
HAL Id: hal-01704010
https://hal.science/hal-01704010v2

Preprint submitted on 11 Jan 2019 (v2), last revised 15 Jul 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric inference for multidimensional hypoelliptic
ergodic diffusion with full observations

Anna Melnykova

To cite this version:
Anna Melnykova. Parametric inference for multidimensional hypoelliptic ergodic diffusion with full
observations. 2019. �hal-01704010v2�

https://hal.science/hal-01704010v2
https://hal.archives-ouvertes.fr


Parametric inference for multidimensional

hypoelliptic ergodic diffusion with full observations

Anna Melnykova ∗

Abstract

Multidimensional hypoelliptic diffusions arise naturally as models
of neuronal activity. Estimation in those models is complex because of
the degenerate structure of the diffusion coefficient. We build a consis-
tent estimator of the drift and variance parameters with the help of a
discretized log-likelihood of the continuous process when discrete time
observations of both coordinates are available on an interval T = N∆,
with ∆ the time step between the observations. We discuss the difficul-
ties generated by the hypoellipticity and provide a proof of the consis-
tency and the asymptotic normality of the estimator in the asymptotic
setting T → ∞ as ∆ → 0. We test our approach numerically on
the hypoelliptic FitzHugh-Nagumo model, which describes the firing
mechanism of a neuron.

Keywords: parametric inference hypoelliptic diffusions neuronal FitzHugh-
Nagumo model contrast estimator

1 Introduction

Hypoelliptic diffusions naturally occur in various applications, most notably
in neuroscience, molecular physics and in mathematical finance. In partic-
ular, models of neuronal activity — either on the scale of one single neuron
(Höpfner et al., 2016, Leon and Samson, 2017), or on a scale of a large
population of neurons (Ditlevsen and Löcherbach, 2017, Ableidinger et al.,
2017), or exotic models of option pricing (Malliavin and Thalmaier, 2006)
are described by a hypoelliptic diffusion.

∗Anna Melnykova †
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The main difference to the classical (or elliptic) setting is that in the hy-
poelliptic case the dimensionality of the noise is lower than the dimensional-
ity of the system of stochastic differential equations (SDE), which describes
the process. Hypoellipticity can be intuitively explained in the following
way: though the covariance matrix of noise is singular due to a degenerate
diffusion coefficient, smooth transition density with respect to the Lebesgue
measure still exists. That is the case when the noise is propagated to all the
coordinates through the drift term.

Properties of hypoelliptic diffusions significantly differ from those of el-
liptic ones, when all coordinates are driven by a Brownian motion. Thus
they are more difficult to study. The first problem is that each coordinate
has a variance of different order. It is the main cause why classical numer-
ical approximation methods do not work well with hypoelliptic diffusions.
In particular, it is proven that for hypoelliptic systems the classical Euler-
Maruyama scheme does not preserve ergodic properties of the true process
(Mattingly et al., 2002). The second problem is the degenerate diffusion
coefficient. As the explicit form of the transition density is often unknown,
parametric inference is usually based on its discrete approximation with
the piece-wise Gaussian processes (see, for example Kessler (1997)). But in
the hypoelliptic case this approach cannot be applied directly because the
covariance matrix of the approximated transition density is not invertible.

Now let us be more specific. Consider a two-dimensional system of
stochastic differential equations of the form:{

dXt = a1(Xt, Yt; θ
(1))dt

dYt = a2(Xt, Yt; θ
(2))dt+ b(Xt, Yt;σ)dWt,

(1)

where (Xt, Yt)
T ∈ R×R, (a1(Xt, Yt; θ

(1)), a2(Xt, Yt; θ
(2)))T is the drift term,

(0, b(Xt, Yt;σ))T is the diffusion coefficient, (dWt) is a standard Brownian
motion defined on some probability space (Ω,Ft,P), (θ(1), θ(2), σ) is the
vector of the unknown parameters, taken from some compact set Θ1×Θ2×Ξ,
and (X0, Y0) is a bounded random variable.

The goal of this paper is to estimate the parameters of (1) from discrete
observations of both coordinates X and Y . It is achieved in two steps: first,
we consider a discretization scheme in order to approximate the transition
density of the continuous process preserving the ergodic property. Then we
propose an estimation technique which maximizes the likelihood function of
the discrete approximate model in the asymptotic setting T = N∆ → ∞
and ∆ = ∆→ 0 as N →∞. Let us discuss the solutions proposed by other
authors for hypoelliptic systems of different types.
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Several works treat the parametric inference problem for a particular
case of system (1). It is natural to introduce first the class of stochastic
Damping Hamiltonian systems, also known as Langevin equations (Gardiner
and Collett, 1985). These hypoelliptic models arise as a stochastic expansion
of 2-dimensional deterministic dynamical systems — for example, the Van
der Pol oscillator (Van der Pol, 1920) perturbed by noise. They are defined
as the solution of the following SDE:{

dXt = Ytdt

dYt = a2(Xt, Yt; θ)dt+ b(Xt, Yt;σ)dWt.
(2)

The particular case of Hamiltonian systems with b(Xt, Yt;σ) ≡ σ and
a2(Xt, Yt; θ) = g1(Xt; θ)Xt+g2(Xt; θ)Yt is considered in Ozaki (1989), where
the link between the continuous-time solution of (2) and the corresponding
discrete model is obtained with the so-called local linearization scheme. The
idea of this scheme is the following: for a system of SDE with a non-constant
drift and a constant variance, its solution can be interval-wise approximated
by a system with a linear drift, and the original covariance matrix being
expanded by adding higher-order terms. It allows to construct a quasi Max-
imum Likelihood Estimator. Pokern et al. (2007) attempt to solve the prob-
lem of the non-invertibility of the covariance matrix for the particular case
of system (2) with a constant variance with the help of Itô-Taylor expansion
of the transition density. The parameters are then estimated with a Gibbs
sampler based on the discretized model with the noise propagated into the
first coordinate with order ∆

3
2 . This approach allows to estimate the vari-

ance coefficient, but it is not suitable for estimating the parameters of the
drift term. In Samson and Thieullen (2012) it is shown that a consistent
estimator for fully and partially observed data can be constructed using only
the discrete approximation of the second equation of the system (2). This
method works reasonably well in practice even for more general models when
it is possible to convert a system (1) to a simpler form (2). However, the
transformation of the observations sampled from the continuous model (1)
requires the prior knowledge of the parameters involved in the first equation
(see Samson and Thieullen (2012)). The other particular case of (1), when
b(Xt, Yt;σ) ≡ σ and the drift term is linear and thus the transition density is
known explicitly, is treated in Le-Breton and Musiela (1985). A consistent
maximum likelihood estimator is then constructed in two steps — first, a
covariance matrix of the process is estimated from available continuous-time
observations, and then it is used for computing the parameters of the drift
term. Resulting estimator is strongly consistent. Few other works are also
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devoted to a non-parametric estimation of the drift and the variance terms
(Cattiaux et al., 2014, 2016). To the best of our knowledge, for systems
(1) the only reference is Ditlevsen and Samson (2017). They construct a
consistent estimator using a discretization scheme based on a Itô-Taylor ex-
pansion. But the estimation is conducted separately for each coordinate, so
it requires partial knowledge of the parameters of the system.

In this paper we propose a new estimation method, adjusting the local
linearization scheme described in Ozaki (1989) developed for the models of
type (2) to the more general class of SDEs (1). Under the hypoellipticity
assumption this scheme propagates the noise to both coordinates of the sys-
tem and allows to obtain an invertible covariance matrix. We start with
describing the discretization scheme, approximating the transition density
and proposing a contrast estimator based on the discretized log-likelihood.
While we attempt to estimate the parameters included in the drift and dif-
fusion coefficient simultaneously. Then we study the convergence of the
scheme and prove the consistency and the asymptotic normality of the pro-
posed estimator based on the 2-dimensional contrast. To the best of our
knowledge, the proof of this consistency is the first in the literature. We
finish with numerical experiments, testing the proposed approach on the
hypoelliptic FitzHugh-Nagumo model and compare it to other estimators.

This paper is organized as follows: Section 2 presents the model and
assumptions. Discrete model is introduced in Section 3. The estimators
are studied in Section 4 and illustrated numerically in Section 5. We close
with Section 6, devoted to conclusions and discussions. Formal proofs are
gathered in Appendix.

2 Models and assumptions

2.1 Notations

We consider system (1). We assume that both variables are discretely ob-
served at equally spaced periods of time ∆ on some finite time interval [0, T ].
The vector of observations at time i∆ is denoted by Zi = (Xi, Yi)

T , where
Zi is the value of the process at the time i∆, i ∈ 0 . . . N = T

∆ . We further
assume that it is possible to draw a sufficiently large and accurate sample
of data, i.e that T = N∆ → ∞, with the partition size ∆ → 0 as N → ∞.
Let us also introduce the vector notations:

dZt = A(Zt; θ)dt+B(Zt;σ)dW̃t, Z0 = ω0, t ∈ [0, T ] (3)
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where Zt = (Xt, Yt)
T , W̃t is a standard two-dimensional Brownian motion

defined on the filtered probability space, ω0 is a F0-measurable 2−dimensional
random vector, and θ = (θ(1), θ(2)) is the vector of parameters. Matrices A
and B represent, respectively, the drift and the diffusion coefficient, that is
A(Zt; θ) = (a1(Xt, Yt; θ

(1)), a2(Xt, Yt; θ
(1)))T and

B(Zi;σ) =

(
0 0
0 b(Zt;σ)

)
. (4)

Throughout the paper we use the following abbreviations for partial deriva-
tives (unless the arguments need to be specified): ∂xif ≡

∂f
∂xi

(x1, . . . , xp),

∂2
xi,xj ≡

∂2f
∂xi∂xj

(x1, . . . , xp) ∀i, j ∈ [1, p]. We suppress the dependency on

the parameters, when their values are clear from context, otherwise addi-
tional indices are introduced. True values of the parameters are denoted by

θ
(1)
0 , θ

(2)
0 , σ0, and, further, by P0 we will denote the probability P

θ
(1)
0 ,θ

(2)
0 ,σ0

.

