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"Wavelet Analysis of the Cosmi Veloity Field"

Abstrat

We present a method, based on the properties of wavelets transforms, for inferring

a 3-dimensional and irrotational veloity �eld from its observed radial omponent. Our

method is omparable in its objetive to POTENT but the use of the wavelet analysis

o�ers in addition a robust tool in order to smooth the sparsely sampled osmi veloity

�eld. The appliation of our method to simulations permits us to study the inuene of

the sparse sampling as well as the distane measurement errors. Finally, the potential

veloity �eld within a ube of size 10000 km.s

�1

and entered on our galaxy is derived

from the redshift-distane atalog MARK II ompiled by D. Burstein.

I. Introdution

In a previous paper (Rauzy, Lahi�eze-Rey and Henriksen (1993), hereafter RLH I),

we devised a method based on the properties of the wavelet transforms, for inferring an

irrotational veloity �eld from its observed radial omponent. Our method, applied on

simulated veloity �elds sampled on an ideal 3-dimensional grid, o�ers a natural way

for smoothing the veloity �eld and for separating its ontributions at di�erent sales.

Unfortunately, galaxies with measured radial peuliar veloity are sparsely distributed

throughout the spae, leaving large regions of missing information on the veloity �eld.

Thus, one has to �rst smooth the observed veloity �eld before applying the reonstrution

proedure on the veloity �eld. The POTENT method (Dekel et al. (1990)) has given

impressive results in this way. However, we see two limitations in the smoothing sheme

used by the POTENT method. Firstly, the size of the smoothing window funtion doesn't

vary throughout the spae, and so �titious information is thus added in undersampled

regions and a signi�ant part of the signal is lost in oversampled regions. Seondly, the

errors interverning during the smoothing proedure of the POTENT method are diÆult

to ontrol, i.e : the output smoothed veloity �eld is not linked with a omputable

theoretial quantity. In setion II, we summarize a new way to smooth a �eld sampled on

a support distributed inhomogeneously throughout the spae (the omplete presentation

of our method will be found in Rauzy, Lahi�eze-Rey and Henriksen, hereafter RLH II).

The variation in size of the smoothing window funtion permits us to realize a minimal

smoothing proedure (i.e : without loss of information).
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Moreover, we prove that our smoothed output �eld mathes with a theoretial quantity

(de�ned by the wavelet analysis formalism). In setion III, we analyse the operation

involved in the reonstrution of the veloity �eld from its smoothed radial omponent

only. We show that the operation of reonstrution doesn't ommute with the preliminary

smoothing operation. This reates diÆulties already at the `a priori' theoretial level

when attempting to ompare the reonstruted veloity �eld with the osmi veloity

�eld obtained from other studies. Finally, we present the appliation of our method on

the ompiled atalogue MARK II of D. Burstein. Measurement errors involved in the

determination of the distanes to galaxies are taken into aounts.

II. Our smoothing proedure

II.1 The philosophy

Dekel and Bertshinger (1989) have pointed out that if the osmi veloity �eld v(x)

derives from a potential (v(x) = r�(x), i.e : v is url-free), this kinematial potential

� an be extrated by integrating the radial omponent of the veloity �eld v

r

(x) along

the line-of-sight :

�(x) = (Pv

r

)(x) =

Z

1

0

dl v

r

(l x) (1)

But the observed radial veloity �eld is sampled on a spatial support de�ned by the

positions of galaxies throughout the spae. Thus, in order to evaluate v

r

(x) all along the

line-of-sight, one needs to �rst smooth the observed radial veloity �eld.

