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"Wavelet Analysis of the Cosmi
 Velo
ity Field"

Abstra
t

We present a method, based on the properties of wavelets transforms, for inferring

a 3-dimensional and irrotational velo
ity �eld from its observed radial 
omponent. Our

method is 
omparable in its obje
tive to POTENT but the use of the wavelet analysis

o�ers in addition a robust tool in order to smooth the sparsely sampled 
osmi
 velo
ity

�eld. The appli
ation of our method to simulations permits us to study the in
uen
e of

the sparse sampling as well as the distan
e measurement errors. Finally, the potential

velo
ity �eld within a 
ube of size 10000 km.s

�1

and 
entered on our galaxy is derived

from the redshift-distan
e 
atalog MARK II 
ompiled by D. Burstein.

I. Introdu
tion

In a previous paper (Rauzy, La
hi�eze-Rey and Henriksen (1993), hereafter RLH I),

we devised a method based on the properties of the wavelet transforms, for inferring an

irrotational velo
ity �eld from its observed radial 
omponent. Our method, applied on

simulated velo
ity �elds sampled on an ideal 3-dimensional grid, o�ers a natural way

for smoothing the velo
ity �eld and for separating its 
ontributions at di�erent s
ales.

Unfortunately, galaxies with measured radial pe
uliar velo
ity are sparsely distributed

throughout the spa
e, leaving large regions of missing information on the velo
ity �eld.

Thus, one has to �rst smooth the observed velo
ity �eld before applying the re
onstru
tion

pro
edure on the velo
ity �eld. The POTENT method (Dekel et al. (1990)) has given

impressive results in this way. However, we see two limitations in the smoothing s
heme

used by the POTENT method. Firstly, the size of the smoothing window fun
tion doesn't

vary throughout the spa
e, and so �
titious information is thus added in undersampled

regions and a signi�
ant part of the signal is lost in oversampled regions. Se
ondly, the

errors interverning during the smoothing pro
edure of the POTENT method are diÆ
ult

to 
ontrol, i.e : the output smoothed velo
ity �eld is not linked with a 
omputable

theoreti
al quantity. In se
tion II, we summarize a new way to smooth a �eld sampled on

a support distributed inhomogeneously throughout the spa
e (the 
omplete presentation

of our method will be found in Rauzy, La
hi�eze-Rey and Henriksen, hereafter RLH II).

The variation in size of the smoothing window fun
tion permits us to realize a minimal

smoothing pro
edure (i.e : without loss of information).
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Moreover, we prove that our smoothed output �eld mat
hes with a theoreti
al quantity

(de�ned by the wavelet analysis formalism). In se
tion III, we analyse the operation

involved in the re
onstru
tion of the velo
ity �eld from its smoothed radial 
omponent

only. We show that the operation of re
onstru
tion doesn't 
ommute with the preliminary

smoothing operation. This 
reates diÆ
ulties already at the `a priori' theoreti
al level

when attempting to 
ompare the re
onstru
ted velo
ity �eld with the 
osmi
 velo
ity

�eld obtained from other studies. Finally, we present the appli
ation of our method on

the 
ompiled 
atalogue MARK II of D. Burstein. Measurement errors involved in the

determination of the distan
es to galaxies are taken into a

ounts.

II. Our smoothing pro
edure

II.1 The philosophy

Dekel and Berts
hinger (1989) have pointed out that if the 
osmi
 velo
ity �eld v(x)

derives from a potential (v(x) = r�(x), i.e : v is 
url-free), this kinemati
al potential

� 
an be extra
ted by integrating the radial 
omponent of the velo
ity �eld v

r

(x) along

the line-of-sight :

�(x) = (Pv

r

)(x) =

Z

1

0

dl v

r

(l x) (1)

But the observed radial velo
ity �eld is sampled on a spatial support de�ned by the

positions of galaxies throughout the spa
e. Thus, in order to evaluate v

r

(x) all along the

line-of-sight, one needs to �rst smooth the observed radial velo
ity �eld.

