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Pre-peak deformation of model granular materials: a DEM study

J.-N. Roux
Universit́e Paris Est, Laboratoire Navier
Cité Descartes, Champs-sur-Marne, France

ABSTRACT: Initial states of granular assemblies, which determine the response to quasi-statically applied
deviator stresses in mechanical tests, are usually classified according to their density and structural anisotropy.
Discrete simulations (DEM) of model granular materials (spherical bead packs) reveal however that dense as-
semblies with isotropic fabric can be prepared with very different coordination numbers, ranging from 4 to 6
under low confining stress. When subsequently subjected to triaxial compression tests equally dense systems
differing by their coordination number have the same peak strength, but strongly differ in their pre-peak stress-
strain response. Well-coordinated systems have contact networks that tend to resist throughout large deviator
intervals, and exhibit a stiff response, with a global stiffness scaling with the contact stiffness (type I strains).
Poorly coordinated ones essentially deform in a series of microscopic instabilities in which contact networks
get continuously broken and repaired (type II strains). Thedistinction between strains of types I and II (not to
be confused with elastic and plastic strains) has importantconsequences in terms of sensitivities of macroscopic
response to micromechanical features and propensity to develop localization instabilities. The coordination
number, which determines to a large extent the type (I or II) of the response, can be related to initial elastic
moduli. These observations call for changes in the practiceof DEM approaches and refinements in the classifi-
cation of internal states and stress-strain behaviour of granular materials. Some experimental confrontations are
possible.

1 INTRODUCTION

Discrete element methods (Radjaı̈ & Dubois 2011,
O’Sullivan 2011) have become widespread numeri-
cal simulation tools in the investigation of the mi-
croscopic, grain-level origins of the macroscopic me-
chanical properties of granular materials. The essen-
tial features of the drained behaviour of sands, as clas-
sically probed in triaxial compression tests, are thus
reproduced by simulations of model materials such as
spherical bead assemblies (Thornton 2000, Suiker &
Fleck 2004). In particular, the deviator stress maxi-
mum and the dilatant behaviour of dense samples, the
monotonic deviator increase with axial strain and the
contractant behaviour of loose samples, as well as the
critical state approached for large strain whatever the
initial density, are retrieved (Thornton 2000, Radjaı̈
& Roux 2004). The influence of intergranular (con-
tact) friction was assessed (Lemaı̂tre et al. 2009), and,
beyond the simplest model materials, that of rolling
resistance at contacts (Estrada et al. 2008), wide poly-
dispersities (Voivret et al. 2009), non-spherical grain
shapes, either smooth (Antony & Kuhn 2004) or an-
gular (Aźema et al. 2007), have also been investi-
gated. Most studies, however, focus on maximum de-

viator stress or on critical state properties, and classify
initial states by their sole density (with possible, yet
limited, effects of inherent anisotropy).

The purpose of the present communication is to
show that the pre-peak behaviour of dense, isotropic
systems, is not only determined by the initial den-
sity, or influenced by inherent anisotropy (Lam & Tat-
suoka 1988), but is sensitive to the coordination num-
ber, which, according to the sample assembling pro-
cedure, may vary independently of the density (Ag-
nolin & Roux 2007a).

2 MODEL MATERIAL, INITIAL STATE AND
ISOTROPIC COMPRESSION

The numerical model, with the material properties
and the simulation procedure are described in detail
by Agnolin & Roux (2007a). We consider assemblies
of elastic and frictional spherical beads of diameter
a, with elastic-frictional contact forces. The friction
coefficient isµ = 0.3. Contact elasticity abides by
Hertz’s law for the normal force (Johnson 1985), re-
lating normal forceFN , to deflectionh, for a material
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A simplified model is implemented for Mindlin-
Deresiewicz laws (Agnolin & Roux 2007a) com-
bining tangential elasticity and friction in an en-
ergetically consistent way [Elata and Berryman
1996]. Dense numerical samples are assembled un-
der isotropic pressureP in cuboidal cells periodic in
all three directions, with appropriate dynamics such
that the cell dimensionsLx, Ly, Lz may adapt to
prescribed stress levelsσxx, σyy, σzz. Starting from
loose configurations with no contact, all three prin-
cipal stress values are set toP , and the cell is com-
pressed until equilibrium is reached with intergranu-
lar forces balancing the prescribed stresses. Particles
have the elastic properties of glass (Young modulus
E = 70 GPa, Poisson ratioν = 0.3). Under pressure
P , a dimensionless stiffness number is defined as

