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”Wavelet Analysis of the Cosmic Velocity Field”

Abstract

We present a method, based on the properties of wavelets transforms, for inferring
a 3-dimensional and irrotational velocity field from its observed radial component. Our
method is comparable in its objective to POTENT but the use of the wavelet analysis
offers in addition a robust tool in order to smooth the sparsely sampled cosmic velocity
field. The application of our method to simulations permits us to study the influence of
the sparse sampling as well as the distance measurement errors. Finally, the potential
velocity field within a cube of size 10000 km.s™! and centered on our galaxy is derived

from the redshift-distance catalog MARK II compiled by D. Burstein.
I. Introduction

In a previous paper (Rauzy, Lachiéze-Rey and Henriksen (1993), hereafter RLH 1),
we devised a method based on the properties of the wavelet transforms, for inferring an
irrotational velocity field from its observed radial component. Our method, applied on
simulated velocity fields sampled on an ideal 3-dimensional grid, offers a natural way
for smoothing the velocity field and for separating its contributions at different scales.
Unfortunately, galaxies with measured radial peculiar velocity are sparsely distributed
throughout the space, leaving large regions of missing information on the velocity field.
Thus, one has to first smooth the observed velocity field before applying the reconstruction
procedure on the velocity field. The POTENT method (Dekel et al. (1990)) has given
impressive results in this way. However, we see two limitations in the smoothing scheme
used by the POTENT method. Firstly, the size of the smoothing window function doesn’t
vary throughout the space, and so fictitious information is thus added in undersampled
regions and a significant part of the signal is lost in oversampled regions. Secondly, the
errors interverning during the smoothing procedure of the POTENT method are difficult
to control, i.e : the output smoothed velocity field is not linked with a computable
theoretical quantity. In section II, we summarize a new way to smooth a field sampled on
a support distributed inhomogeneously throughout the space (the complete presentation
of our method will be found in Rauzy, Lachieéze-Rey and Henriksen, hereafter RLH II).
The variation in size of the smoothing window function permits us to realize a minimal

smoothing procedure (i.e : without loss of information).



Moreover, we prove that our smoothed output field matches with a theoretical quantity
(defined by the wavelet analysis formalism). In section III, we analyse the operation
involved in the reconstruction of the velocity field from its smoothed radial component
only. We show that the operation of reconstruction doesn’t commute with the preliminary
smoothing operation. This creates difficulties already at the ‘a priori’ theoretical level
when attempting to compare the reconstructed velocity field with the cosmic velocity
field obtained from other studies. Finally, we present the application of our method on
the compiled catalogue MARK II of D. Burstein. Measurement errors involved in the

determination of the distances to galaxies are taken into accounts.
II. Our smoothing procedure

II.1 The philosophy

Dekel and Bertschinger (1989) have pointed out that if the cosmic velocity field v(x)
derives from a potential (v(x) = V ®(x), i.e : v is curl-free), this kinematical potential
® can be extracted by integrating the radial component of the velocity field v,(x) along
the line-of-sight :

2(x) = (Po)(x) = [ div(ix) (1)
But the observed radial velocity field is sampled on a spatial support defined by the

positions of galaxies throughout the space. Thus, in order to evaluate v,(x) all along the

line-of-sight, one needs to first smooth the observed radial velocity field.

This smoothing procedure is simple if the spatial support (the positions of galaxies)
of the field is an ideal 3-dimensional grid. We have shown in RLH I that, thanks to the

wavelet reconstruction theorem, the radial velocity field can be decomposed as follows :
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where the integral is performed over the scales s and v{*)(x) is equal to the spatial convo-
lution of the radial velocity field v,(x) with the ”"reproducing kernel” K (s,x,y), centered

on x and of spatial extension s :

w60 = [T [T [T dy K(s.x,y) () 3)

As the scale s decreases, more and more detailed information is available concerning the
radial velocity field. If the observed galaxies are distributed on a grid of elementary length
scale s., we introduce the 2 operators W, and W? acting on v, as follows :

v, = Wo, = Wy, + W, (4)
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(W#ev,)(x) contains the information about v,(x) at all scales smaller than s.. As a matter
of fact, it is not possible to evaluate the function v(*)(x) intervening in equation 6 for scales
smaller than s. because then the spatial convolution (equation 3) is performed with the
reproducing kernel having spatial extension smaller tha n the elementary length scale of
the grid.