We also adopt the notations from Pokern et al. (2007) and refer to the vari-
able Yt which is directly driven by Gaussian noise as ”rough”, and to Xt as
”smooth”.

2.2 Assumptions

Further, we are working under the following assumptions:

A1 Functions a1(Zi; θ
(1)) and a2(Zi; θ

(2)) have bounded partial derivatives
of every order, uniformly in θ. Furthermore ∂ya1 6= 0 ∀(x, y) ∈ R2.

A2 Global Lipschitz and linear growth conditions. ∀t, s ∈ [0,∞) ∃K s.t.:

‖A(Zt; θ)−A(Zs; θ)‖+ ‖B(Zt;σ)−B(Zs;σ)‖ ≤ K‖Zt − Zs‖
‖A(Zt; θ)‖2 + ‖B(Zt;σ)‖2 ≤ K2(1 + ‖Zt‖2),

where ‖ · ‖ is the standard Euclidean norm. Further, denote by Z0 the
initial value of the process Zt, we assume that E‖Z0‖2 <∞.

A3 Process Zt is ergodic and there exists a unique invariant probability
measure ν0 with finite moments of any order.

A4 Both functions a1(Zt; θ
(1)) and a2(Zt; θ

(2)) are identifiable, that is

ai(Zt; θ
(i)) ≡ ai(Zt; θ(i)

0 )⇔ θ(i) = θ
(i)
0 .

Assumption (A1) ensures that the weak Hörmander condition is satisfied,
thus the system is hypoelliptic in the sense of stochastic calculus of variations
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(Nualart, 2006, Malliavin and Thalmaier, 2006). In order to prove it we first
write the coefficients of system (3) as two vector fields, converting (3) from
Itô to the Stratonovich form:

A0(x, y) =

(
a1(x, y; θ(1))

a2(x, y; θ(2))− 1
2b(x, y;σ)∂yb(x, y;σ)

)
A1(x, y) =

(
0

b(x, y;σ)

)
.

Then their Lie bracket is equal to

[A0, A1] =

(
∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2))− 1
2∂xb(x, y;σ)∂2

xyb(x, y;σ)

)
.

By (A1) the first element of this vector is not equal to 0, thus we conclude
that A1 and [A0, A1] generate R2. That means that the weak Hörmander
condition is satisfied and as a result the transition density for system (3)
exists, though not necessarily has an explicit form. (A2) is a sufficient
condition to ensure the existence and uniqueness in law of the strong solution
of the system (3), moreover this solution is Feller (Revuz and Yor, 2013).
(A4) is a standard condition which is needed to prove the consistency of the
estimator. (A3) ensures that we can apply the weak ergodic theorem, that
is, for any continuous function f with polynomial growth at infinity:

1

T

∫ T

0
f(Zs)ds −→

T→∞
ν0(f) a.s.,

where ν0(·) is a stationary density of model (3), by choosing this notation
we highlight that ν0(·) := ν

θ
(1)
0 ,θ

(2)
0 ,σ0

(·)).
We do not investigate the conditions under which the process Zt is er-

godic, as it is not the main focus of this work. Ergodicity of the stochastic
damping Hamiltonian system (2) is studied in Wu (2001). Conditions for a
wider class of hypoelliptic SDEs can be found in Roynette (1975), Mattingly
et al. (2002), Arnold and Kliemann (1987). It is also important to know that
if the process Zt is ergodic, then its sampling {Zi}, i ∈ [0, N ] is also ergodic
(Genon-Catalot et al., 2000).

3 Discrete model

This section is organized as follows: first, we introduce the linear model, and
explain how the maximum likelihood estimator can be constructed in this
case. Then, we propose a discrete scheme for a general model (3), where
we use a piece-wise linear approximation of the underlying process, which
results in a piece-wise Gaussian density.
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3.1 Linear SDE

Let us start with a particular case of (3). We consider a linear homogeneous
equation with a drift vector and diffusion matrix given, respectively, by

A(Zt; θ) =

(
θ11 θ12

θ21 θ22

)(
Xt

Yt

)
=: AθZt (5)

and

B(Zt; θ) =

(
0 0
0 σ

)
=: Bσ. (6)

The equation is written as

dZt = AθZtdt+BσdW̃t (7)

In this case we can also verify an assumption (A4) by checking the stability
of the matrix Aθ (Le-Breton and Musiela, 1985). That is, if eigenvalues of
Aθ have negative real parts, then Aθ is stable and the solution of equation
(7) is ergodic. Furthermore, we know that this solution is a Gaussian process
given by

Zt = eAθTZ0 +

∫ T

0
eAθ(T−t)BσdW̃t (8)

with a mean vector and a covariance matrix defined, respectively, as

E[ZT ] = eAθTZ0 (9)

Σ[ZT ; θ, σ2] = E

[(∫ T

0
eAθ(T−t)BσdW̃t

)(∫ T

0
eAθ(T−t)BσdW̃t

)T]
. (10)

Remark. Note that the matrix (10) is of full rank, while BσB
T
σ is not.

3.2 General SDE and discrete linearization

Now let us explain how the above mentioned results can be applied to a
general system of type (3). The idea is to use a piece-wise approximation of
the solution of (3) by the solutions of a linear homogeneous equation. It can
be considered as an improved Euler scheme, where the solution is piece-wise
approximated by the solution of a system with constant coefficients. In that
case instead of a constant matrix Aθ we can use the Jacobian of the drift
vector A(Zt; θ), which we assume to be constant on each small interval of
size ∆: (

∂xa1(x, y; θ(1)) ∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2)) ∂ya2(x, y; θ(2))

)
=: J(z; θ) (11)

7



Let us start from the diffusion term (10). After passing to a discrete time
step, it is written as follows:

Σ
[
Zi+1; θ, σ2|Fi

]
= E

[(∫ ∆(i+1)

i∆
eJ(Zi;θ)(∆−t)B(Zi;σ)dW̃t

)
(∫ ∆(i+1)

i∆
eJ(Zi;θ)(∆−t)B(Zi;σ)dW̃t

)T , (12)

Representation (12) is not convenient for computational purposes because
of matrix exponents. However, it can be approximated as follows, thanks to
the discrete time setting with an arbitrary small step ∆:

Proposition 1. The second-order Taylor approximation of matrix Σ(Zi+1; θ, σ2|Zi)
defined in (12) has the following form:

b2(Zi;σ)

(
(∂ya1)2 ∆3

3 (∂ya1)∆2

2 + (∂ya1)(∂ya2)∆3

3

(∂ya1)∆2

2 + (∂ya1)(∂ya2)∆3

3 ∆ + (∂ya2)∆2

2 + (∂ya2)2 ∆3

3

)
+O(∆4),

(13)
where the derivatives are computed at time i∆.

In practice it is enough to use only the higher-order terms of (13):

Σ∆(Zi+1; θ, σ2|Zi) := b2(Zi;σ)

(
(∂ya1)2 ∆3

3 (∂ya1)∆2

2

(∂ya1)∆2

2 ∆

)
(14)

The corresponding inverse matrix of (14) is defined by:

Σ−1
∆ (Zi+1; θ, σ2|Zi) =

1

b2(Zi;σ)

(
12

(∂ya1)2∆3
6

(∂ya1)∆2

6
(∂ya1)∆2

4
∆

)
(15)

It is also natural to approximate the drift term by applying the definition
of the matrix exponent to (9):

E[Zi+1|Zi] = Zi + ∆J(Zi; θ)Zi +
∆2

2
J2(Zi; θ)Zi +O(∆3) (16)

where J(Zi; θ) is the Jacobian of the drift vectorA(Zt; θ) given by (11). How-
ever, in order to avoid the accumulation of errors, we recall again that the
expression J(Zi; θ)Zi serves only as an approximation of the non-constant
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matrix A(Zt; θ), so that we can element-wise rewrite the approximation of
the drift as:

Ā1(Zi; θ
(1)) := Xi + ∆a1(Xi, Yi; θ

(1))+

∆2

2

(
∂xa1(Xi, Yi; θ

(1)) + ∂ya1(Xi, Yi; θ
(1))
)
a1(Xi, Yi; θ

(1))

Ā2(Zi; θ
(2)) := Yi + ∆a2(Xi, Yi; θ

(2))+

∆2

2

(
∂xa2(Xi, Yi; θ

(2)) + ∂ya2(Xi, Yi; θ
(2))
)
a2(Xi, Yi; θ

(2)).

