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LINKS BETWEEN

THE INVERSE AND THE DIRECT
TULLY-FISHER RELATIONS

S. RAUZY
Université de Provence and Centre de Physique Théorique
C.N.R.S. Luminy, Case 907, F-13288 Marseille Cedex 9, France.

Abstract — In this conference, R. Triay [9] has demonstrated the importance
to define a statistical model describing the Tully-Fisher (TF) relation in the M-p
plane. As long as the same model is used during the calibration step and the step
of the determination of the distances of galaxies, standard statistical methods such
as the maximum likelihood technic permits us to derive bias free estimators of the
distances of galaxies. However in practice, it is convenient to use a different statisti-
cal model for calibrating the TF relation (because of its robustness, the Inverse TF
(ITF) relation is prefered during this step) and for determinating the distances of
galaxies (the Direct TF (DTF) relation is more accurate and robust in this case).
So, is it possible to infer the calibration parameters of the DTF relation needed to
determine the distances of galaxies from the calibration parameters of the ITF rela-
tion obtained during the calibration step 7. Assuming standard working hypothesis,
we prove in Rauzy&Triay [5] (hereafter RT) that the ITF and DTF models are in
fact mathematically equivalent (i.e. they describe the same physical data distibution
in the TF diagram). Thus, it turns out that as long as the calibration parameters
are obtained for a given model, we can deduce the corresponding parameters of the
other model. Herein, we present this formulas of correspondance. In practice, the
best suitable model will be choosen with regard to the selection effects in observation
affecting the analysed sample during each of this 2 steps.
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1. INTRODUCTION

In a previous paper (Triay et al. [10], hereafter TLR) we have demonstrated
the importance to define a statistical model describing the observed linear



correlation between the absolute magnitude M and the logarithm of the line
width distance indicator p of galaxies (the TF relation). A random variable
¢ = ap+b—M of zero mean was introduced to mimic the intrinsic scatter o of
the TF relation. In order to fully specify the statistical model, a second random
variable ¢ of mean &, and dispersion o¢, statistically independent of (, has to
be choosen. Herein in section 2, we generalize the results obtained in TLR
by introducing a class of statistical models indexed by an angle parameter .
This class of a-models forms a continuous set of models including the ITF and
DTF relation as boundary cases. We derive the maximum likelihood statistics
for the 5 model dependent parameters a®, b%, o¢, {; and of characterising an
a-model and we illustrate their variations with respect to the angle parameter
a. Assuming standard working hypothesis, we show in section 3 that all these
a-models are indeed mathematically equivalent : i.e. they describe the same
physical data distribution in the M-p plane. In particular, this result implies
that there is no difference between the ITF and DTF models. It thus turns out
that as long as the 5 parameters a®, 0%, o¢, £ and o are known for a given
a-model (say the ITF model for example), we can deduce the corresponding
5 parameters for every a-models (in particular for the DTF model). These
formulas of correspondance are derived in section 4. This property permits
indeed to use a different statistical model for calibrating the TF relation and
for determinating the distance of galaxies or the Hubble’s constant.

2. THE SET OF THE a-MODELS

Regardless of selection effects in observation or measurment errors, the the-
oretical probability density (pd) describing the distribution of the absolute
magnitude M and of the logarithm of the line width distance estimator p
involved in the TF relation can be written as follows :

dPn = F(M,p) dMdp (1)

The observed linear correlation between M and p (the TF relation) constrains
the probability density function (pdf) F'(M,p) to adopt a specific form. In fact,
it exists a straight line Arp of equation M(p) = ap + b such that the data
in the M-p plane are distributed about this line. The slope a and the zero
point b of this line are unknown quantities which will be estimated during
a preliminar calibration step. In TLR we have shown that it is convenient
to express this intrinsic scatter about the line Apr by introducing a random
variable ¢ of zero mean and of dispersion o, defined as follows :

(=Mp)—M=ap+b—M (2)

A second random variable £ statistically independent of ( is required in order
to fully specify the statistical model (i.e. the pdf F(M,p)) characterizing
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the data distribution in the M-p plane !. Herein, we generalize the results
obtained in TLR by introducing a set of models characterized by the choice
of this second variable £&. We define a family of model dependent variables £*,
linear combination of M and p and statistically independent of (%, indexed by

an angle parameter o varying continuously from 0 to 7 /2 :
€% = cosaM +sinaa®p (3)
where we rewrite Eq. (2) as follows (¢ is model dependent, see footnote 1) :
(*=M*(p)—M=ap+b*—M (4)

We have thus introduced a set of statistical a-models describing the TF dia-
gram by the following pd :

APy = dPj = fe(§7)dE* g(¢*;0,0¢)dC” (5)

In order to entirely characterize an a-model, we need to specify the form of
the pdf g(¢%;0,0¢) and fea (). Herein, we limit ourselves to the case of
2 gaussian pdf. Our working hypothesis are a gaussian (hereafter noted g¢)
pdf of zero mean and of dispersion of for the variable (* characterizing the
intrinsic scatter about the straight line AZr (g(¢%;0,0¢) = ga(¢*;0,0¢)) and
a gaussian pdf of mean {7 and of dispersion o¢' for the second random variable
£ (fea(€%) = 9a(€% €5, 0¢)). The pd describing an a-model reads finally as
follows :

APy = 9a(£%;&5, 0¢)dE™ 9 (¢ 0,08 )dC* (6)
Note that the set of the a-models describes the Direct TF relation (p and ¢
are statistically independent) and the Inverse TF relation (M and ( are statis-
tiscally independent) when the angle parameter « is equal to its boundaries
values :
a=1/2
DTF : (7)
dPY = ga(p; po, 0p)dp 9a(¢P;0,09)d¢P

a=20
ITF : (8)
AP}, = ga(M; My, o0r)dM gg(¢';0,0¢)d(!