κ =

(

Ẽ

P

)2/3

, (2)

so that the typical contact deflectionh in contacts, due
to the Hertz law (1), satisfies

h

a
∝ κ−1. (3)

The results are based on 5 statistically similar sam-
ples of 4000 particles for each preparation procedure.
As explained by Agnolin & Roux (2007a), dense
packings are obtained on suppressing the effects of
friction in the assembling stage. Settingµ = 0 re-
sults in the maximum solid fractionΦ = 0.64 (“ran-
dom close packing”) of disordered sphere assemblies,
and coordination numberz∗ = 6 (excluding a small
proportionx0 ≃ 2% of “rattlers”, grains carrying no
force). But if the system is strongly vibrated at high
Φ, just below the final equilibrium value, and then fi-
nally compressed withµ = 0.3, a much lower coordi-
nation number is obtained,z∗ = 4.5 for nearly equal
Φ, while x0 exceeds 10%. Samples numerically pre-
pared according to these two methods, subsequently
referred to as A and C, under low pressureP = 10 kPa
orκ= 39000) are then isotropically compressed (with
friction) to various confinement levels (up to1 MPa
or κ = 1810), before subjecting them to triaxial com-
pression tests in which “axial strain”ǫa = ǫ1 is in-
creased while lateral stressesσ2 = σ3 are kept con-
stant. Tab. 1 gives values of solid fractionΦ, coordina-
tion numberz∗ (for non-rattler grains) and rattler frac-
tion x0 in states A and C under isotropic pressure. For

reference, we also included similar data on initial state
B, prepared by direct compression like A, but with a
small friction coefficientµ = 0.02, and on initial state
D, assembled with the final friction coefficient value
µ = 0.3. It should be remarked that B is less dense
than C, but better coordinated. Under growing pres-
sure, density and coordination numbers increase, but
moderately so in the pressure range, up to 1MPa, for
which simulation results are presented below. From
10 kPa (κ = 39000) to 1 MPa (κ = 1810), z∗ raises to
about 6.2 in A samples, to about 5.1 in C ones (and
x0 decreases to about 6%), whileΦ increases by less
than 0.02 in all cases (Agnolin & Roux 2007b).

3 STRESS-STRAIN CURVES AND EFFECT OF
CONFINING STRESS

Figure 1: Normalized deviatorq/σ3 and volumetric strainǫv vs.
axial strainǫa for 5 different C-type samples prepared in the
same conditions.

We represent deviator stress, normalized by con-
stant lateral stress,q/σ3 = (σ1 − σ3)/σ3, and volu-
metric strainǫv versus axial strainǫa. Fig. 1 checks
for reproducibility of the results on comparing differ-
ent samples prepared in the same conditions. (Other
checks, not shown here in figures for lack of space,
show that the implemented DEM procedure indeed
probes a quasi-static, rate-independent reponse, and
that creep effects vanish for small enough strain rat-
edsǫ̇a). Fig. 2 then compares deviator stress, plotted
up to its maximum, and volumetric strain curves ob-
tained from initial states A and C for lateral stress
σ3 = 100 kPa.

As expected, given their nearly identical initial den-
sity, both systems share the same maximum devia-
tor value, aboutq/σ3 = 1.4, within statistical uncer-
tainties (see Fig. 1), corresponding to internal fric-
tion angleϕ≃ 24◦. Volumetric curves also exhibit the
same slope (equal dilatancy), with a more pronounced
initial contractant regime in system C. But the axial
strain corresponding to a given level of internal fric-
tion mobilisation is strikingly different, with, e.g., de-
viator q = 1.1σ3 being reached for strains about one



Table 1: Isotropic states, withµ = 0.3 (κ ≃ 39000 for A and C,κ ≃ 181000 for B and D), obtained with different assembling
procedures.

