in [7]
to be less than 34 % in most cases, but might be higher in case where
error is detected. For full data race analysis in multi-threaded XMP
applications, we expect the overhead to be in the range of 2-20x as
reported for Archer in [6].

ACKNOWLEDGMENTS

The authors would like to thank the funding agencies German Re-
search Foundation (DFG), Agence nationale de la recherche (ANR)
and Japan Science and Technology Agency (JST) for making this
research possible as part of the German Priority Programme 1648
Software for Exascale Computing.

REFERENCES

[1] 2016. Developer tools for porting and tuning parallel applications on extreme-
scale parallel systems. https://jlesc.github.io/projects/tool_pandt_project/. (2016).
[2] 2016. Scalasca web page. http://http://www.scalasca.org/. (2016).
[3] 2016. The MUST Project. https://www.itc.rwth-aachen.de/must. (2016).
[4] 2017. The Extrae Project. https://tools.bsc.es/extrae. (2017).
[5] 2017. XcalableMP web page. http://www.xcalablemp.org/. (2017).
[6] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H. Ahn, Igna-
cio Laguna, Martin Schulz, Gregory L. Lee, Joachim Protze, and Matthias S. Miiller.
2016. ARCHER: Effectively Spotting Data Races in Large OpenMP Applications. In
2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016,
Chicago, IL, USA, May 23-27, 2016. 53-62. https://doi.org/10.1109/IPDPS.2016.68
[7] Tobias Hilbrich, Bronis R. de Supinski, Wolfgang E. Nagel, Joachim Protze, Chris-
tel Baier, and Matthias S. Miller. 2013. Distributed wait state tracking for runtime
MPI deadlock detection. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC’13, Denver, CO, USA - November 17 -
21, 2013. 16:1-16:12. https://doi.org/10.1145/2503210.2503237
[8] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and
Matthias S. Miiller. 2012. MPI runtime error detection with MUST: advances in
deadlock detection. In SC Conference on High Performance Computing Networking,
Storage and Analysis, SC ’12, Salt Lake City, UT, USA - November 11 - 15, 2012. 30.
https://doi.org/10.1109/SC.2012.79
[9] Tobias Hilbrich, Matthias Weber, Joachim Protze, Bronis R. de Supinski, and
Wolfgang E. Nagel. 2016. Runtime Correctness Analysis of MPI-3 Nonblocking
Collectives. In Proceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI
2016, Edinburgh, United Kingdom, September 25-28, 2016. 188—197. https://doi.org/
10.1145/2966884.2966906
[10] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. 2012. Productivity
and Performance of Global-View Programming with XcalableMP PGAS Language.
In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012) (CCGRID ’12). IEEE Computer Society,
Washington, DC, USA, 402-409. https://doi.org/10.1109/CCGrid.2012.118
[11] Joachim Protze, Tobias Hilbrich, Andreas Kniipfer, Bronis R. de Supinski, and
Matthias S. Miiller. 2012. Holistic Debugging of MPI Derived Datatypes. In 26th
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2012,
Shanghai, China, May 21-25, 2012. 354-365. https://doi.org/10.1109/IPDPS.2012.41
[12] XcalableMP Specification Working Group. 2016. XcalableMP Language Specifi-
cation. http://www.xcalablemp.org/specification.html. (2016).
Ilya Zhukov, Christian Feld, Markus Geimer, Michael Knobloch, Bernd Mohr,
and Pavel Saviankou. 2015. Scalasca v2: Back to the Future. In Proc. of Tools
for High Performance Computing 2014. Springer, 1-24. https://doi.org/10.1007/
978-3-319-16012-2_1

[13

Correctness’17, November 12-17, 2017, Denver, CO, USA

https://jlesc.github.io/projects/tool_pandt_project/
http://http://www.scalasca.org/
https://www.itc.rwth-aachen.de/must
https://tools.bsc.es/extrae
http://www.xcalablemp.org/
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1145/2966884.2966906
https://doi.org/10.1145/2966884.2966906
https://doi.org/10.1109/CCGrid.2012.118
https://doi.org/10.1109/IPDPS.2012.41
http://www.xcalablemp.org/specification.html
https://doi.org/10.1007/978-3-319-16012-2_1
https://doi.org/10.1007/978-3-319-16012-2_1

	Abstract
	1 Motivation
	2 Basic Concepts of XMP
	2.1 Directives and Constructs
	2.2 XMP Programming Models
	2.3 Global-View Programming
	2.4 Local-View Programming

	3 Deriving Correctness Questions from API Specification
	3.1 Examples of Restrictions in the XPM Spec
	3.2 Common Threats of Parallel Execution

	4 Construction of XMPT API
	4.1 Handling XMP Descriptors
	4.2 Handling XMP Descriptor References
	4.3 Handling XMP Work Mapping Constructs
	4.4 Handling XMP Communication and Synchronization Constructs
	4.5 Handling XMP Coarray
	4.6 Other Use Cases for XMPT

	5 Runtime Correctness Analysis
	5.1 Analysis of Constraints from Restrictions
	5.2 Analysis of Deadlock
	5.3 Analysis of Data Race

	6 Conclusions
	Acknowledgments
	References

