
HAL Id: hal-01704151
https://hal.science/hal-01704151v1

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GRASP Heuristic to Optimize the Materialization of
Views in the Cloud

Vilmar Jefté Rodrigues de Sousa, Michael David de Souza Dutra, Bruno
Bachelet, Laurent d’Orazio

To cite this version:
Vilmar Jefté Rodrigues de Sousa, Michael David de Souza Dutra, Bruno Bachelet, Laurent d’Orazio.
A GRASP Heuristic to Optimize the Materialization of Views in the Cloud. XLV Brazilian Symposium
of Operational Research (SBPO), Sep 2013, Natal, Brazil. pp.1825-1834. �hal-01704151�

https://hal.science/hal-01704151v1
https://hal.archives-ouvertes.fr

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

A GRASP HEURISTIC TO OPTIMIZE

THE MATERIALIZATION OF VIEWS IN THE CLOUD

Vilmar Jefté Rodrigues de Sousa

Universidade Federal de Minas Gerais, UFMG, Engenharia de Produção.

Belo Horizonte - Minas Gerais, Brasil

vilmarjet@yahoo.com.br

Michael David de Souza Dutra

Universidade Federal de Minas Gerais, UFMG, Engenharia de Produção.

Belo Horizonte - Minas Gerais, Brasil

michaeldavid@ufmg.com.br

Bruno Bachelet

Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158

Clermont-Ferrand, France

bruno.bachelet@univ-bpclermont.fr

Laurent d’Orazio

Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158

Clermont-Ferrand, France

laurent.dorazio@univ-bpclermont.fr

ABSTRACT

This paper studies the problem of materializing views for a database stored in the cloud,

in order to improve the response time of queries on the database under a budget limit. Views are

subsets of the database, also stored in the cloud, that act like caches to accelerate the access to

data. In a cloud, CPU usage and data storage have to be paid, meaning that a trade-off between

speed gain and storage cost has to be found. The problem has been formulated as a mixed integer

program (MIP) and identified as NP-hard. To solve the problem a GRASP heuristic is proposed.

The quality and speed of this algorithm is compared with the results of a MIP solver. Numerical

experiments on many randomly generated instances of the problem show that the proposed

approach is able to efficiently solve large instances of the problem.

KEYWORDS. GRASP metaheuristic, mixed integer programming, view materialization,

cloud pricing.

Main area: Metaheuristica

1825

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

1. Introduction

Cloud computing has recently emerged as a new way of using software and hardware

resources. Instead of setting up and maintaining his own infrastructure, a user can rent resources

from a provider. The user only pays for the resources he uses, meaning for transferring data from

and into the cloud, and for storing data and processing in the cloud. Hence, for economic reasons,

optimizing resources usage in the cloud is essential.

One way of improving the performance of a database, and thus reducing its operating

cost in a cloud, is to materialize views. A view is a subset of the database, and more precisely, it

is the result of a given query on the database. To materialize a view is to run the query that will

produce the view and to store the result. Then, assuming that a query needs some data stored in a

view, the processing time of this query can be reduced by accessing directly the data inside the

view instead of getting these data by querying the whole database.

Therefore, materializing a view can improve the response time of a query, but at the

expense of creating this view (processing and storing) and maintaining it (an update in the

database may induce an update of the view). Therefore, the decision of materializing a view is a

trade-off between improving the response time of queries and reducing the operating cost in the

cloud. In this study, we consider a database where queries Q = {Qi}i=1..m are known for a given

period of time. The problem of selecting the views to be materialized in order to minimize the

time for processing all the queries in Q has been addressed in Yang (1997), but it was not in the

context of cloud computing, meaning that no charge for storing and processing were considered.

In Nguyen (2012), a model of pricing in a cloud has been proposed, and based on this

model, a mixed integer program (MIP) has been introduced in Perriot (2013) to formulate the

problem of materializing views for a database stored in a cloud to optimize the processing time

under a budget limit. In this work, a set of candidate views V = {Vk}k=1..p is given (it will be

provided by a view selection algorithm, or by experts), and the response times with and without

views are obtained by experiments on an actual cloud. This problem has been solved with the

MIP solver CPLEX
1
, which, for large instances, could not provide an optimal solution in a

limited time.