Procedure Φ z∗ x0 (%)
A (µ0 = 0.) 0.6370± 0.0002 6.074± 0.0015 1.3± 0.2
B (µ0 = 0.02) 0.6271± 0.0002 5.80± 0.007 1.95± 0.02
C (vibrated) 0.635± 0.002 4.56± 0.03 13.3± 0.5
D (µ0 = µ = 0.3) 0.5923± 0.0006 4.546± 0.009 11.1± 0.4

Figure 2: Deviator stress and volumetric strain curves averaged
over available A-type and C-type samples.

order of magnitude larger in the C case (∼ 10−2) than
in systems with initial state A (∼ 10−3).

Figure 3: Stress-strain curves for initial pressureP = σ3, in one
A sample, taking 5 different values growing from 10 kPa to
1 MPa by factors of

√
10.

This behaviour is better understood on comparing
triaxial tests carried out on one single sample pre-
pared under varying confining pressure. Fig. 3 shows
that stress-strain curves on one sample of type A,

for σ3 ranging from 10 kPa to 1 MPa, strongly de-
pend onσ3. The larger the confining stress, the softer
the macroscopic response expressed in terms of ratio
q/σ3 . To explain such observations, one may note that
material deformations, at the microscopic level, i.e.,
contact deflections, relative to grain diametera, scale
asκ−1a. If macroscopic strains are averages of micro-
scopic ones in the contact regions, then they should
scale asκ−1a too. This is checked in Fig. 4, which
shows that, at least within quite a large initial deviator
range, up to aboutq = 0.9σ3, stress-strain curves per-
taining to different confinement pressures coincide if
plotted with stress ratioq/σ3 and rescaled strainsκǫ.

Figure 4: Same as Fig. 3, with rescaled strain coordinates (P0 =

100 kPa).

Fig. 5 and Fig. 6 respectively display stress ratio
q/σ3 and volumetric strainǫv versus axial strain in
one C-type sample under the same confining stress
values as in Figs. 3–4 (initial pressureP = σ3).

In sharp contrast with the results obtained with A-
type systems,stress-strain curves are now reproduced
for the different confinement levels without rescaling
strains: macroscopic strains do not scale with contact
deflections in that case.

Behaviours of A and C-type samples in the pre-
peak deviator range are characteristic of two different
physical origins of macroscopic strains. For a material
specimen prepared in state A, strains result from lo-
cal deformations in the intergranular contact regions
– we refer to such strains as type I strains. With C
samples, macroscopic strains are of geometric origin,



Figure 5: Same as Fig. 3 for normalized deviator stress in oneC
sample. Inset shows detail of curve near origin (note the blow-up
scale).

Figure 6: Same as Fig. 3 for volumetric strain in one C sample,
the inset magnifying the very small strain region.

stemming from contact network failure and rearrange-
ment (type II strains). Such strains are also present in
A samples in a certain deviator range closer to the
maximum (say, aboveq = σ3). One can also observe
type I strain response over a significant deviator inter-
val in both systems A and C upon unloading (Roux
& Combe 2002), in which both kinds of strains were
characterized in some detail with various methods,
on two-dimensional numerical simulations of disk as-
semblies).

An interval of loading parameters in which type
I response is observed corresponds to the stabil-
ity range of a contact network, whence the much
larger loading range corresponding to such behaviour
in well-coordinated systems such as A. (Actually, a

closer scrutiny of results on system C would reveal a
small range of type I response, up to aboutq/σ3 =
0.1). On unloading, the evolution of tangential con-
tact forces tends to be reversed, thus suppressing full
friction mobilisation in many contacts and stabilising
the network.

Within a type I strain interval, the system is micro-
scopically stable, each one of its successive config-
urations can be made arbitrarily close to an equilib-
rium configuration upon reducing the strain rate. As
a consequence, the macroscopic behaviour should be
devoid of instability. A strain response of type II, on
the other hand, involves microscopic instabilities, as
broken contact networks are not repaired until new
contacts form, which implies some finite strain inter-
val during which a momentary surge of kinetic en-
ergy is observed. This may result in a macroscopic
instability which is not, of course, bound to happen.
While microscopic stability entails macroscopic sta-
bility, microscopic instabilities, which occur with a
frequency that increases with the system size (Roux &
Combe 2002) are compatible with well-behaved con-
stitutive laws expressing smooth stress-strain depen-
dencies on the macroscopic scale. The absence of mi-
croscopic instability characterising type I strains, or,
equivalently, the enduring capability of a given con-
tact network to support varying deviator levels, has
been related by (McNamara and Herrmann 2006) to
a positive second-order work criterion, expressed in
terms of the elastoplastic stifffness matrix of the con-
tact network.