(17)

Then the element-wise approximation of Zi+1 conditionally on Zi is written
as:

Xi+1 = Ā1(Zi; θ
(1)) + b(Zi;σ)∂ya1(Zi; θ

(1))ξ1

Yi+1 = Ā2(Zi; θ
(2)) + b(Zi;σ)ξ2,

(18)

where ξ1 and ξ2 are normal random variables, such that E[ξ1] = E[ξ2] = 0,

V ar[ξ1] = ∆3

3 , V ar[ξ2] = ∆ and Cov[ξ1ξ2] = ∆2

2 . Numerically they can be
simulated by decomposing the matrix (14) with the help of, for example, LU
or Cholesky decomposition and multiplying it by independent standard nor-
mal variables. Method of the decomposition does not affect the theoretical
properties of the scheme. About the diffusion term, as an approximation we
may take any matrix B̄(Zi; θ, σ

2) such that BBT = Σ(Zi; θ, σ
2). It can be

obtained, for example, with Cholesky or LU decomposition. Note that the
approximated diffusion term now depends on parameters of the drift term.

Now we want to study the rate of weak convergence of the scheme. We
will rely on the result of the following Proposition (recall that the true value
of vector of parameters is denoted by θ0):

Proposition 2 (Weak convergence of the local linearization scheme). The
following holds:

E
[
Xi+1 − Ā1(Zi; θ

(1)
0 )|Fi

]
= O(∆3)

E
[
Yi+1 − Ā2(Zi; θ

(2)
0 )|Fi

]
= O(∆3)

E
[
Xi+1 − Ā1(Zi; θ

(1)
0 )|Fi

]2
= (∂ya1)2

θ0

∆3

3
b2(Zi;σ0) +O(∆4)

E
[
Yi+1 − Ā2(Zi; θ

(2)
0 )|Fi

]2
= ∆b2(Zi;σ0) +O(∆2)

E
[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)
|Fi
]

= (∂ya1)θ0
∆2

2
b2(Zi;σ0) +O(∆3)
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Proof. We know that the moments of the Feller process can be approximated
by a moment generator function (Kloeden et al., 2003). That is, for a
sufficiently smooth and integrable function f : R×R→ R:

E(f(Zt+∆)|Zt = z) =

j∑
i=0

∆i

i!
Lif(z) +O(∆j+1), (19)

where Lif(z) is the i times iterated generator of model (3), given by

Lf(z) = (∂zf(z))A(z) +
1

2
52
B f(z),

where 52
B(·) = σ2 ∂2

∂y2
(·) is a weighted Laplace type operator. Since the

process is approximated by (16), it coincides with (19) up to the terms of
order ∆2.

Remark. Note that it is possible to add more terms to expansion (16).
However, we will only take terms up to ∆2: on the one hand, it allows us
to have an approximation precise enough so that Proposition 2 holds. In
particular, bounds obtained for the first equation are crucial for proving the
consistency of the estimator introduced in Section 4. On the other hand, it
keeps expressions simple enough and spares computational cost. Also note
that the approximation of Xi+1 depends only on θ(1) (for Yi+1 — respectively,
on θ(2)).

4 Parameter estimation

In this section we propose a contrast estimator (based on the pseudo-likelihood
function) and prove its consistency and asymptotic normality. Then we dis-
cuss some already known results for the linear homogeneous system and
propose an analogous, separate estimation of the drift and the variance
term.

4.1 Contrast estimator

Let us introduce a contrast function for system (3). In the elliptic case this
function is defined as −2 times the log-likelihood of the discretized model
(Florens-Zmirou, 1989, Kessler, 1997). In hypoelliptic case, however, we
must modify this criterion taking into account the specific structure of the
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covariance matrix. Most notably, the contrast is obtained by dividing the
first part by 2:

LN,∆(θ, σ2;Z0:N ) =
1

2

N−1∑
i=0

(Zi+1−Ā(Zi; θ))
TΣ−1

∆ (Zi; θ, σ
2)(Zi+1−Ā(Zi; θ))

+
N−1∑
i=0

log det(Σ∆(Zi; θ, σ
2)), (20)

where the inverse matrix Σ−1
∆ is given by (15). Then the estimator is defined

as:
(θ̂N,∆, σ̂

2
N,∆) = arg min

θ,σ2

LN,∆(θ, σ2;Z0:N ) (21)

For system (2) this correction is not proposed nor in Ozaki (1989), nor
in Pokern et al. (2007). We justify this bias theoretically in Lemma 3.
However, the 2-dimensional criterion (21) is tricky to analyse because of the
different orders of variance for the first and the second coordinate. When
both equations are driven by the same parameters, the task is simplified
as the parameters can be then estimated from a one-dimensional criteria,
which involves only one of the two equations.

When it is not the case, the estimation procedure depends heavily on
the first function of the drift vector. That means that the estimation of θ(1)

is asymptotically independent from the estimation of θ(2) and σ, while the
inverse is, in general, not true. It is, again, caused by the specific structure
of (1) and different order of variance of coordinates. On the contrary, in the
case of elliptic or Hamiltonian system (2) estimation of drift and diffusion
parameters is independent (see in particular Kessler (1997), Samson and
Thieullen (2012) etc.). We begin the study from the following Lemma, on
which the consistency of θ̂(1) crucially relies:

Lemma 1. Under assumptions (A1)-(A4), ∆ → 0 and N∆ → ∞ the fol-
lowing holds:

lim
N→∞,∆→0

∆

N

[
LN,∆(θ(1), θ(2), σ2;Z0:N )− LN,∆(θ

(1)
0 , θ(2), σ2;Z0:N )

]
P0−→

6

∫
(a1(z; θ

(1)
0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1)2
θ

ν0(dz)

Proof is postponed to Appendix. On the next step, we obtain the asymp-
totic normality of (21) with respect to θ(1):
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Theorem 1. Under the assumptions (A1)-(A4), ∆ → 0, N∆ → ∞ and
N∆2 → 0 the following holds:

θ̂
(1)
N,∆

P0−→ θ
(1)
0

√
N

∆
(θ̂

(1)
N,∆ − θ

(1)
0 )

D−→

N

(
0, 3

(∫
(∂θ(1)a1)(∂θ(1)a1)T

b2(z;σ)(∂ya1)
ν0(dz)

)−1

(∫
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)(∂θ(1)a1)T

(
1 +

1

(∂ya1)2

)
ν0(dz)

))
The idea of the proof of consistency for the diffusion and the rough term

parameters follows Gloter and Sørensen (2009). To start with, we introduce
an additional assumption on the first function in the drift term, namely, the
linearity with respect to the vector of parameters θ(1):

a1(z; θ
(1)
i )− a1(z; θ

(1)
j ) = a1(z; θ

(1)
i − θ

(1)
j ) ∀θ(1)

i , θ
(1)
j ∈ Θ1 (H1)

Ca1(z; θ(1)) = a1(z;Cθ(1)) ∀C ∈ R

Then, we have to rely on the estimated value of the first parameter to
study the consistency of θ(2) and σ. The idea of the proofs is the following:
since we are working in a compact set, we can always find a sequence of

estimators θ̂
(1)
N,∆ such that a sequence of (θ

(1)
N,∆ − θ

(1)
0 ) is tight. Then we

use it in combination with the rate of convergence obtained in Theorem
1 and the continuous mapping theorem for proving the consistency of the
remaining terms in a standard way (see, for example, Kessler (1997)).

Remark. Assumption (H1) is rather restrictive, but the idea of the proof
can be reused for a more general case (for example, under the condition of
Lipschitz continuity with respect to parameter θ(1)) at the cost of additional
technicalities, which are omitted in this paper.

Consistency follows from the following Lemmas (proofs are postponed
to Appendix):
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Lemma 2. Under assumptions (A1)-(A4), ∆ → 0 and N∆ → ∞ the fol-
lowing holds:

lim
N→∞,∆→0

1

N∆

[
LN,∆(θ̂

(1)
N,∆, θ

(2), σ2;Z0:N )− LN,∆(θ̂
(1)
N,∆, θ

(2)
0 , σ2

0;Z0:N )
]
P0−→

2

∫
(a2(z; θ(2))− a2(z; θ

(2)
0 ))2

b2(z;σ)
ν0(dz)

Lemma 3. Under assumptions (A1)-(A4), (H1) and when ∆ → 0 while
N∆→∞ the following holds:

1

N
LN,∆(θ̂

(1)
N,∆, θ

(2), σ2;Z0:N )
P0−→

∫ (
b2(z;σ0)

b2(z;σ)
+ log b2(z;σ)

)
ν0(dz)

Theorem 2. Under assumptions (A1)-(A4), (H1) and the condition ∆→ 0,
N∆→∞ and N∆2 → 0 the following holds:

θ̂
(2)
N,∆

P0−→ θ
(2)
0 , σ̂N,∆

P0−→ σ0

and

(θ̂
(2)
N,∆ − θ

(2)
0 )

D−→ N

0,

(∫
(∂θ(2)a2(z; θ

(2)
0 ))(∂θ(2)a2(z; θ

(2)
0 ))T

b2(z, σ)
ν0(dz)

)−1


(σ̂N,∆ − σ0)
D−→ N

(
0, 2

(∫
(∂σb(z, σ0))(∂σb(z, σ0))T

b2(z, σ0)
ν0(dz)

)−1
)
.