This smoothing proedure is simple if the spatial support (the positions of galaxies)

of the �eld is an ideal 3-dimensional grid. We have shown in RLH I that, thanks to the

wavelet reonstrution theorem, the radial veloity �eld an be deomposed as follows :

v

r

(x) = (Wv

r

)(x) =

Z

1

0

ds

s

v

(s)

r

(x) (2)

where the integral is performed over the sales s and v

(s)

r

(x) is equal to the spatial onvo-

lution of the radial veloity �eld v

r

(x) with the "reproduing kernel" K(s;x;y), entered

on x and of spatial extension s :

v

(s)

r

(x) =

Z

1

0

Z

1

0

Z

1

0

dy K(s;x;y) v

r

(y) (3)

As the sale s dereases, more and more detailed information is available onerning the

radial veloity �eld. If the observed galaxies are distributed on a grid of elementary length

sale s



, we introdue the 2 operators W

s



and W

s



ating on v

r

as follows :

v

r

= Wv

r

= W

s



v

r

+ W

s



v

r

(4)
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(W

s



v

r

)(x) =

Z

1

s



ds

s

v

(s)

r

(x) (5)

(W

s



v

r

)(x) =

Z

s



0

ds

s

v

(s)

r

(x) (6)

(W

s



v

r

)(x) ontains the information about v

r

(x) at all sales smaller than s



. As a matter

of fat, it is not possible to evaluate the funtion v

(s)

r

(x) intervening in equation 6 for sales

smaller than s



beause then the spatial onvolution (equation 3) is performed with the

reproduing kernel having spatial extension smaller tha n the elementary length sale of

the grid.

On the other hand, v

(s)

r

(x) is a well-de�ned quantity for sales larger than s



. It an be

evaluated with no prejudie by replaing the integral over the spae involved in equation

3 by its assoiated disrete riemannian sum over the grid (beause the spatial extension

of the kernel is indeed greater than s



). Thus the funtion (W

s



v

r

)(x), i.e : the wavelet

reonstrution of the radial veloity �eld stopped at the ut-o� sale s



, an be evaluated

and ontains all the the information that an be extrated from the radial veloity �eld

sampled on a grid of elementary length sale s



. (W

s



v

r

)(x) may be roughly ompared

with a smoothed version of the radial veloity �eld with a smoothing window funtion

of size s



(but not with the omplete radial veloity �eld v

r

= W

s



v

r

+ W

s



v

r

, beause

W

s



v

r

is unknown).

Unfortunately, real atalogs of galaxies for whih radial peuliar veloities are mea-

sured are sparsely sampled throughout spae. It thus beomes impossible to de�ne an

elementary lenght sale s



. Indeed, the separation between neighbouring galaxies varies

from plae to plae : it is large in the undersampled regions of the atalog and small in

the oversampled regions. After several tests, Bertshinger et al. (1990) in the POTENT

method hose to smooth the osmi radial veloity �eld with a smoothing length sale

onstant throughout the spae. Fititious information is thus added where voids larger

than the onstant smoothing length sale are present, and information is lost in over-

sampled regions. This loss of information has to be avoided, espeially beause atual

peuliar veloity atalogs don't possess a lot of data points. By permitting the smoothing

length sale to vary from plae to plae, our goal is to extrat a smoothed veloity �eld in

output that ontains all the information present in the atalog of observed radial veloity

of galaxies.

Moreover, we wish that our smoothed veloity �eld should be omparable to a the-

oretial quantity, diretly linked with the real radial veloity �eld. For instane, this is

not the ase for the smoothing sheme used in the POTENT method (the smoothed �eld

derived from veloities sampled on an inhomogeneous support doesn't oinide with the
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smoothed �eld derived from the same veloity �eld sampled on a grid). This point is

partiularly important in order to ompare the output smoothed radial veloity �eld with

any other smoothed �eld obtained from di�erent studies.

II.2 The smoothed veloity �eld in output

Beause galaxies of real atalogs are distributed inhomogeneously in spae, it is not

possible to de�ne a ut-o� sale s



ommon to all the regions of spae sampled by the

atalog and to apply the operator W

s



on the observed radial veloity �eld. However,

if we �rst restore homogeneity to the spatial support of the �eld, we an afterwards

apply the operator W

s



without prejudie. Our smoothing sheme explores just this

possibility. We all E

x

the real spae where the spatial support fx

i

g

i=1;N

of the atalog is

inhomogeneously distributed and we de�ne by �(x) the spatial distribution of the support

in this spae. We introdue a mapping � from this real spae E

x

into a �titious spae

E

�

suh that the image f�

i

= �(x

i

)g

i=1;N

of the support by the mapping � is uniformly

distributed in the spae E

�

:

� :

8

>

<

>

:

E

x

�! E

�

x 7�! �(x)

J

�

(x) =

�

�

�

�

�

det

"

��

j

�x

k

(x)

#

�

�

�

�

�

= �(x) (7)

In pratie, we evaluate the mapping � using an algorithm. The fat that �(x) is a density

distribution funtion ensures us that the inverse mapping �

�1

is a well-de�ned funtion.