In this paper, we propose a GRASP heuristic to solve the problem. The remainder of

this paper is organized as follows. In Section 2, we introduce the background information and the

notations used throughout the paper, notably concerning the pricing model and the optimization

problem. In Section 3, the GRASP metaheuristic and its implementation to solve the discussed

problem are presented. In Section 4, we compare experimental results of our algorithm with those

obtained by the MIP solver CPLEX, for randomly generated instances of various sizes (i.e.,

various numbers of views and queries). Finally, in Section 5, we conclude this article.

2. Background

Let Q = {Qi}i=1..m be the set of queries to be processed on the database, and V = {Vk}k=1..p

the set of candidate views assumed to be preselected by an existing algorithm, such as in Baril

(2003). The problem is to decide which views among the candidates must be materialized. For

this purpose, decision variables xk are introduced: xk = 1 if view Vk is selected for materialization,

and xk = 0 otherwise.

2.1. Cloud Pricing Policies

Cloud Service Providers (CSPs), such as Microsoft Azure and Amazon Elastic

Computing Cloud (EC2), charge the users for three different resources: the storage cost (Cs), the

data transfer cost (Ct), and the computing cost (Cc). Thus, the total cost (Ctotal) is:

ctstotal CCCC  (1)

1
 IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/integration/optimization/cplex-optimizer

1826

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

2.2. Storage Cost (Cs)

The user has to pay for all data stored in the cloud over the operating period. Many

pricing policies exist, but we consider here a fixed price cs for each GB of stored data per month.

Let SD be the size of the whole database, sk the size of view Vk, and T the processing period length

(selected views are assumed to be materialized during the whole period). Therefore, the user has

to pay for the storage of the database and the materialized views. The storage cost is:









 



p

k

kkDss xsSTcC
1

 (2)

2.3. Data Transfer Cost (Ct)

The user has to pay for all the data transferred from and into the cloud. Usually, CSP

offers the upload transfer fees, so we ignore them here. Only the download transfer is considered,

and in our case, it is only the reception of the answers to queries. Let SA be the size of the answers

to all the queries in Q, and ct a fixed price for each GB of downloaded data. The data transfer cost

is:

Att ScC  (3)

2.4. Computing Cost (Cc)

The user has to pay for all the processing time spent in the cloud. It is the time needed

to process the queries (noted Tproc), but also the time to materialize and to maintain the views. Let

Tk be the time needed to materialize and maintain view Vk, and cc a fixed price for each hour of

CPU processing. The computing cost is:









 



p

k

kkproccc xTTcC
1

 (4)

Note that the time to process a query depends on whether this query uses a view or not.

Let Ti be the processing time of query Qi without any view, and gik be the gain on processing time

of using view Vk for processing query Qi. If view Vk brings no gain to query Qi, then gik = 0. The

gains gik are hard to estimate, and determining analytical expressions of those gains for a cloud is

an open issue; therefore these estimations are obtained through experiments on an actual cloud,

Perriot (2003). We assume that a query can use at most one view, and such use is represented by

decision variables xik: xik = 1 if query Qi uses materialized view Vk, and xik = 0 otherwise. The

time for processing all the queries of Q is:

 
 











m

i

p

k

ikikiproc xgTT
1 1

 (5)

2.5. Mixed Integer Program

In this paper, the problem is to minimize the processing time Tproc under a budget limit

Ctotal ≤ Cmax. Based on the equations (1) to (5), the optimization problem is expressed as a mixed

integer program:

1827

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

 
 




















































































 











 





pkmix

pkx

(8)pkxx

(7)pkxmx

(6)mix

(5)xgTT

(4)xTTcC

(3)ScC

(2)xsSTcC

(1)CCCCCts

T

P

ik

k

m

i

ikk

m

i

kik

p

k

ik

m

i

p

k

ikikiproc

p

k

kkproccc

Att

p

k

kkDss

ctstotal

proc

..1,..1,1,0

..1,1,0

..1,

..1,

..1,1

..

min

)(

1

1

1

1 1

1

1

max

Constraints (6) set that query Qi uses at most one view. Constraints (7) set that view Vk

must be materialized if at least one query uses view Vk (i.e., it exists at least one query Qi such

that xik = 1). Constraints (8) set that view Vk must not be materialized if not used by any query.