4.2 Least squares estimator

We recall that for the linear model (7) the estimators for the unknown
constant matrices Aθ and Bσ, given by (5) and (6), are defined Le-Breton
and Musiela (1985). It is proposed to compute Bσ by the sample covariance
matrix, and for the drift term the maximum likelihood estimator can be
constructed, assuming that the term σ is known. Both estimators are defined
as follows:

Âθ =

[∫ T

0
dZtZ

T
t

] [∫ T

0
ZtZ

T
t dt

]−1

, B̂σ =
1

T
[Zt] . (22)

It is proven in Le-Breton and Musiela (1985) that (22) is strongly consistent
when the observed time interval is fixed. However, estimators given by (22)
can not be used directly for a system of a general form, since they rely on

13



the continuous observations of the linear process. On the other hand, we
can still adapt the approach of separate estimation of the drift and variance
terms with some limitations, which will be discussed further.

Idea of the estimator for the drift term basically comes from the natural
bound on the quadratic form (20). We know that for a matrix A the upper
bound on its vector product with a vector x written as xTAx is given by
‖A‖‖x‖2. Translating it back to the contrast minimization problem, we
may use this bound to estimate the drift parameters independently from
the diffusion coefficient by minimizing the norm of the drift vector (which
is a quadratic variance). Thus, consider

θ̂dN,∆ = arg min
θ

N−1∑
i=0

∥∥Zi+1 − Ā(Zi; θ)
∥∥2

:= arg min
θ

LdN,∆(θ;Z0:N ). (23)

Basically, minimization of this form corresponds to a classical least square
estimator. Of course, this estimator does not take into account the specific
structure of the noise, so that we may expect it to be less performing. Us-
ing the same reasoning as for a linearized contrast we may prove the next
Theorem (the proof is postponed to appendix):

Theorem 3. Under the assumptions (A1)-(A4) and the condition ∆ → 0,
N∆→∞ and N∆2 → 0 the following holds:

θ̂dN,∆
P0−→ θ0,

and
√
N∆3

√
N∆

T

(θ̂dN,∆ − θd0)
D−→

N (0, 1
3C
−1
1

∫
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2(∂θ(1)a1(z; θ

(1)
0 ))(∂θ(1)a1(z; θ

(1)
0 ))T ν0(dz)

)
N
(

0, C−1
2

∫
b2(z;σ0)(∂θ(2)a2(z; θ

(2)
0 ))(∂θ(2)a2(z; θ

(2)
0 ))T ν0(dz)

)  ,
where

Ci =

∫
(∂θ(i)ai(z; θ

(i)
0 ))(∂θ(i)ai(z; θ

(i)
0 ))T ν0(dz)

Remark. Note the difference in the scaling between least squares (”drift-
only”) contrast and the results obtained in Theorems 1 and 3. That means
that the estimator defined by (23) has a bigger variance that the one de-
fined by (21). It is a price to pay for the asymptotic independence of both
parameters.
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What about the diffusion term, in the case when b(x, y;σ) ≡ σf(x, y),
parameter σ can be computed explicitly with the help of the sample co-
variance matrix. Good properties of this approach for the elliptic case are
proven in Florens-Zmirou (1989). When it comes to the hypoelliptic sys-
tems, this approach must be modified, as the discretization step of order
∆ does not allow to compute the terms of order ∆3, which represent the
propagated noise. However, the value of σ can still be inferred from the
observations of the rough coordinate by computing

σ̃2
∆,N =

1

N∆

N−1∑
i=0

(Yi+1 − Yi)2

f(Xi, Yi)
. (24)

It can be shown that this estimator is consistent and asymptotically normal.
In fact, it is a straightforward consequence of point (iv) of Lemma 7 (see
Appendix), but we do not aim to provide the details here as it only concerns
the particular case of model (1), that is, when the diffusion term depends
linearly on only one unknown parameter.

5 Simulation study

5.1 The model

The two estimators (θ̂∆,N , σ̂
2
∆,N ) and (θ̂d∆,N , σ̃

2
∆,N ) are evaluated on the sim-

ulation study with a hypoelliptic stochastic neuronal model called FitzHugh-
Nagumo model (Fitzhugh, 1961). It is a simplified version of the Hodgkin-
Huxley model (Hodgkin and Huxley, 1952), which describes in a detailed
manner activation and deactivation dynamics of a spiking neuron. First it
was studied in the deterministic case, then it was improved by adding two
sources of noise to the both coordinates, what results in an elliptic SDE.
However, it is often argued that only ion channels are perturbed by noise,
while the membrane potential depends on them in a deterministic way. This
idea leads to a 2-dimensional hypoelliptic diffusion. In this paper we consider
a hypoelliptic version with noise only in the second coordinate as studied
in Leon and Samson (2017). More precisely, the behaviour of the neuron is
defined through the solution of the system{

dXt = 1
ε (Xt −X3

t − Yt − s)dt
dYt = (γXt − Yt + β)dt+ σdWt,

(25)

where the variable Xt represents the membrane potential of the neuron at
time t, and Yt is a recovery variable, which could represent channel kinetic.
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Parameter s is the magnitude of the stimulus current and is often known in
experiments, ε is a time scale parameter and is typically significantly smaller
than 1, since Xt moves ”faster” than Yt. Parameters to be estimated are
θ = (γ, β, ε, σ).

Hypoellipticity and ergodicity of (25) are proven in Leon and Samson
(2017). In Jensen et al. (2012) it is proven that s is unidentifiable when
only one coordinate is observed. Parametric inference for elliptic FitzHugh-
Nagumo model both in fully- and partially observed case is investigated in
Jensen (2014). The same problem, but for the hypoelliptic setting is studied
in Ditlevsen and Samson (2017).

5.2 Experimental design

In order to make our experiments more representative, we consider two
different settings: an excitatory and an oscillatory behaviour. For the first
regime, the drift parameters are set to γ = 1.5, β = 0.3, ε = 0.1, s = 0.01
and the diffusion coefficient σ = 0.6, and for the second γ = 1.2, β =
1.3, ε = 0.1, s = 0.01 and σ = 0.4. The diffusion coefficient does not change
the behaviour pattern, only the ”noisiness” of the observations. Sample
trajectories for both settings are shown on Figure 1.

We organize the trials as follows: first, we generate 100 trajectories using
formula (17) for each set of parameters with ∆ = 0.001 and N = 500000.
Then we downsample the sequence and work only with each 10-th value of
the process, so that ∆ = 0.01 and N = 50000. We estimate the parameters
by minimizing the contrast to the contrast given by (20). We refer to this
method as linearized contrast. For the least square estimator (LSE) we do
the following: we estimate the parameter σ explicitly from the observations
of the second variable by (24), and then compute the parameters of the
drift by minimizing (23). In addition, we compare both methods to the 1.5
strong order scheme (Ditlevsen and Samson, 2017), based on two separate
estimators for each coordinate.

The minimization of the criterions is conducted with the optim function
in R with the Conjugate Gradient method. In Table 1 we present the mean
value of the estimated parameters and the standard deviation (in brackets).
Figure 2 illustrates the estimation densities. Linearized contrast is depicted
in blue, least square estimator —in red, 1.5 scheme in green.

The first thing is that the estimation of the diffusion coefficient σ with
the 2-dimensional linearized estimator is biased in both sets of data, even
though the contrast is corrected with respect to the hypoellipticity of the
system. This bias does not appear in the one-dimensional criteria and when
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γ β ε σ

Set 1: 1.5 0.3 0.1 0.6

Lin. contrast 1.477 (1.056) 0.289 (0.428) 0.100 (0.561) 0.672 (0.291)
LSE 1.460 (1.059) 0.311 (0.403) 0.100 (0.562) 0.611 (0.287)

1.5 scheme 1.497 (1.055) 0.299 (0.393) 0.099 (0.563) 0.597 (0.288)

Set 2: 1.2 1.3 0.1 0.4

Lin. contrast 1.199 (0.531) 1.315 (0.621) 0.102 (0.683) 0.472 (0.340)
LSE 1.170 (0.423) 1.268 (0.598) 0.100 (0.678) 0.400 (0.381)

1.5 scheme 1.221 (0.645) 1.324 (0.777) 0.088 (0.575) 0.398 (0.338)

Table 1: Comparison between different schemes

the value is directly computed from the observations. Thus its origin may
be explained by the dimensionality of the system. Parameters of the second
coordinate γ and β are estimated efficiently with all three methods, though
the 1.5 scheme provides a more accurate estimation. It is expected, since
one of the parameters is fixed to its real value. However, in the case of
ε, 1-dimensional criteria does not score better than the linearized and least
squares based estimators. This parameter seems to be underestimated in the
case of 1.5 scheme, and a bit overestimated with the linearization scheme,
as well as the diffusion coefficient.

Also note that the experiments illustrate the speed of convergence proven
in Theorems 1, 2 and 3. In particular, we may see that the quadratic-
variance based contrast gives the same performance as the classical contrast
for the parameters of rough coordinate, but parameter ε has a much bigger
variance.

During the simulation study it is observed that ε is the most sensitive to
the initial value with which the optim function is initialized, since it directly
regulates the amount of noise which is propagated to the first coordinate.