This smoothing pro
edure is simple if the spatial support (the positions of galaxies)

of the �eld is an ideal 3-dimensional grid. We have shown in RLH I that, thanks to the

wavelet re
onstru
tion theorem, the radial velo
ity �eld 
an be de
omposed as follows :

v

r

(x) = (Wv

r

)(x) =

Z

1

0

ds

s

v

(s)

r

(x) (2)

where the integral is performed over the s
ales s and v

(s)

r

(x) is equal to the spatial 
onvo-

lution of the radial velo
ity �eld v

r

(x) with the "reprodu
ing kernel" K(s;x;y), 
entered

on x and of spatial extension s :

v

(s)

r

(x) =

Z

1

0

Z

1

0

Z

1

0

dy K(s;x;y) v

r

(y) (3)

As the s
ale s de
reases, more and more detailed information is available 
on
erning the

radial velo
ity �eld. If the observed galaxies are distributed on a grid of elementary length

s
ale s




, we introdu
e the 2 operators W

s




and W

s




a
ting on v

r

as follows :

v

r

= Wv

r

= W

s




v

r

+ W

s




v

r

(4)
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(W

s




v

r

)(x) =

Z

1

s




ds

s

v

(s)

r

(x) (5)

(W

s




v

r

)(x) =

Z

s




0

ds

s

v

(s)

r

(x) (6)

(W

s




v

r

)(x) 
ontains the information about v

r

(x) at all s
ales smaller than s




. As a matter

of fa
t, it is not possible to evaluate the fun
tion v

(s)

r

(x) intervening in equation 6 for s
ales

smaller than s




be
ause then the spatial 
onvolution (equation 3) is performed with the

reprodu
ing kernel having spatial extension smaller tha n the elementary length s
ale of

the grid.

On the other hand, v

(s)

r

(x) is a well-de�ned quantity for s
ales larger than s




. It 
an be

evaluated with no prejudi
e by repla
ing the integral over the spa
e involved in equation

3 by its asso
iated dis
rete riemannian sum over the grid (be
ause the spatial extension

of the kernel is indeed greater than s




). Thus the fun
tion (W

s




v

r

)(x), i.e : the wavelet

re
onstru
tion of the radial velo
ity �eld stopped at the 
ut-o� s
ale s




, 
an be evaluated

and 
ontains all the the information that 
an be extra
ted from the radial velo
ity �eld

sampled on a grid of elementary length s
ale s




. (W

s




v

r

)(x) may be roughly 
ompared

with a smoothed version of the radial velo
ity �eld with a smoothing window fun
tion

of size s




(but not with the 
omplete radial velo
ity �eld v

r

= W

s




v

r

+ W

s




v

r

, be
ause

W

s




v

r

is unknown).

Unfortunately, real 
atalogs of galaxies for whi
h radial pe
uliar velo
ities are mea-

sured are sparsely sampled throughout spa
e. It thus be
omes impossible to de�ne an

elementary lenght s
ale s




. Indeed, the separation between neighbouring galaxies varies

from pla
e to pla
e : it is large in the undersampled regions of the 
atalog and small in

the oversampled regions. After several tests, Bertshinger et al. (1990) in the POTENT

method 
hose to smooth the 
osmi
 radial velo
ity �eld with a smoothing length s
ale


onstant throughout the spa
e. Fi
titious information is thus added where voids larger

than the 
onstant smoothing length s
ale are present, and information is lost in over-

sampled regions. This loss of information has to be avoided, espe
ially be
ause a
tual

pe
uliar velo
ity 
atalogs don't possess a lot of data points. By permitting the smoothing

length s
ale to vary from pla
e to pla
e, our goal is to extra
t a smoothed velo
ity �eld in

output that 
ontains all the information present in the 
atalog of observed radial velo
ity

of galaxies.

Moreover, we wish that our smoothed velo
ity �eld should be 
omparable to a the-

oreti
al quantity, dire
tly linked with the real radial velo
ity �eld. For instan
e, this is

not the 
ase for the smoothing s
heme used in the POTENT method (the smoothed �eld

derived from velo
ities sampled on an inhomogeneous support doesn't 
oin
ide with the
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smoothed �eld derived from the same velo
ity �eld sampled on a grid). This point is

parti
ularly important in order to 
ompare the output smoothed radial velo
ity �eld with

any other smoothed �eld obtained from di�erent studies.

II.2 The smoothed velo
ity �eld in output

Be
ause galaxies of real 
atalogs are distributed inhomogeneously in spa
e, it is not

possible to de�ne a 
ut-o� s
ale s





ommon to all the regions of spa
e sampled by the


atalog and to apply the operator W

s




on the observed radial velo
ity �eld. However,

if we �rst restore homogeneity to the spatial support of the �eld, we 
an afterwards

apply the operator W

s




without prejudi
e. Our smoothing s
heme explores just this

possibility. We 
all E

x

the real spa
e where the spatial support fx

i

g

i=1;N

of the 
atalog is

inhomogeneously distributed and we de�ne by �(x) the spatial distribution of the support

in this spa
e. We introdu
e a mapping � from this real spa
e E

x

into a �
titious spa
e

E

�

su
h that the image f�

i

= �(x

i

)g

i=1;N

of the support by the mapping � is uniformly

distributed in the spa
e E

�

:

� :

8

>

<

>

:

E

x

�! E

�

x 7�! �(x)

J

�

(x) =

�

�

�

�

�

det

"

��

j

�x

k

(x)

#

�

�

�

�

�

= �(x) (7)

In pra
ti
e, we evaluate the mapping � using an algorithm. The fa
t that �(x) is a density

distribution fun
tion ensures us that the inverse mapping �

�1

is a well-de�ned fun
tion.