On the other hand, v(*)(x) is a well-defined quantity for scales larger than s.. It can be
evaluated with no prejudice by replacing the integral over the space involved in equation
3 by its associated discrete riemannian sum over the grid (because the spatial extension
of the kernel is indeed greater than s.). Thus the function (W, v,)(x), i.e : the wavelet
reconstruction of the radial velocity field stopped at the cut-off scale s., can be evaluated
and contains all the the information that can be extracted from the radial velocity field
sampled on a grid of elementary length scale s.. (W;, v,)(x) may be roughly compared
with a smoothed version of the radial velocity field with a smoothing window function
of size s, (but not with the complete radial velocity field v, = Wy v, + W?*ew,, because

W#ew, is unknown).

Unfortunately, real catalogs of galaxies for which radial peculiar velocities are mea-
sured are sparsely sampled throughout space. It thus becomes impossible to define an
elementary lenght scale s.. Indeed, the separation between neighbouring galaxies varies
from place to place : it is large in the undersampled regions of the catalog and small in
the oversampled regions. After several tests, Bertshinger et al. (1990) in the POTENT
method chose to smooth the cosmic radial velocity field with a smoothing length scale
constant throughout the space. Fictitious information is thus added where voids larger
than the constant smoothing length scale are present, and information is lost in over-
sampled regions. This loss of information has to be avoided, especially because actual
peculiar velocity catalogs don’t possess a lot of data points. By permitting the smoothing
length scale to vary from place to place, our goal is to extract a smoothed velocity field in
output that contains all the information present in the catalog of observed radial velocity

of galaxies.

Moreover, we wish that our smoothed velocity field should be comparable to a the-
oretical quantity, directly linked with the real radial velocity field. For instance, this is
not the case for the smoothing scheme used in the POTENT method (the smoothed field
derived from velocities sampled on an inhomogeneous support doesn’t coincide with the



smoothed field derived from the same velocity field sampled on a grid). This point is
particularly important in order to compare the output smoothed radial velocity field with
any other smoothed field obtained from different studies.

I1.2 The smoothed velocity field in output

Because galaxies of real catalogs are distributed inhomogeneously in space, it is not
possible to define a cut-off scale s, common to all the regions of space sampled by the
catalog and to apply the operator W,  on the observed radial velocity field. However,
if we first restore homogeneity to the spatial support of the field, we can afterwards
apply the operator W,  without prejudice. Our smoothing scheme explores just this
possibility. We call Ey the real space where the spatial support {x;},—1 x of the catalog is
inhomogeneously distributed and we define by p(x) the spatial distribution of the support
in this space. We introduce a mapping p from this real space Fy into a fictitious space
E,, such that the image {y; = p(x;)}i=1,n of the support by the mapping s is uniformly
distributed in the space E, :

Ey — E,

" B = |det | x] | = ot m
X > p(x) k

In practice, we evaluate the mapping p using an algorithm. The fact that p(x) is a density
distribution function ensures us that the inverse mapping ! is a well-defined function.

The first step of our smoothing scheme is to associate to the set of data {v,(x;)}i=1n
of the real space Ex, the set {v.(1;) = v.(n(x;))}1,v in the fictitious E, space. This
operation is illustrated figures 1 and 2. We have simulated a cosmic radial velocity field
sampled on the support defined by the real positions (expressed in cartesian supergalactic
coordinates) of the galaxies of MARK II catalog compiled by D. Burstein. The figures
show the radial velocity field on nine cuts passing trough a cube of size 10000 km.s*
centered on our galaxy. Figure 1 shows {v,(x;)};—1n in the real space Eyx and figure 2
vy.(1(x;)) }i=1,nv in the fictitious E, space.

We remark that the function v is sampled on an homogeneous suppor t {f; }i—1 v in
E,. 1t is thus possible to define an elementary length scale s, and to perform in the E,
space the wavelet reconstruction W, v, of v, stopped at the cut-off scale s,,. This is done
figure 3. Note that W, v, (u) is defined for every u of E,,.

The last step of our smoothing procedure is to come back to the real space Ey through
the inverse mapping ~'. Our output smoothed velocity field (Mwv,)(x) is finally the field

corresponding to W v, in the real space F :

(Mv,)(x) = (Ws,v,)(1(x)) (8)



Note that W, v, (1) contains all the information which can be extracted from the data
in the E,, space. Thus, because the mapping u establishes a one-to-one correspondance

between Ex and E,,, our smoothing procedure is minimal (no loss of information).