6 Conclusions

The proposed contrast estimator successfully generalizes parametric infer-
ence methods developed for models of type (2) for more general class (1).
Numerical study shows that it can be used with no prior knowledge of the
parameters. It is the most prominent advantage of our method over the
analogous works.

From the theoretical point of view, our estimators also reveal good prop-
erties. Both linearized contrast and the least square estimators are consis-
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tent. In the case of the contrast, estimator of the rough coordinate asymp-
totically depends on the estimator of the smooth coordinate, and its per-
formance is sensitive to the form of the drift term. Question of asymptotic
normality is even more intricated. We prove the asymptotic normality under
rather restrictive assumptions of the drift term even if the method can be
applied to more general models. The normality of the LSE is studied under
no additional assumptions on the drift term. It is noted that the variance of
least square estimator is bigger that the variance of the contrast estimator.

The most important direction of the prospective work is the adaptation
of the estimation method to the case when only the observations of the first
coordinate are available. Under proper conditions it must be possible to
couple the contrast minimization with one of the existing filtering methods
and estimate the parameters of the system (at least, partially). It would
allow to face real experimental data.

Another point is the generalization of the contrast to systems of higher
dimension. In practice we often deal with high-dimensional systems with
arbitrary number of rough and smooth variables, and the general rule which
describes the behaviour of the contrast in that case is not yet deriven. Fi-
nally, it is crucial to pair the method with a robust optimization procedure,
since, especially in higher dimensions, the minimization of the contrast is
sensitive to choice of the discretization step and initial conditions.
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7 Appendix

7.1 Properties of the scheme

Proposition 1. Let us consider each integral of (13) separately. Denote:

Wt+∆ =

∫ t+∆

t
eJ(t+∆−s)B(Zt;σ)dW̃s,

where we suppress the dependency of the Jacobian of the starting point on
the interval in order to keep notations simple. Recalling the Jacobian of
system (3) and the definition of the matrix exponent, we have:

Wt+∆ =

∫ t+∆

t
(I + J(t+ ∆− s) +O(∆2))B(Zt;σ)dW̃s =

=

∫ t+∆

t

[(
1 + ∂xa1(t+ ∆− s) ∂ya1(t+ ∆− s)
∂xa2(t+ ∆− s) 1 + ∂ya2(t+ ∆− s)

)
+O(∆2)

](
0
1

)
b(Zt;σ)dWs

= b(Zt;σ)

[
∂ya1

∫ t+∆
t (t+ ∆− s)dWs +O(∆2)∫ t+∆

t dWs + ∂ya2

∫ t+∆
t (t+ ∆− s)dWs +O(∆2)

]
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Then we can calculate E
[
Wt+∆W ′t+∆

]
:

E
[
Wt+∆W ′t+∆

]
= b2(Zt;σ)E

(
Σ

(1)
∆ Σ

(12)
∆

Σ
(12)
∆ Σ

(2)
∆

)
+O(∆4),

where entries are given by:

Σ
(1)
∆ = (∂ya1)2

[∫ t+∆

t
(t+ ∆− s)dWs

]2

Σ
(12)
∆ =

(
∂ya1

∫ t+∆

t
(t+ ∆− s)dWs

)(∫ t+∆

t
dWs + ∂ya2

∫ t+∆

t
(t+ ∆− s)dWs

)
Σ

(2)
∆ =

(∫ t+∆

t
dWs + ∂ya2

∫ t+∆

t
(t+ ∆− s)dWs

)2

The first entry can be easily calculated by the Itô isometry:

E[Σ
(1)
∆ ] = (∂ya1)2

E

[∫ t+∆

t
(t+ ∆− s)dWs

]2

=

(∂ya1)2
∫ t+∆

t
(t+ ∆− s)ds = (∂ya1)2 ∆3

3

Now consider the product of two stochastic integrals in the remaining terms.
Assume for simplicity that t = 0. From the properties of the stochastic
integrals (Karatzas and Shreve, 1987), it is straightforward to see that:

E

 lim
n→∞

∑
ti,ti−1∈[0,∆]

(∆− s)(Wti −Wti−1)
∑

ti,ti−1∈[0,∆]

(Wti −Wti−1)

 =

= lim
n→∞

∑
ti,ti−1∈[0,∆]

(∆− s)E
[
(Wti −Wti−1)2

]
=

∫ ∆

0
(∆− s)ds =

∆2

2

That gives the proposition.

7.2 Auxiliary results

We start with an important Lemma which links the sampling and the prob-
abilistic law of the continuous process:
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Lemma 4 (Kessler (1997)). Let ∆→ 0 and N∆→∞, let f ∈ R×Θ→ R

be such that f is differentiable with respect to z and θ, with derivatives of
polynomial growth in z uniformly in θ. Then:

1

N

N∑
i=1

f(Zi; θ)
P0−→
∫
f(z; θ)ν0(dz) as N →∞ uniformly in θ.

Lemma is proven in Kessler (1997) for the one-dimensional case. How-
ever, as its proof is based only on ergodicity of the process and the assump-
tions analogous to ours, and not on the discretization scheme or dimension-
ality, we take it for granted without giving a formal generalization for a
multi-dimensional case. Then proposition 2 in combination with the con-
tinuous ergodic theorem and Lemma 4 allow us to establish the following
important result:

Lemma 5. Let f : R2 × Θ → R be a function with the derivatives of
polynomial growth in x, uniformly in θ. Assume ∆ → 0 and N∆ → ∞.
Then:

1. 1
N∆3

∑N−1
i=0

f(Zi;θ)

(∂ya1(Zi;θ
(1)
0 ))2

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2 P0−→ 1

3

∫
f(z; θ)b2(z;σ0)ν0(dz)

2. 1
N∆

∑N−1
i=0 f(Zi; θ)

(
Yi+1 − Ā2(Zi; θ

(2)
0 )
)2 P0−→

∫
f(z; θ)b2(z;σ0)ν0(dz)

3. 1
N∆2

∑N−1
i=0

f(Zi;θ)

(∂ya1(Zi;θ
(1)
0 ))

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

P0−→
1
2

∫
f(z; θ)b2(z;σ0)ν0(dz)

Proof. Let us denote:

ζ
(1)
i =

1

N∆3

f(Zi; θ)

(∂ya1(Zi; θ
(1)
0 ))2

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

ζ
(2)
i =

1

N∆
f(Zi; θ)

(
Yi+1 − Ā2(Zi; θ

(2)
0 )
)2

ζ
(1,2)
i =

1

N∆2

f(Zi; θ)

∂ya1(Zi; θ
(1)
0 )

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

Thanks to Proposition 2 we know that:

E
[
ζ

(1)
i |Fi

]
=

1

3N
f(Zi; θ)b

2(Zi;σ0) +O(∆).
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Then from Lemma 4 it follows that for N →∞ uniformly in θ:

N−1∑
i=0

E
[
ζ

(1)
i |Fi

]
P0−→ 1

3

∫
f(z; θ)b2(z;σ0)ν0(dz).

The same applies for terms ζ
(2)
i and ζ

(1,2)
i .

Let us introduce an auxiliary Lemma which establishes the convergence
in probability for the first moments:

Lemma 6. Let f : R2×Θ→ R be a function with derivatives of polynomial
growth in x, uniformly in θ. Assume ∆ → 0 and N∆ → ∞. Then the
following convergence results hold:

(i) 1
N∆2

∑N−1
i=0 f(Zi; θ)(Xi+1 − Ā1(Zi; θ

(1)
0 ))

P0−→ 0

(ii) 1
N∆2

∑N−1
i=0 f(Zi; θ)(Yi+1 − Ā2(Zi; θ

(2)
0 ))

P0−→ 0

uniformly in θ.

Proof. Consider (i). Expectation of the sum tends to zero for ∆ → 0 and
N∆ → ∞ due to Proposition 2. Convergence for θ(1) is due to Lemma 9
in Genon-Catalot and Jacod (1993) and uniformity in θ(1) follows the proof
of Lemma 10 in Kessler (1997). The second assertion is proven in the same
way.

Remark. Note that in our experiment design from the fact that
1

N∆2

∑N−1
i=0 f(Zi; θ)(Xi+1 − Ā1(Zi; θ

(1)
0 ))

P0−→ 0 it follows that
1
N∆

∑N−1
i=0 f(Zi; θ)(Xi+1−Ā1(Zi; θ

(1)
0 ))

P0−→ 0, and also 1
N

∑N−1
i=0 f(Zi; θ)(Xi+1−

Ā1(Zi; θ
(1)
0 ))

P0−→ 0, since ∆→ 0.

We also need the following Lemma for proving the asymptotic normality
of the estimators.