The next step of the analysis is to derive the 5 model dependent parameters

% 0%, of, & and og characterising an a-model from a calibration sample.

a

'In the absence of a better physical understanding of the TF relation, the parameters a
and b have to be determined using a statistical process (the calibration step). Thus, these
parameters a and b and so the random variables ¢ and £ depend on the statistical model
used to describe the data distribution : they are model dependent.



We use the maximum likelihood technic to derive these statistics. Herein, we
just present these statistics for the 2 following peculiar models (see RT for the
general case). The statistics for the ITF model (o =0) :

o X(M)?
“ = Cov(p, M) )
B M) - oS 6= ) (10)
o2 = Ry (W-1) ol = sy (11)
and for the DTF model (o = 7/2) :
Lo % (12)
= -SSR - =S5y

of" = DM (1=pp, M)?) , of" = ”'S()" = plp, M)T(M)* (14)

with the standard notations : () the average on the sample, ¥ the variance,
Cov the covariance and p the correlation coefficient.

3. EQUIVALENCE OF THE a-MODELS

In substituting the general statistics of the model dependent parameters a®,
b, of, & and of in the pd of Eq. (6), we find that, for every a belonging to
[0,7/2] (see RT for detailed calculations) :

Cov(p, M)

2(]))2 (p_ <p>)>E(M)\/1_IO2) dep

(15)
It thus means that all the a-models are indeed mathematically equivalent and
that they describe the same physical distribution of data in the M-p plane.
Note that we can rewrite Eq. (15) as a binormal pdf in M and p, entirely
characterized by its 5 moments of first and second order (p), (M), X(p), (M)

and Cov(p, M) :

dPg = 96(p; (), 2(p)) 96 (M; (M)+

. o 1
Vo €[0,m/2] : dP§ = 275 (M)S(p)y/1-p(p.M)?

o r—(0)® _ o CovipM)(p— () (M—(M)) , (M—(M))?
x exp { ~ g (Yoigt — 28R + 05t ) dM(dfG)

We now understand that our working hypothesis (2 gaussian pdf for £* and
¢*) imply that the knowledge of the 5 parameters a®, b%, o¢, £ and of for a
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given a-model is sufficient to entirely describe the data distribution of the TF
diagram 2. It thus turns out that if these 5 parameters are known for a given
a-model, we can deduce the corresponding 5 parameters for every a-models.

4. LINK BETWEEN THE ITF AND DTF MODELS

We derive in RT the general formulas of correspondance between the estimates
of the 5 model dependent parameters a®, b*, o, § and of characterizing
different a-models. Herein, we just present these formulas of correspondance
for 2 particular cases : the calibration parameters of the ITF relation are
known and we want to infer the calibration parameters of the DTF relation,

12
ag 2 2 2
= dl ot =t = (1) g ()
O +0¢
2
0?2 = (1—p12> J§2+pl4022:p120é2 (18)
B (el = = (G-8) ()

or conversely the calibration parameters of the DTF relation are known and
we want to deduce the calibration parameters of the ITF relation :

D2 D2

o+ 1 1
o = P UDZC :—D2aD , bI:<1 pD2> &?—I—bD (20)

3
2

12 _ 1 D2 1 D2 _ L p2
2 2 2 1 2
ot = o ol = ol G+ (22)

5. CONCLUSION

In order to mimic the Tully-Fisher diagram, we have introduced a continuous
set of statistical models characterized by the straight line A%, describing the
observed linear correlation of M and p. This set of a-models include the ITF
and DTF relation as boundaries cases. Assuming standard working hypothe-
sis, we have shown that all these a-models describe indeed the same physical
data distribution in the M-p plane. Thus, if the 5 calibration parameters a®,

2Weaker hypothesis on the 2 pdf oblige us to take into account the higher order moments
of the bivariate distribution in M and p. Thus, the a-models are no more strictly equivalent.
However, the previous equations appear as sufficiently accurate approximations as long as
the influence of the moments of higher order is small.



b*, o, & and og are known for a given a-model, we can infer the calibra-
tion parameters of every a-models by using some formulas of correspondance.
Practically, this property offers us the possibility to use a different statistical
model during the calibration step of the TF relation and for determinating the
distances of galaxies. The best suitable statistical model will thus be choosen
with regard to the selection effects in observation affecting the samples during
each of these 2 steps.

For example, the ITF model seems to be more adequate for calibrating
the TF relation because of its robustness (the estimates of al, b' and aé don’t
depend on the luminosity function (Hendry et al. [3], TLR) but also because
when calibrating the ITF relation in a cluster, the estimates of a' and aé don’t
depend on the distance of the cluster (Schechter [7], Tully [11], Lynden-Bell
et al. [4],Teerikorpi [8],[3], Rauzy et al. [6]). Conversely, the use of the DTF
relation is prefered to determine the distances of galaxies. It is more accurate
(the intrinsic scatter of the DTF relation cr? is indeed smaller than the ITF
one o} ([11], TLR)), more robust (the DTF distance estimator doesn’t depend
on the luminosity function (TLR)) and more intuitive (an observed p gives
directly a value fo M : M(p) = aPp + bP (Bottinelli et al. [1], Fouqué et al.

2])).
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