The �rst step of our smoothing sheme is to assoiate to the set of data fv

r

(x

i

)g

i=1;N

of the real spae E

x

, the set fv

0

r

(�

i

) = v

0

r

(�(x

i

))g

1;N

in the �titious E

�

spae. This

operation is illustrated �gures 1 and 2. We have simulated a osmi radial veloity �eld

sampled on the support de�ned by the real positions (expressed in artesian supergalati

oordinates) of the galaxies of MARK II atalog ompiled by D. Burstein. The �gures

show the radial veloity �eld on nine uts passing trough a ube of size 10000 km.s

�1

entered on our galaxy. Figure 1 shows fv

r

(x

i

)g

i=1;N

in the real spae E

x

and �gure 2

v

0

r

(�(x

i

))g

i=1;N

in the �titious E

�

spae.

We remark that the funtion v

0

r

is sampled on an homogeneous suppor t f�

i

g

i=1;N

in

E

�

. It is thus possible to de�ne an elementary length sale s

�

and to perform in the E

�

spae the wavelet reonstrution W

s

�

v

0

r

of v

0

r

stopped at the ut-o� sale s

�

. This is done

�gure 3. Note that W

s

�

v

0

r

(�) is de�ned for every � of E

�

.

The last step of our smoothing proedure is to ome bak to the real spae E

x

through

the inverse mapping �

�1

. Our output smoothed veloity �eld (Mv

r

)(x) is �nally the �eld

orresponding to W

s

�

v

0

r

in the real spae E

x

:

(Mv

r

)(x) = (W

s

�

v

0

r

)(�(x)) (8)
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Note that W

s

�

v

0

r

(�) ontains all the information whih an be extrated from the data

in the E

�

spae. Thus, beause the mapping � establishes a one-to-one orrespondane

between E

x

and E

�

, our smoothing proedure is minimal (no loss of information).

II.3 Link with a theoretial quantity

Thanks to the saling properties of the wavelet transforms, our output smoothed radial

veloity �eld (Mv

r

)(x) an be linked with a theoretial quantity. We prove in RLH II

that, as long as the mapping � veri�es a validity ondition (see below equation 10), the

following equality holds :

(Mv

r

)(x) = (W

s



(x)

v

r

)(x) with s



(x) =

s

�

�(x)

1=3

(9)

Thus our output smoothed radial veloity �eld is equal to the wavelet reonstrution of v

r

stopped at the ut-o� sale map s



(x) whih varies with x. We show in �gure 5 the ut-

o� sale map assoiated to the spatial distribution previously presented in �gure 1. The

value of s



(x) is derived from the jaobian assoiated with the mapping � (see equation

6). The lower the density at the position x, the larger is its assoiated ut-o� sale. We

present in �gure 6 the wavelet reonstrution of the previous simulated radial veloity

�eld stopped at the ut-o� sale map s



(x). We notie that even if the main features

remain, our smoothed radial veloity �eld (Mv

r

)(x) of �gure 4 shows some di�erenes

with (W

s



(x)

v

r

)(x). The reason for this disrepany is that the mapping � doesn't verify

the validity ondition whih stipulates that for every x and vetor h :

if khk � s



(x) ;











"

��

j

�x

k

(x)

#

:[h℄











�

�

�

�

�

�

det

"

��

j

�x

k

(x)

#

�

�

�

�

�

1=3

� khk (10)

or in other words that the mapping � is loally equivalent to a rotation-dilation transfor-

mation (see RLH II).

However, we an disard the regions of spae where the validity ondition doesn't hold

by evaluating and then omparing the two terms of the equation 10. Moreover, we an

improve this validity ondition by using anisotropi wavelets (see RLH II).