This problem is NP-hard, because the Knapsack Problem can be identified as a

subproblem: the views can be seen as the items to pack in the knapsack, each view having a

weight (the cost induced by its materialization) and a profit (the gain on processing time induced

by its materialization). The problem can be solved by exact methods, notably with Branch-and-

Bound. However, for large instances, such methods could not provide an optimal solution in a

limited time. The remainder of the article focuses on developing and analyzing a GRASP

heuristic for the studied problem.

3. GRASP Metaheuristic

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic with two

phases: an iterative construction and a local search, Feo (1995), Resende (2003). This method is

multi-start, as the two phases are repeated several times, and the best solution of all iterations is

kept. In the construction phase, which is a greedy approach, a solution is iteratively constructed,

by adding one element at a time in the solution. Then, the local search iteratively improves the

solution obtained in the first phase by moving from solution to solution in the space of candidate

solutions.

At each iteration of the construction phase, the candidate elements to be inserted are

ranked, based on a greedy function that estimates the benefit of inserting an element into the

solution. In order to build a different solution at each iteration of GRASP, the best candidate

elements are placed in a restrictive candidate list (RCL), and one of them is randomly selected to

be inserted into the solution. The heuristic is said to be adaptive because the ranking of the

candidate elements is updated at each iteration of the construction phase to reflect the changes

from the selection of the previous element.

1828

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

3.1. General Description

There are two sets of decision variables in optimization problem (P): xk that indicates

whether view Vk is materialized, and xik that indicates whether view Vk is used by query Qi. Note

that if all xk are fixed, then finding the optimal values for all xik is straightforward, because of the

following statements:

- Each query can use only one view;

- Queries can only use the views that are materialized;

- A view can be used by several queries;

- The objective is to minimize Tproc.

Figure 1: GRASP description.

Therefore, selecting the materialized view Vk that maximizes gain gik for each query Qi

provides an optimal solution for xik, once xk are fixed. In our GRASP heuristic, a solution is

represented by vector x = (xk)k=1..p. Let x* be the best solution found so far, and Tproc* the

associated processing time. Figure 1 shows the main structure of the GRASP heuristic.

3.2. Greedy Construction of Randomized Solutions

The construction phase of GRASP, described in Figure 2, starts with no materialized

view, i.e., with solution x = 0. Then, iteratively, one view is selected to be materialized in the

solution. The aim here is to generate a feasible solution, meaning that the cost Ctotal of final

solution x must be less than Cmax. Therefore, only views that reduce cost Ctotal are inserted in the

solution, and the candidate views are ranked according to the reduction of cost implied by their

materialization. For this purpose, several indicators are introduced to estimate the impact of

materializing a view.

Let ck be the cost of materializing view Vk, which includes processing the

materialization and maintenance of the view, and storing it:

kskck sTcTcc  (9)

Let gk be the gain on total response time Tproc of materializing view Vk, which is the sum

of all the gains implied by view Vk on each query Qi:

 


 





 

m

i

il
xpl

ikk ggg
l1

1,..1
max,0max (10)

1. function GRASP(instance):

2. x*  0;

3. Tproc*  +;
4.
5. for i = 1..IT_GRASP do
6. greedyConstruction(instance, x);
7. localSearch(instance, x);
8. compute Tproc of solution x;
9.
10. if Tproc < Tproc* then

11. x*  x;

12. Tproc*  Tproc;
13. end if;
14. end for;
15.
16. return x*;
17. end function;

1829

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Let wk be the benefit of materializing view Vk, which is the difference between the cost

of the gain on response time and the cost of materializing the view:

kkck cgcw  (11)

In the construction phase of GRASP, the candidate views are ranked according to wk.