I1.3 Link with a theoretical quantity

Thanks to the scaling properties of the wavelet transforms, our output smoothed radial
velocity field (Mwv,)(x) can be linked with a theoretical quantity. We prove in RLH II
that, as long as the mapping u verifies a validity condition (see below equation 10), the
following equality holds :

(Mo)(%) = Wapgor) () with se(x) = -t (9)
Thus our output smoothed radial velocity field is equal to the wavelet reconstruction of v,
stopped at the cut-off scale map s.(x) which varies with x. We show in figure 5 the cut-
off scale map associated to the spatial distribution previously presented in figure 1. The
value of s.(x) is derived from the jacobian associated with the mapping i (see equation
6). The lower the density at the position x, the larger is its associated cut-off scale. We
present in figure 6 the wavelet reconstruction of the previous simulated radial velocity
field stopped at the cut-off scale map s.(x). We notice that even if the main features
remain, our smoothed radial velocity field (Mwv,)(x) of figure 4 shows some differences
with (W, (x)vr)(x). The reason for this discrepancy is that the mapping p doesn’t verify
the validity condition which stipulates that for every x and vector h :

1/3

it 1] < 5.(0), H [aW(x)].[h]Hw‘det || i o

oxy, Oz,

or in other words that the mapping w is locally equivalent to a rotation-dilation transfor-
mation (see RLH II).

However, we can discard the regions of space where the validity condition doesn’t hold
by evaluating and then comparing the two terms of the equation 10. Moreover, we can
improve this validity condition by using anisotropic wavelets (see RLH II).

ITII. The kinematical potential ®(x) = (Puv,)(x)

We have shown in section IT that, for the regions of space where the validity condition is
verified, our smoothed radial velocity field (Mw,)(x) matches (W, xvr)(x). If the cosmic
velocity field is irrotational, it is thus possible to inferr the kinematical potential from the
radial velocity field only (see equation 1). Unfortunatly, the operator P involved in this
operation presents a non-local character. Hence, the potential derived from the smoothed



radial velocity field P o W, (v, differs from the smoothed potential of the velocity field
Wi, (x) © Pv, (and of course from the non-smoothed kinematical potential ® = Puv,) (see
RLH II). We illustrate this discrepancy by plotting in figure 7 the potential derived from
(Wi, (x)vr)(x) and in figure 8 the smoothed simulated potential (W, x)®)(x). We want to
emphasize that this behaviour is not due to the way we smooth the radial velocity field
but is intrinsically linked to the nature of the operator P. The point has its importance
since the kinematical potential (or the reconstructed 3-dimensional velocity field) derived
from catalogs of the radial peculiar velocity field is often considered as data input for
other studies (). For example, the mass density perturbation field §(x) is linked to the
kinematical potential ®(x) through the Poisson equation (§(x) o« V2®(x)). A smoothed
mass density field is extracted from the analysis of the spatial distribution of galaxies.
Unfortunatly :

(W 0)(x) = (VA(Wy, 0 Pu))(x) # (VAP oW,u,))(x) (11)

We thus have to be very cautious when comparing the kinematical potential derived from
observed radial peculiar velocity catalogs with quantities obtained from other studies such
as those based on number counts.

IV. Application to a real catalog

Finally we present the application of our method on the MARK II catalog of D.
Burstein (the same which is used in Bertshinger et al. (1990)) within a cube of size 10000
km.s ! centered on our galaxy (416 independent objects are sampled). Our smoothed
output radial velocity field (Mwv,)(x) (figure 9) is the wavelet reconstruction of v,(x)
stopped at the cut-off scale of figure 5 in the regions of space where the validity condition
(equation 9) is satisfied. From this smoothed radial velocity field, we have derived the
kinematical potential (PoMw,)(x) (figure 10). The ” Great attractor” flow appears clearly
in the supergalactic plane. Figure 11 and 12 show the effects of measurement errors
involved in the determination of the distances of galaxies. From the original redshift-
distance sample, we have created 10 samples with perturbed distances (with a lognormal
distribution of errors and A = 20%). Distance as well as peculiar velocity of galaxies
are thus modified for each sample. Figure 11 shows the potential of the average over the
10 samples of the smoothed radial velocity field (P o Mwv,)(x). This field differs from
(P o Muv,)(x) because the distance and the peculiar velocity for each galaxy are correlated
when the original sample is perturbed. We present in figure 12 the standard dispersion
due to measurement errors in distances. We see that this dispersion is sufficiently small

for a large region of the sampled volume.



IV. Conclusion

We have presented a method, based on the properties of the wavelet transforms,
for smoothing a field sampled on a support inhomogeneously distributed throughout
the space. Our smoothing scheme is minimal (no loss of information) and our output
smoothed field can be compared with a well-defined theoretical quantity, as long as the
spatial support of the field verifies some criteria. The application of this smoothing scheme
to the observed cosmic radial velocity field reveals some limitations concerning the recon-
struction of the kinematic potential from the smoothed radial velocity field. Indeed, we
prove that this potential can’t be generally compared without errors with quantities ob-
tained from other cosmological studies. The influence of this kind of errors has to be

seriously taken into account.