The �rst step of our smoothing s
heme is to asso
iate to the set of data fv

r

(x

i

)g

i=1;N

of the real spa
e E

x

, the set fv

0

r

(�

i

) = v

0

r

(�(x

i

))g

1;N

in the �
titious E

�

spa
e. This

operation is illustrated �gures 1 and 2. We have simulated a 
osmi
 radial velo
ity �eld

sampled on the support de�ned by the real positions (expressed in 
artesian supergala
ti



oordinates) of the galaxies of MARK II 
atalog 
ompiled by D. Burstein. The �gures

show the radial velo
ity �eld on nine 
uts passing trough a 
ube of size 10000 km.s

�1


entered on our galaxy. Figure 1 shows fv

r

(x

i

)g

i=1;N

in the real spa
e E

x

and �gure 2

v

0

r

(�(x

i

))g

i=1;N

in the �
titious E

�

spa
e.

We remark that the fun
tion v

0

r

is sampled on an homogeneous suppor t f�

i

g

i=1;N

in

E

�

. It is thus possible to de�ne an elementary length s
ale s

�

and to perform in the E

�

spa
e the wavelet re
onstru
tion W

s

�

v

0

r

of v

0

r

stopped at the 
ut-o� s
ale s

�

. This is done

�gure 3. Note that W

s

�

v

0

r

(�) is de�ned for every � of E

�

.

The last step of our smoothing pro
edure is to 
ome ba
k to the real spa
e E

x

through

the inverse mapping �

�1

. Our output smoothed velo
ity �eld (Mv

r

)(x) is �nally the �eld


orresponding to W

s

�

v

0

r

in the real spa
e E

x

:

(Mv

r

)(x) = (W

s

�

v

0

r

)(�(x)) (8)
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Note that W

s

�

v

0

r

(�) 
ontains all the information whi
h 
an be extra
ted from the data

in the E

�

spa
e. Thus, be
ause the mapping � establishes a one-to-one 
orrespondan
e

between E

x

and E

�

, our smoothing pro
edure is minimal (no loss of information).

II.3 Link with a theoreti
al quantity

Thanks to the s
aling properties of the wavelet transforms, our output smoothed radial

velo
ity �eld (Mv

r

)(x) 
an be linked with a theoreti
al quantity. We prove in RLH II

that, as long as the mapping � veri�es a validity 
ondition (see below equation 10), the

following equality holds :

(Mv

r

)(x) = (W

s




(x)

v

r

)(x) with s




(x) =

s

�

�(x)

1=3

(9)

Thus our output smoothed radial velo
ity �eld is equal to the wavelet re
onstru
tion of v

r

stopped at the 
ut-o� s
ale map s




(x) whi
h varies with x. We show in �gure 5 the 
ut-

o� s
ale map asso
iated to the spatial distribution previously presented in �gure 1. The

value of s




(x) is derived from the ja
obian asso
iated with the mapping � (see equation

6). The lower the density at the position x, the larger is its asso
iated 
ut-o� s
ale. We

present in �gure 6 the wavelet re
onstru
tion of the previous simulated radial velo
ity

�eld stopped at the 
ut-o� s
ale map s




(x). We noti
e that even if the main features

remain, our smoothed radial velo
ity �eld (Mv

r

)(x) of �gure 4 shows some di�eren
es

with (W

s




(x)

v

r

)(x). The reason for this dis
repan
y is that the mapping � doesn't verify

the validity 
ondition whi
h stipulates that for every x and ve
tor h :

if khk � s




(x) ;
















"

��

j

�x

k

(x)

#

:[h℄
















�

�

�

�

�

�

det

"

��

j

�x

k

(x)

#

�

�

�

�

�

1=3

� khk (10)

or in other words that the mapping � is lo
ally equivalent to a rotation-dilation transfor-

mation (see RLH II).

However, we 
an dis
ard the regions of spa
e where the validity 
ondition doesn't hold

by evaluating and then 
omparing the two terms of the equation 10. Moreover, we 
an

improve this validity 
ondition by using anisotropi
 wavelets (see RLH II).