Only the views with wk > 0 are considered, and among the best of these candidates (the best

RCL_PERC %), one is chosen randomly. This selected view is materialized in solution x, and the

procedure repeats, until there is no more candidate view to add in the solution. The cost Ctotal of

solution x is computed in order to check whether x is feasible. If not, a new attempt to build a

feasible solution is performed. If, after a given number of attempts IT_GREEDY, no feasible

solution is found, then GRASP stops without providing a feasible solution.

Figure 2: Greedy construction.

3.3. Local Search

The first step of GRASP was to build a feasible solution, i.e., to get a solution with

Ctotal  Cmax. In the second step, the local search described in Figure 3, the aim is to improve the

solution by reducing total processing time Tproc. The procedure moves from solution to solution

by adding a view to be materialized at each iteration. For this purpose, the indicator gk of each

view Vk that is not materialized yet is computed. Neighborhood solutions of x will be solutions

with one more materialized view Vk such that gk > 0, and that are still feasible, i.e., such that

Ctotal – wk  Cmax. The heuristic moves to the solution that is randomly selected among the

NGB_PERC % best solutions (i.e., with highest gk) of the neighborhood.

1. function greedyConstruction(instance, x):

2. i  0;
3.
4. repeat

5. x  0;
6.
7. repeat

8. RCL  ;
9.
10. for all k = 1..p such that xk = 0 do
11. compute wk;
12. if wk > 0 then insert Vk into RCL;
13. end for;
14.

15. if RCL   then
16. sort RCL by descending order of wk;
17. randomly select Vk in the first RCL_PERC % of RCL;

18. xk  1;
19. end if;

20. until RCL = ;
21.
22. compute cost Ctotal of solution x;

23. i  i + 1;

24. until Ctotal  Cmax or i = IT_GREEDY;
25.
26. if Ctotal > Cmax then stop; // No feasible solution.
27. end function;

1830

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Figure 3: Local search.

Note that each time a new view is materialized, it can make some already materialized

views useless, meaning that there can exist materialized views that are not used anymore by any

query. To not materialize such views reduces total cost without increasing total processing time.

Therefore, such views are detected and removed from each new solution of the local search. The

procedure ends when no more view can be added to improve the solution.

4. Computational Results

The performance and the quality of the solutions of our GRASP heuristic are compared

with those obtained by solving the optimization problem (P) with CPLEX 12.4. The experiments

were performed on a quad-core AMD Opteron 2.3 GHz processor, with 256 GB of RAM. We

choose to use the pricing of Amazon EC2 and S3 services, where the price cs for each GB of

stored data per month is 0.12, the price ct for each GB of downloaded data is 0.1, and the price cc

for each hour of CPU processing is 0.08. We consider an operating period of one month in the

cloud, i.e., T = 1.

We choose to test randomly generated instances, because for now, it is not possible to

estimate the gains gik without running experiments on an actual cloud to measure the values,

Perriot (2003). Thus, values SD, SA, sk, Ti, Tk and gik are randomly generated for each instance. For

this study, instances of various sizes (i.e., with different number m of queries, and number k of

candidate views) are built. 24 different sizes are tested, with 5 instances each time, which makes

120 generated instances.

Moreover, we test the same instances for three different values of Cmax: C1 is 3 % above

the minimum cost C
-
 of the instance, C

-
 is obtained by solving problem (P) without the budget

limit and with the objective of minimizing Ctotal; C2 is 50 % above C
-
; C3 is 50 % below the

maximum cost C
+
 of the instance, C

+
 is obtained by solving problem (P) without the budget

limit. Therefore, three groups of 120 instances are formed, denoted G1, G2, and G3, with Cmax

respectively equal to C1, C2, and C3.