4 INITIAL ELASTIC PROPERTIES

In experimental practice, the coordination number is
usually not accessible to direct measurements. Yet we
now show that elastic moduli, which can be mea-
sured (Shibuya et al. 1992, di Benedetto et al. 1999,
Kuwano and Jardine 2002), provide indirect informa-
tion on contact nework coordination. In Figs. 5 and
6 the insets (subplots), with blown-up strain scales,
focus on the initial, very small strain response. The
straight lines then correspond to the elastic behaviour
of the initial contact network, with slopeE∗, the ef-
fective Young modulus of the granular system, in
Fig. 5, and−(1− 2ν∗), with ν∗ its effective Poisson
ratio, in Fig. 6. These moduli are obtained on comput-
ing the response of the initial contact network, assum-
ing each contact responds elastically (to see how these
moduli are calculated, on building appropriate stiff-
ness matrices, see Agnolin & Roux (2007c)). We thus
observe in simulations that the moduli give the tan-
gent slopes to the stress-strain curves. In a very small
range, for strains typically of order10−5 (just like in
experiments (di Benedetto et al. 1999)), the incremen-
tal behaviour about the initial equilibrium state can
be regarded as elastic in good approximation(Agnolin
& Roux 2007c). The elastic reange should not be
confused with the type I strain regime, as the lat-



Figure 7: Bulk modulusB vs. pressureP , on logarithmic scales,
in isotropic compression of samples A, C, D of Tab. 1.

Figure 8: Shear modulusG vs. pressureP in isotropic compres-
sion of samples A, C, D of Tab. 1.

ter may obviously extend to much larger stress and
strain intervals (Fig. 4). Figs. 7 and 7 respectively
plot bulk (B) and shear (G) moduli of all samples
of Tab.1, once isotropically compressed, versus pres-
sureP . Those graphs make it very clear that moduli
are primarily sensitive to coordination number, as C
and D results are close to each other, despite different
densities. Results for state B, not shown in Figs. 7 and
8 are actually close to A ones. Note, also, that those
moduli (especially shear modulusG) of well coordi-
nated and poorly coordinated packings exhibit differ-
ent pressure dependences – different apparent pres-
sure exponents, see the slopes in the logarithmic plots
of Figs. 7 and 8.

More detailed analyses of elastic properties of
isotropic spherical particle assemblies are given

by Agnolin & Roux (2007c) (such as a discussion
of “anomalous” shear moduli in poorly coordinated
isotropic assemblies) along with some experimental
comparisons for glass bead systems.

5 CONCLUSIONS

Numerical simulations clearly reveal that the initial
coordination number in a dense isotropically equi-
librated granular material is not determined by the
density, and strongly influences the stress-strain re-
sponse in the pre-peak range. This is related to the
ability of well-coordinated contact networks to sup-
port large deviator stress increases without failure,
whence macroscopic strains of type I. While sys-
tems prepared with large coordination numbers ex-
hibit type I strains, i.e., deform because the contacts
are deformable, poorly coordinated ones macroscop-
ically deform because contacts networks get continu-
ously broken and repaired. Initial coordination num-
bers appear to be directly related to elastic moduli.

These observations have important practical and
fundamental implications.

On the practical side, these results call for studies of
initial state coordination numbers, depending on as-
sembling procedures, which should imply more sys-
tematic comparisons between experiments and simu-
lations, preferentially for numerically tractable model
materials. It seems that one should eventually refine
the classification of initial states in terms of density
and inherent fabric anisotropy only, as the coordina-
tion number is another source of variability. Results of
triaxial tests on sands under varying confining stresses
often resemble Figs. 5 and 6 more than Fig. 3, which
certainly raises doubts on the relevance of the numer-
ical procedure of compression without friction, most
often resorted to in practice because of its simplicity,
to produce dense samples.
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