Lemma 7. Assume (A1)-(A4) and N∆→∞ and N∆2 → 0. Then for any
bounded function f(z; θ) ∈ R2 ×Θ→ R the following holds:

(i)

1√
N∆3

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ
(1)
0 ))

D−→

N
(

0,
1

3
ν0

(
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2f2(z; θ)

))
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(ii)

1√
N∆3

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ
(1)
0 ))2−

1√
N

N−1∑
i=0

f(Zi; θ)
1

3
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2 D−→

N
(

0,
2

9
ν0

(
b4(z;σ0)(∂ya1(z; θ

(1)
0 ))4f2(z; θ)

))
(iii) 1√

N∆

∑N−1
i=0 f(Zi; θ)(Yi+1 − Yi)

D−→ N
(
0, ν0

(
b2(z;σ0)f2(z; θ)

))
(iv) 1√

N∆

∑N−1
i=0 f(Zi; θ)(Yi+1 − Yi)2 − 1√

N

∑N−1
i=0 f(Zi; θ)b

2(Zi;σ0)
D−→

N
(
0, 2ν0

(
b4(z;σ0)f2(z; θ)

))

(v)

1√
N∆2

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ
(1)
0 ))(Yi+1 − Yi)−

1√
N

N−1∑
i=0

f(Zi; θ)
1

2
b2(Zi;σ0)∂ya1(Zi; θ

(1)
0 )

D−→

N
(

0,
4

3
ν0

(
f(z; θ)b4(z;σ0)(∂ya1(z; θ

(1)
0 ))2

))
Proof. Proof of (i). Recall that the expression for Xi+1 conditionally on
Xi can be written as (18). That means, we can rewrite the left part of the
equation as:

1√
N∆3

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ
(1)
0 )) =

1√
N∆3

N−1∑
i=0

f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1 +
1√
N∆3

N−1∑
i=0

f(Zi; θ)δi,

where δi is an error term, such that E[δi|Fi] = O(∆3) and E[δ2
i |Fi] =

O(∆4) (see Proposition 2). Recall that ξ1 is normally distributed with

E[ξ1] = 0 and E[ξ2
1 ] = ∆3

3 , then E[f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1|Fi] = 0 and

E[(f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1)2 |Fi] = ∆3

3 (f(Zi; θ)b(Zi;σ0)∂ya1,θ0)2. As a con-
sequence,

1√
N

N−1∑
i=0

E
[
(f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1)2|Fi

]
→ 1

3
ν0

(
(f(z; θ)b(z;σ0)∂ya1,θ0)2

)
.
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Furthermore, since the function f is bounded, that means that
1
N

∑N−1
i=0 E

[
(f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1)4|Fi

]
is also bounded and converges

to 0 pointwise. Then, the Theorem 3.2 in Hall and Heyde (1980) implies
that:

1√
N

N−1∑
i=0

f(Zi; θ)b(Zi;σ0)∂ya1,θ0ξ1
D−→

N
(

0,
1

3
ν0

(
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2f2(z; θ)

))

It remains to consider the error term 1√
N∆3

∑N−1
i=0 f(Zi; θ)δi. First, note

that 1√
N∆3

∑N−1
i=0 E [f(Zi; θ)δi|Fi] =

√
NO(

√
∆3). It converges to 0 since

by our assumption that N∆2 (and, as a consequence, N∆3) tends to 0.
Also, 1

N∆3

∑N−1
i=0 E

[
(f(Zi; θ)δi)

2|Fi
]

= O(∆). It completes the proof for
(i).
Proof of (ii). We again rewrite the approximation in the same way as we
did in the preceding part:

1√
N∆3

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ
(1)
0 ))2−

1√
N

N−1∑
i=0

f(Zi; θ)
1

3
b2(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))2 =

1√
N

N−1∑
i=0

f(Zi; θ)b
2(Zi, σ0)(∂ya1(Zi; θ

(1)
0 ))2

(
1

∆3
ξ2

1 −
1

3

)
+

2√
N∆3

N−1∑
i=0

f(Zi; θ)b(Zi, σ0)(∂ya1(Zi; θ
(1)
0 ))δiξ1+

1√
N∆3

N−1∑
i=0

f(Zi; θ)(∂ya1(Zi; θ
(1)
0 ))δ2

i

It is easy to see that the expectation of the last two terms of this expres-
sion (and its square) converge to 0 under condition that N∆2 → 0, since
E[(ξ1δi)

2|Fi] = O(∆7
N ), and E[(δi)

2|Fi] = O(∆4).

Simple computation shows that E
[

1
∆3 ξ

2
1 |Fi

]
= 0, E

[(
1

∆3 ξ
2
1 − 1

3

)2 |Fi] = 2
9 .
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Then

1√
N

N−1∑
i=0

E

[(
b2(Zi, σ0)(∂ya1(Zi; θ

(1)
0 ))2

(
1

∆3
ξ2

1 −
1

3

))2

|Fi

]
→

2

9
ν0

(
f2(z; θ)b4(z;σ0)(∂ya1(z; θ

(1)
0 ))4

)
Then, since E

[(
b2(Zi, σ0)(∂ya1(Zi; θ

(1)
0 ))2

(
1

∆3 ξ
2
1 − 1

3

))2
|Fi
]

is bounded, we

may state that 1√
N

∑N−1
i=0 E

[(
b2(Zi, σ0)(∂ya1(Zi; θ

(1)
0 ))2

(
1

∆3 ξ
2
1 − 1

3

))2
|Fi
]
→

0 and apply again the Theorem 3.2 in Hall and Heyde (1980), which results
in statement (ii).
Proof of (iii-iv). The proofs are again based on representation (18) and
are absolutely analogous to the proof of (i-ii). The main difference is that
in the rough coordinate the noise term (of order

√
∆) dominates the drift

term (or order ∆), so that as ∆ → 0, the increments Yi+1 − Yi follow the

same distribution as Yi+1 − Yi −∆a2(Zi; θ
(2)
0 ) up to higher-order terms.

Proof of (v). To simplify the proof for the cross-term, we recall that the
representation (18) can be transformed so that the two noise terms are in-
dependent. For example, we can use an analogue of such a decomposition
proposed in Pokern et al. (2007):

Xi+1 − Ā1(Zi; θ
(1)
0 ) = b(Zi;σ0)(∂ya1)

(
∆

3
2

√
12
η1 +

∆
3
2

2
η2

)
+ δ1

i

Yi+1 − Yi = ∆a2(Zi; θ
(2)) + b(Zi;σ0)∆

1
2 η2 + δ2

i ,

where δ1 and δ2 are error terms such that E[δki |Fi] = O(∆3) and E[(δki )2|Fi] =
O(∆4) (see Proposition 2), and η1 and η2 are standard independent normal
variables.
It is easy to see that the matrix of noise used for this representation mul-
tiplied by its transpose is equivalent to (14), so that the approximation is
equivalent to (18). It is possible to repeat the proof for any type of ap-
proximation, but we will restrict ourselves to one specific case. Then we
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obtain:

1√
N∆2

N−1∑
i=0

f(Zi; θ)
(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)−

1√
N

N−1∑
i=0

f(Zi; θ)
1

2
b(Zi;σ0)(∂ya1(Zi; θ

(1))) =
1√
N∆2

N−1∑
i=0

f(Zi; θ)·(
b(Zi;σ0)(∂ya1)

(
∆

3
2

√
12
η1 +

∆
3
2

2
η2

)
+ δ1

i

)(
∆a2(Zi; θ

(2)) + b(Zi;σ0)∆
1
2 η2 + δ2

i

)
−

1√
N

N−1∑
i=0

f(Zi; θ)
1

2
b(Zi;σ0)(∂ya1(Zi; θ

(1)))

Then it is easy to verify that E
[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi) |Fi
]

=

∆2

2 b(Zi;σ0)(∂ya1) +O(∆3), and then

E
[
f(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)− ∆2

2 b
2(Zi;σ0)(∂ya1)

)
|Fi
]

=

0. With slightly more tedious computations (which are omitted) we get also
that

E

[((
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)−
∆2

2
b2(Zi;σ0)(∂ya1)

)2

|Fi

]
=

4∆4

3
b4(Zi;σ0)(∂ya1)2 +O(∆5)

Since ∆
N → 0 by design we see that

1√
N∆2

N−1∑
i=0

f(Zi; θ)
(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)−

1√
N

N−1∑
i=0

f(Zi; θ)
1

2
b(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))→

4

3
ν0

(
b4(z;σ0)(∂ya1(z; θ

(1)
0 )2

)
Further, since

E

[
f4(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)−
∆2

2
b2(Zi;σ0)(∂ya1)

)4

|Fi

]
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is bounded, and consequently

1

N2
E

[
f4(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(Yi+1 − Yi)−
∆2

2
b2(Zi;σ0)(∂ya1)

)4

|Fi

]
→ 0.

Therefore, we can apply again the Theorem 3.2 from Hall and Heyde (1980)
and obtain the statement (v).

Remark. Note that the results for convergence in distribution for the in-
crements of the second coordinate hold without any assumption on the pa-
rameters of the function a2(z; θ). It is due to the fact that the order of the
noise dominates the order of the drift term (which is not the case in first
coordinate, where the noise is propagated with the higher order). As a con-
sequence, the convergence of a functional

∑N−1
i=0 f(Zi; θ)(Yi+1− Ā2(Zi; θ

(2)))
holds, with a proper scaling, for any value of θ(2).