For each group, two tables are presented: on the left, the number of views is fixed to

500, and the number of queries varies; and on the right, the number of queries is fixed to 500, and

the number of views varies. The presented results are average values from 5 different instances

with the same size. They show the time needed by GRASP and CPLEX to solve the problem

(CPU time) and the relative difference (gap) between the values of the solutions found by both

methods. Note that if CPLEX did not find the optimal solution within the hour, the gap is

computed with the lower bound found by CPLEX.

1. function localSearch(instance, x):
2. repeat
3. remove useless views from x;
4. compute cost Ctotal of solution x;

5. NGB  ;
6.
7. for all k = 1..p such that xk = 0 do
8. compute gk and wk;

9. if gk > 0 and Ctotal – wk  Cmax then insert Vk into NGB;
10. end for;
11.

12. if NGB   then
13. sort NGB by descending order of gk;
14. randomly select Vk in the first NGB_PERC % of NGB;

15. xk  1;
16. end if;

17. until NB = ;
18. end function;

1831

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

The GRASP heuristic performs 100 iterations (IT_GRASP = 100) for small instances

(i.e., up to 100 views and queries), and 50 iterations for large instances. The other parameters of

GRASP have the following values: IT_GREEDY = 2000, RCL_PERC = 10 %, and

NGB_PERC = 10 %.

Table 1: Results of G1, with p = 500.

Queries

(m)

CPU Time (s) Gap

(%) CPLEX GRASP

10 1.06 0.36 0.40

20 7.24 0.93 0.00

30 26.85 1.53 0.01

40 60.84 2.58 0.13

50 929.95 3.27 0.22

60 615.23 4.44 0.62

70 2 288.75 5.12 0.15

80 970.43 6.23 0.00

90 3 018.81 6.81 0.49

100 2 681.01 7.14 0.00

200 3 600.00 20.77 * 4.81

500 3 600.00 197.60 * 2.26

* No optimal solution found.

Table 2: Results of G1, with m = 500.

Views

(p)

CPU Time (s) Gap

(%) CPLEX GRASP

10 5.14 0.15 0.00

20 63.55 0.33 0.00

30 47.21 0.71 0.00

40 179.78 1.27 0.00

50 341.71 1.38 0.04

60 676.54 2.37 0.09

70 941.05 3.44 0.13

80 2 486.50 4.65 0.02

90 1 846.51 5.08 0.02

100 2 716.25 3.74 0.02

200 3 600.00 7.60 * 2.49

500 3 600.00 197.60 * 2.26

* No optimal solution found.

The results for group G1 are presented in Tables 1 and 2. For many instances, the

GRASP heuristic finds a solution very close to the optimal solution (less than 1 % gap). For the

largest instances (above 100 views or queries), the MIP solver was not able to find the optimal

solution within one hour, thus the gap is computed between the lower bound of CPLEX and the

value of the solution of GRASP.

Table 3: Results of G2, with p = 500.

Queries

(m)

CPU Time (s) Gap

(%) CPLEX GRASP

10 0.75 0.60 0.00

20 39.76 0.13 0.00

30 122.72 0.25 0.00

40 505.34 0.22 0.00

50 311.65 0.33 0.00

60 116.07 0.57 0.00

70 93.89 0.56 0.00

80 467.63 0.68 0.00

90 348.80 0.76 0.00

100 778.89 0.81 0.00

200 2 841.50 4.68 0.00

500 1 172.07 3.60 0.00

Table 4: Results of G2, with m = 500.

Views

(p)

CPU Time (s) Gap

(%) CPLEX GRASP

10 0.15 0.05 0.00

20 0.45 0.10 0.00

30 8.10 0.69 0.03

40 11.85 1.02 0.21

50 56.91 1.52 0.03

60 401.09 2.09 0.03

70 834.86 2.53 0.03

80 2 106.82 4.25 0.07

90 2 399.24 5.50 0.02

100 2 921.51 1.39 0.01

200 1 499.65 1.31 0.01

500 1 172.07 3.60 0.00

The results for group G2 are presented in Tables 3 and 4. GRASP is efficient on this

kind of instances, as its running time never exceeds 6 seconds and is always very close, if not

equal, to the optimal solution. With the budget limit loosened, it seems that good solutions are

easier to find for the GRASP heuristic.