III. The kinematial potential �(x) = (Pv

r

)(x)

We have shown in setion II that, for the regions of spae where the validity ondition is

veri�ed, our smoothed radial veloity �eld (Mv

r

)(x) mathes (W

s



(x)

v

r

)(x). If the osmi

veloity �eld is irrotational, it is thus possible to inferr the kinematial potential from the

radial veloity �eld only (see equation 1). Unfortunatly, the operator P involved in this

operation presents a non-loal harater. Hene, the potential derived from the smoothed
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radial veloity �eld P ÆW

s



(x)

v

r

di�ers from the smoothed potential of the veloity �eld

W

s



(x)

ÆPv

r

(and of ourse from the non-smoothed kinematial potential � = Pv

r

) (see

RLH II). We illustrate this disrepany by plotting in �gure 7 the potential derived from

(W

s



(x)

v

r

)(x) and in �gure 8 the smoothed simulated potential (W

s



(x)

�)(x). We want to

emphasize that this behaviour is not due to the way we smooth the radial veloity �eld

but is intrinsially linked to the nature of the operator P . The point has its importane

sine the kinematial potential (or the reonstruted 3-dimensional veloity �eld) derived

from atalogs of the radial peuliar veloity �eld is often onsidered as data input for

other studies (). For example, the mass density perturbation �eld Æ(x) is linked to the

kinematial potential �(x) through the Poisson equation (Æ(x) / r

2

�(x)). A smoothed

mass density �eld is extrated from the analysis of the spatial distribution of galaxies.

Unfortunatly :

(W

s



Æ)(x) = (r

2

(W

s



Æ Pv

r

))(x) 6= (r

2

(P ÆW

s



v

r

))(x) (11)

We thus have to be very autious when omparing the kinematial potential derived from

observed radial peuliar veloity atalogs with quantities obtained from other studies suh

as those based on number ounts.

IV. Appliation to a real atalog

Finally we present the appliation of our method on the MARK II atalog of D.

Burstein (the same whih is used in Bertshinger et al. (1990)) within a ube of size 10000

km.s

�1

entered on our galaxy (416 independent objets are sampled). Our smoothed

output radial veloity �eld (Mv

r

)(x) (�gure 9) is the wavelet reonstrution of v

r

(x)

stopped at the ut-o� sale of �gure 5 in the regions of spae where the validity ondition

(equation 9) is satis�ed. From this smoothed radial veloity �eld, we have derived the

kinematial potential (P ÆMv

r

)(x) (�gure 10). The "Great attrator" ow appears learly

in the supergalati plane. Figure 11 and 12 show the e�ets of measurement errors

involved in the determination of the distanes of galaxies. From the original redshift-

distane sample, we have reated 10 samples with perturbed distanes (with a lognormal

distribution of errors and � = 20%). Distane as well as peuliar veloity of galaxies

are thus modi�ed for eah sample. Figure 11 shows the potential of the average over the

10 samples of the smoothed radial veloity �eld (P Æ Mv

r

)(x). This �eld di�ers from

(P ÆMv

r

)(x) beause the distane and the peuliar veloity for eah galaxy are orrelated

when the original sample is perturbed. We present in �gure 12 the standard dispersion

due to measurement errors in distanes. We see that this dispersion is suÆiently small

for a large region of the sampled volume.
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IV. Conlusion

We have presented a method, based on the properties of the wavelet transforms,

for smoothing a �eld sampled on a support inhomogeneously distributed throughout

the spae. Our smoothing sheme is minimal (no loss of information) and our output

smoothed �eld an be ompared with a well-de�ned theoretial quantity, as long as the

spatial support of the �eld veri�es some riteria. The appliation of this smoothing sheme

to the observed osmi radial veloity �eld reveals some limitations onerning the reon-

strution of the kinemati potential from the smoothed radial veloity �eld. Indeed, we

prove that this potential an't be generally ompared without errors with quantities ob-

tained from other osmologial studies. The inuene of this kind of errors has to be

seriously taken into aount.