7.3 Consistency and asymptotic normality of the linearized
contrast estimator

Lemma 1. Consider

∆

N

[
LN,∆(θ(1), θ(2), σ2;Z0:N )− LN,∆(θ

(1)
0 , θ

(2)
0 , σ2

0;Z0:N )
]

= T1+T2+T3+T4,

where the terms are given as follows:

T1 =
6∆

N∆3

N−1∑
i=0

 (
Xi+1 − Ā1(Zi; θ

(1))
)2

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2 −
(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

b2(Zi;σ0)
(
∂ya1(Zi; θ

(1)
0 )
)2


T2 = − 6∆

N∆2

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ

(1))
) (
Yi+1 − Ā2(Zi; θ

(2))
)

∂ya1(Zi; θ(1))b2(Zi;σ)

−

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

∂ya1(Zi; θ
(1)
0 )b2(Zi;σ0)


T3 =

2∆

N∆

N−1∑
i=0

[
(Yi+1 − Ā2(Zi; θ

(2)))2

b2(Zi;σ)
− (Yi+1 − Ā2(Zi; θ

(2)
0 ))2

b2(Zi;σ0)

]

T4 =
∆

N

N−1∑
i=0

log

(
∂ya1(Zi; θ

(1))

∂ya1(Zi; θ
(1)
0 )

)
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Consider term T1:

T1 =
6∆

N∆3

N−1∑
i=0


(
Xi+1 − Ā1(Zi; θ

(1)
0 ) + Ā1(Zi; θ

(1)
0 )− Ā1(Zi; θ

(1))
)2

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2 −

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

b2(Zi;σ0)
(
∂ya1(Zi; θ

(1)
0 )
)2

 =
6∆

N∆3

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2
[

1

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2−
1

b2(Zi;σ0)
(
∂ya1(Zi; θ

(1)
0 )
)2

+
∆

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2 (Xi+1 − Ā1(Zi; θ
(1)
0 )
)

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1))) +
∆2

b2(Zi;σ)(∂ya1(Zi; θ(1)))2

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1))
)2
]
.

Recalling Lemmas 4, 6 and 5 we have that:

6

N∆2

N−1∑
i=0

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

 1

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2 − 1

b2(Zi;σ0)
(
∂ya1(Zi; θ

(1)
0 )
)2

 P0−→ 0

6

N∆

N−1∑
i=0

1

b2(Zi;σ)(∂ya1(Zi; θ(1)))2

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))
P0−→ 0

6

N

N−1∑
i=0

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))2

b2(Zi;σ)(∂ya1(Zi; θ(1)))2

P0−→ 6

∫
(a1(z; θ0)− a1(z; θ))2

b2(z;σ)(∂ya1(z; θ))2
ν0(dz).

32



Now consider T2:

− 6

N∆

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ

(1)
0 ) + Ā1(Zi; θ

(1)
0 )− Ā1(Zi; θ

(1))
)

(
Yi+1 − Ā2(Zi; θ

(2)
0 ) + Ā2(Zi; θ

(2)
0 )− Ā2(Zi; θ

(2))
)

b2(Zi;σ)∂ya1(Zi; θ(1))
−

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

b2(Zi;σ0)∂ya1(Zi; θ
(1)
0 )

 =

− 6

N∆

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

[
1

b2(Zi;σ)(∂ya1(Zi; θ(1)))
− 1

b2(Zi;σ0)(∂ya1(Zi; θ
(1)
0 ))

]

+
∆

b2(Zi;σ)(∂ya1(Zi; θ(1)))

[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))+(
Yi+1 − Ā2(Zi; θ

(2)
0 )
)

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))
]

+

∆2

b2(Zi;σ)(∂ya1(Zi; θ(1)))
(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))

]
.

Thanks to Lemma 6 we know that:

− 6

N

N−1∑
i=0

1

b2(Zi;σ)(∂ya1(Zi; θ(1)))

[(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))+(
Yi+1 − Ā2(Zi; θ

(2)
0 )
)

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))
]
P0−→ 0

and, respectively, for the cross-term we have:

−6∆

N

N−1∑
i=0

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))

b2(Zi;σ)(∂ya1(Zi; θ(1)))

P0−→ 0.

Then we use the fact that the variance of the cross-term is of order ∆2 and
by Lemma 5 we obtain:

− 6

N∆

N−1∑
i=0

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

Yi+1 − Ā2(Zi; θ
(2)
0 )
)

b2(Zi;σ)(∂ya1(Zi; θ
(1)
0 ))

[
(∂ya1(Zi; θ

(1)
0 ))

(∂ya1(Zi; θ(1)))
− 1

]
P0−→ 0.
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Finally, consider the term T3:

T3 =
2

N

N−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ

(2)
0 ))2+

(Yi+1 − Ā2(Zi; θ
(2)
0 ))(Ā2(Zi; θ

(2)
0 )− Ā2(Zi; θ

(2)))+

(Ā2(Zi; θ
(2)
0 )− Ā2(Zi; θ

(2)))2 − (Yi+1 − Ā2(Zi; θ
(2)
0 ))2

]
=

2

N

N−1∑
i=0

1

b2(Zi;σ0)

[
∆(Yi+1 − Ā2(Zi; θ

(2)
0 ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))+

∆2(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2
]

Lemma 6 implies that T3
P0−→ 0. The same holds for T4. Thus, we indeed

have

lim
N→∞,∆→0

∆

N

[
LN,∆(θ(1), θ(2), σ2;Z0:N )− LN,∆(θ

(1)
0 , θ

(2)
0 , σ2;Z0:N )

]
P0−→

6

∫
(a1(z; θ

(1)
0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1(z; θ(1)))2
ν0(dz). (26)

Theorem 1 (consistency and asymptotic normality of θ(1)). Throughout the
proof we assume that θ(1) ∈ R in order to simplify the notations.

Consistency. It follows essentially from Lemma 1. Indeed, the result
of the Lemma (and the fact that the parameter space is compact) implies

that we can find a subsequence θ̂
(1)
N,∆ which converges to some value θ

(1)
∞ .

However, the minimum of the expression in Lemma 1 is attained for θ
(1)
0 .

Then by the identifiability of the drift function we have the consistency, that

is θ̂
(1)
N,∆ → θ

(1)
0 .

Asymptotic normality. The proof follows the standard pattern (see
Kessler (1997), Genon-Catalot et al. (1999), Ditlevsen and Samson (2017)).
First, we write the Taylor expansion of the function (20). Then we have:

∫
∆

N

∂2

∂θ(1)∂θ(1)
LN,∆

(
θ

(1)
0 + u(θ̂

(1)
N,∆ − θ0), θ(2), σ; z

)
du·
√
N

∆
(θ̂

(1)
N,∆−θ

(1)
0 ) =

−
√

∆

N

∂

∂θ(1)
LN,∆(θ

(1)
0 , θ(2), σ; z)
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Note that the values of θ(2) and σ may be taken arbitrary. Now we have
to compute the first and the second order derivatives of (20). We omit the
dependency on parameters in the expression for partial derivatives to make
it readable and study the convergence of the first order derivative:

∂

∂θ(1)
LN,∆(θ

(1)
0 , θ(2), σ; z) =

N−1∑
i=1

[
2∂2

y,θ(1)
a1

∂ya1
−

6

b2(Zi;σ)∂ya1

[
2(Xi+1 − Ā1(Zi; θ

(1)
0 ))2

∆3(∂ya1)2
∂2
y,θ(1)

a1 +
2(Xi+1 − Ā1(Zi; θ

(1)
0 ))(∂θ(1)a1)

∆2(∂ya1)
−

(Yi+1 − Ā2(Zi; θ
(2)))(∂θ(1)a1)

∆
−

(Xi+1 − Ā1(Zi; θ
(1)
0 ))(Yi+1 − Ā2(Zi; θ

(2)))(∂2
y,θ(1)

a1)

∆2(∂ya1)


(27)

Lemma 7 gives us the following convergence to zero in probability:√
∆

N

N−1∑
i=1

[
2∂2

y,θ(1)
a1

∂ya1
−

12∂2
y,θ(1)

a1

b2(Zi;σ)(∂ya1)3

(Xi+1 − Ā1(Zi; θ
(1)
0 ))2

∆3(∂ya1)2

]
P0−→ 0

√
∆

N

N−1∑
i=1

−6
(Xi+1 − Ā1(Zi; θ

(1)
0 ))(Yi+1 − Ā2(Zi; θ

(2)))(∂2
y,θ(1)

a1)

∆2b2(Zi;σ)(∂ya1)2

 P0−→ 0.