1832

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 5: Results of G3, with p = 500.

Queries

(m)

CPU Time (s) Gap

(%) CPLEX GRASP

10 0.31 0.05 0.00

20 0.74 0.12 0.00

30 0.84 0.17 0.00

40 1.26 0.23 0.00

50 1.33 0.27 0.00

60 1.49 0.54 0.00

70 1.60 0.60 0.00

80 1.70 0.68 0.00

90 1.81 0.77 0.00

100 2.21 0.85 0.00

200 4.65 1.61 0.00

500 239.93 3.59 0.00

Table 6: Results of G3, with m = 500.

Views

(p)

CPU Time (s) Gap

(%) CPLEX GRASP

10 * * *

20 * * *

30 * * *

40 177.27 7.10 0.04

50 173.42 1.56 0.09

60 368.33 2.06 0.03

70 276.14 1.73 0.03

80 168.89 0.94 0.00

90 22.55 0.67 0.00

100 16.96 1.09 0.00

200 54.58 1.36 0.00

500 239.93 3.59 0.00

* No feasible solution.

The results for group G3 are presented in Tables 5 and 6. GRASP is also efficient on

this kind of instances. Note that in Table 5, the instances seem to be not very hard to solve,

meaning that the budget limit may not be very constraining. At the opposite, for small instances

of Table 6, the budget limit (set to 50 % of C
+
) is too restrictive to find any feasible solution.

5. Conclusion

This paper proposes a GRASP heuristic to optimize the materialization of views for a

database stored in the cloud. This problem can be formulated as a mixed integer program, but for

large instances, MIP solvers can not always provide an optimal solution in a limited time.

Experiments on randomly generated instances have been achieved, showing that the GRASP

heuristic can provide good solutions (usually below 1 % gap from the optimal solution) in a short

running time (a few seconds to less than 4 minutes depending on the instance).

Experiments on concrete instances are now necessary to confirm that this approach is of

interest for cloud computing. However, many issues remain to be tackled for the method to be

usable on large scale databases: (i) for now, processing times are estimated on actual clouds,

therefore formulations of those times (with and without the use of materialized views) are

necessary to avoid long experiments; (ii) the problem studied here has to be completed, because

for now, candidate views are given, whereas they should be identified through the optimization

process.

Acknowledgements

This work has been achieved through the cooperation BRAFITEC between the

Department of Production Engineering of the Federal University of Minas Gerais (UFMG) and

the French school ISIMA (Institut Supérieur d’Informatique, de Modélisation et de leurs

Applications) located in the city of Clermont-Ferrand.

References

Baril, X, and Bellahsène, Z. (2003), Selection of Materialized Views: a Cost-Based Approach,

CAiSE 2003, LNCS 2681, 665-680.

Feo, T. A., and Resende, M. G. C. (1995), Greedy Randomized Adaptive Search Procedures,

Journal of Global Optimization, 6, 109–133.

Nguyen, T., d’Orazio, L., Bimonte, S., and Darmont J. (2012), Cost Models for View

Materialization in the Cloud, Proceedings of the 2012 Joint EDBT/ICDT Workshops, 47-54.

Perriot, R., Pfeifer, J., d’Orazio, L., Bachelet B., Bimonte, S., and Darmont J. (2013),

Modèles de coût pour la sélection de vues matérialisées dans le nuage, application aux services

1833

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Amazon EC2 et S3, 9
th

 French-Speaking Workshop on Data Warehousing and Online Analysis

(EDA’13), to appear.

Resende, M. G. C., and Ribeiro, C. C. (2003), Greedy Randomized Adaptive Search

Procedures, Handbook of Metaheuristics, Kluwer Academic Publishers, 219-249.

Yang, J., Karlapalem K., and Li Q. (1997), Algorithms for Materialized View Design in Data

Warehousing Environment, Proceedings of the 23rd VLDB Conference, 136-145.

1834