III. The kinemati
al potential �(x) = (Pv

r

)(x)

We have shown in se
tion II that, for the regions of spa
e where the validity 
ondition is

veri�ed, our smoothed radial velo
ity �eld (Mv

r

)(x) mat
hes (W

s




(x)

v

r

)(x). If the 
osmi


velo
ity �eld is irrotational, it is thus possible to inferr the kinemati
al potential from the

radial velo
ity �eld only (see equation 1). Unfortunatly, the operator P involved in this

operation presents a non-lo
al 
hara
ter. Hen
e, the potential derived from the smoothed
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radial velo
ity �eld P ÆW

s




(x)

v

r

di�ers from the smoothed potential of the velo
ity �eld

W

s




(x)

ÆPv

r

(and of 
ourse from the non-smoothed kinemati
al potential � = Pv

r

) (see

RLH II). We illustrate this dis
repan
y by plotting in �gure 7 the potential derived from

(W

s




(x)

v

r

)(x) and in �gure 8 the smoothed simulated potential (W

s




(x)

�)(x). We want to

emphasize that this behaviour is not due to the way we smooth the radial velo
ity �eld

but is intrinsi
ally linked to the nature of the operator P . The point has its importan
e

sin
e the kinemati
al potential (or the re
onstru
ted 3-dimensional velo
ity �eld) derived

from 
atalogs of the radial pe
uliar velo
ity �eld is often 
onsidered as data input for

other studies (). For example, the mass density perturbation �eld Æ(x) is linked to the

kinemati
al potential �(x) through the Poisson equation (Æ(x) / r

2

�(x)). A smoothed

mass density �eld is extra
ted from the analysis of the spatial distribution of galaxies.

Unfortunatly :

(W

s




Æ)(x) = (r

2

(W

s




Æ Pv

r

))(x) 6= (r

2

(P ÆW

s




v

r

))(x) (11)

We thus have to be very 
autious when 
omparing the kinemati
al potential derived from

observed radial pe
uliar velo
ity 
atalogs with quantities obtained from other studies su
h

as those based on number 
ounts.

IV. Appli
ation to a real 
atalog

Finally we present the appli
ation of our method on the MARK II 
atalog of D.

Burstein (the same whi
h is used in Bertshinger et al. (1990)) within a 
ube of size 10000

km.s

�1


entered on our galaxy (416 independent obje
ts are sampled). Our smoothed

output radial velo
ity �eld (Mv

r

)(x) (�gure 9) is the wavelet re
onstru
tion of v

r

(x)

stopped at the 
ut-o� s
ale of �gure 5 in the regions of spa
e where the validity 
ondition

(equation 9) is satis�ed. From this smoothed radial velo
ity �eld, we have derived the

kinemati
al potential (P ÆMv

r

)(x) (�gure 10). The "Great attra
tor" 
ow appears 
learly

in the supergala
ti
 plane. Figure 11 and 12 show the e�e
ts of measurement errors

involved in the determination of the distan
es of galaxies. From the original redshift-

distan
e sample, we have 
reated 10 samples with perturbed distan
es (with a lognormal

distribution of errors and � = 20%). Distan
e as well as pe
uliar velo
ity of galaxies

are thus modi�ed for ea
h sample. Figure 11 shows the potential of the average over the

10 samples of the smoothed radial velo
ity �eld (P Æ Mv

r

)(x). This �eld di�ers from

(P ÆMv

r

)(x) be
ause the distan
e and the pe
uliar velo
ity for ea
h galaxy are 
orrelated

when the original sample is perturbed. We present in �gure 12 the standard dispersion

due to measurement errors in distan
es. We see that this dispersion is suÆ
iently small

for a large region of the sampled volume.
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IV. Con
lusion

We have presented a method, based on the properties of the wavelet transforms,

for smoothing a �eld sampled on a support inhomogeneously distributed throughout

the spa
e. Our smoothing s
heme is minimal (no loss of information) and our output

smoothed �eld 
an be 
ompared with a well-de�ned theoreti
al quantity, as long as the

spatial support of the �eld veri�es some 
riteria. The appli
ation of this smoothing s
heme

to the observed 
osmi
 radial velo
ity �eld reveals some limitations 
on
erning the re
on-

stru
tion of the kinemati
 potential from the smoothed radial velo
ity �eld. Indeed, we

prove that this potential 
an't be generally 
ompared without errors with quantities ob-

tained from other 
osmologi
al studies. The in
uen
e of this kind of errors has to be

seriously taken into a

ount.