The result holds since both terms consist of the variable which converges in
distribution to a normal variable due to Lemma 7, multiplied by

√
∆, which

converges to 0 by design. Then, by Slutsky’s theorem, they converge to 0 in
probability. Finally, applying again Lemma 7, we get:

1√
N∆3

N−1∑
i=1

[
12(∂θ(1)a1)

b2(Zi;σ)(∂ya1)
(Xi+1 − Ā1(Zi; θ

(1)
0 ))

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)2

))
1√
N∆

N−1∑
i=1

[
6(∂θ(1)a1)

b2(Zi;σ)

(Yi+1 − Ā2(Zi; θ
(2)))

(∂ya1)

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ)

(∂θ(1)a1)2

(∂ya1)2

))
Thus, we have the following convergence in law:√

∆

N

∂

∂θ(1)
LN,∆(θ

(1)
0 , θ(2), σ; z)

D−→ N
(

0, 36ν0

(
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)2

(
1 +

1

(∂ya1)2

)))
For the second order derivative we split again the expression (27) in several
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parts and study their convergence:

T1 :=
∆

N

N−1∑
i=1

∂2

∂θ(1)∂θ(1)

[
2∂2

y,θ(1)
a1

∂ya1
−

12∂2
y,θ(1)

a1

b2(Zi;σ)(∂ya1)3

(Xi+1 − Ā1(Zi; θ
(1)
0 ))2

∆3(∂ya1)2

]
=

∆

N

N−1∑
i=1

[
2(∂3

yθ(1)θ(1)
)− (∂2

y,θ(1)
a1)2

(∂ya1)
+

12(∂2
y,θ(1)

a1)2

∆3b2(Zi;σ)(∂ya1)4
(Xi+1 − Ā1(Zi; θ

(1)
0 ))2

+
12

∆3b2(Zi;σ)(∂ya1)5

[
(Xi+1 − Ā1(Zi; θ

(1)
0 ))2

(
(∂ya1)2∂3

yθ(1)θ(1)
a1 − 2(∂2

yθ(1)
)2∂ya1

)
+2∆(Xi+1 − Ā1(Zi; θ

(1)
0 ))(∂ya1)3(∂2

yθ(1)
a1)
]]

T2 :=
∆

N

N−1∑
i=1

− 12∆

∆2b2(Zi;σ)(∂ya1)2

[
(∂θ(1)a1)2+

(Xi+1 − Ā1(Zi; θ
(1)
0 ))

(∂2
θ(1)θ(1)

a1)(∂ya1)− (∂2
yθ(1)

a1)(∂θ(1)a1)

(∂ya1)2

]

T3 :=
∆

N

N−1∑
i=1

6(Yi+1 − Ā2(Zi; θ
(1)))

∆b2(Zi;σ)

(∂ya1)2∂2
θ(1)θ(1)

a1 − 2(∂θ(1)a1)(∂2
yθ(1)

a1)

(∂ya1)4

T4 :=
∆

N

N−1∑
i=1

6(Yi+1 − Ā2(Zi; θ
(1)))

∆2b2(Zi;σ)

[
(∂2
yθ(1)

a1)2 − (∂3
yθ(1)θ(1)

a1)(∂ya1)

(∂ya1)2

(Xi+1 − Ā1(Zi; θ
(1)
0 )) +

∆(∂θ(1)a1)(∂2
yθ(1)

a1)

(∂ya1)

]

Easy to see that the terms T1, T3 and T4 converge to 0 by Lemmas 6 and 5.

T2, according to the Lemma 4 and Lemma 6. converges to 12
∫ (∂

θ(1)
a1)2

b2(z;σ)(∂ya1)
ν0(dz).

That gives the result.

Lemma 3. We can split the contrast in the following sum:

lim
N→∞,∆→0

1

2N
LN,∆(θ̂

(1)
N,∆, θ

(2), σ2;Z0:N ) = lim
N→∞,∆→0

[3T1 − 3T2 + T3 + T4]
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where terms are given by follows:

T1 =
1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)))2

∆3b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))2

T2 =
1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)))(Yi+1 − Ā2(Zi; θ

(2)))

∆2b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))

T3 =
1

N

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(2)))2

∆b2(Zi;σ)

T4 =
1

N

N−1∑
i=0

log b2(Zi;σ)

For the term T1 we have:

T1 =
1

N∆3

N−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ

(1))
)2

(∂ya1(Zi; θ̂
(1)
N,∆))2

=

1

N

N−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ

(1)
0 ) + Ā1(Zi; θ

(1)
0 )− Ā1(Zi; θ

(1))
)2

∆3(∂ya1(Zi; θ̂
(1)
N,∆))2

=

=
1

N

N−1∑
i=0

1

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

∆3(∂ya1(Zi; θ̂
(1)
N,∆))2

(∂ya1(Zi; θ
(1)
0 ))2

(∂ya1(Zi; θ
(1)
0 ))2

+

2∆
(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)(

a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆)

)
∆3(∂ya1(Zi; θ̂

(1)
N,∆))2

+

∆2

∆3

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
N,∆)

)2

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))2


Thanks to the Lemmas 5 and 6, we know that the second term of the sum
converges to 0 in probability, and for the first one we have:

1

N

N−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)2

∆3(∂ya1(Zi; θ̂
(1)
N,∆))2

(∂ya1(Zi; θ
(1)
0 ))2

(∂ya1(Zi; θ
(1)
0 ))2

P0−→

∫
b2(z;σ0)

b2(z;σ)

(∂ya1(z; θ
(1)
0 ))2

(∂ya1(z; θ̂
(1)
N,∆))2

ν0(dz)
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For the third term, we use linearity for a1 with respect to the parameter
θ(1), and then obtain the convergence to 0 in probability thanks to Theorem
1, continuous mapping theorem and Lemma 4:

2

N

N−1∑
i=0

∆2

∆3

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
N,∆)

)2

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))2

=
2

N2

N−1∑
i=0

a2
1(z;

√
N
∆ (θ

(1)
0 − θ̂

(1)
N,∆))

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))2

P0−→ 0.

Then, T2 decomposes as:

1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)))(Yi+1 − Ā2(Zi; θ

(2)))

∆2b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))

=

1

N

N−1∑
i=0

(∂ya1(Zi; θ
(1)
0 ))

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))

[
(Xi+1 − Ā1(Zi; θ

(1)
0 ))(Yi+1 − Ā2(Zi; θ

(2)
0 ))

∆2(∂ya1(Zi; θ
(1)
0 ))

+

+
∆(Xi+1 − Ā1(Zi; θ

(1)
0 ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

∆2(∂ya1(Zi; θ
(1)
0 ))

+

∆(Yi+1 − Ā2(Zi; θ
(2)
0 ))(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
N,∆))

∆2(∂ya1(Zi; θ
(1)
0 ))

+

∆2(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

∆2(∂ya1(Zi; θ
(1)
0 ))


Again, using Lemma 6, we know that the second and the third terms are
converging to 0 in probability. For the first term, thanks to Lemma 5 we
have the following convergence:

1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)
0 ))(Yi+1 − Ā2(Zi; θ

(2)
0 ))(∂ya1(Zi; θ

(1)
0 ))

∆2b2(Zi;σ)(∂ya1(Zi; θ
(1)
0 ))(∂ya1(Zi; θ̂

(1)
N,∆))

P0−→

∫
b2(z;σ0)

b2(z;σ)

∂ya1(z; θ
(1)
0 )

∂ya1(z; θ̂
(1)
N,∆)

ν0(dz)

Finally, we treat the remaining term:

1

N

N−1∑
i=0

1

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
N,∆))

∆2(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

∆2
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Using again the Lipschitz continuity of a1, Theorem 1 and the Slutsky’s
theorem, we obtain a convergence to zero in probability for this term. T4

converges in probability to
∫

log b2(z;σ)ν0(dz) due to Lemma 4. Consider
T3:

T3 =
1

N∆

N−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ

(2)
0 ))2 + (Yi+1 − Ā2(Zi; θ

(2)
0 ))(Ā2(Zi; θ

(2)
0 )− Ā2(Zi; θ

(2)))+

(Ā2(Zi; θ
(2)
0 )− Ā2(Zi; θ

(2)))2
]

=
1

N∆

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(2)
0 ))2

b2(Zi;σ)
+

∆

N∆

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(2)
0 ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

b2(Zi;σ)
+

∆2

N∆

N−1∑
i=0

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2

b2(Zi;σ)

Thanks to Lemma 5 and 6 we conclude that

T3
P0−→
∫
b2(z;σ0)

b2(z;σ)
ν0(dz) + 0 + 0

Finally, we obtain

1

N
LN,∆(θ, σ2;Z0:N )

P0−→

∫ b2(z;σ0)

b2(z;σ)

3

 ∂ya1(z; θ
(1)
0 )

∂ya1(z; θ̂
(1)
N,∆)

2

− 3
∂ya1(z; θ

(1)
0 )

∂ya1(z; θ̂
(1)
N,∆)

+ 1

+ log b2(z;σ)

 ν0(dz)

Then thanks to the tightness property of the estimated sequence θ̂
(1)
N,∆, we

obtain that
∂ya1(Zi; θ

(1)
0 )

∂ya1(Zi; θ̂
(1)
N,∆)

P0−→ 1

It gives the Lemma.

Lemma 2. Note that we cannot infer the value of θ(2) with the same scaling
as the parameter of the smooth coordinate because the estimator for each
variable converges with different speed. Thus, we fix the parameter θ(1) to
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its estimated value θ̂
(1)
N,∆ and consider the same sum, but with a different

scaling, namely :

lim
N→∞,∆→0

1

N∆

[
LN,∆(θ̂

(1)
N,∆, θ

(2), σ2
0;Z0:N )− LN,∆(θ̂

(1)
N,∆, θ

(2)
0 , σ2

0;Z0:N )
]

= T1+T2+T3

where the terms are given as follows:

T1 =
6

N∆4

N−1∑
i=0

1

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ̂

(1)
N,∆)

)2

(∂ya1(Zi; θ̂
(1)
N,∆))2

−

(
Xi+1 − Ā1(Zi; θ̂

(1)
N,∆)

)2

(∂ya1(Zi; θ̂
(1)
N,∆))2


T2 = − 6

N∆3

N−1∑
i=0


(
Xi+1 − Ā1(Zi; θ̂

(1)
N,∆)

) (
Yi+1 − Ā2(Zi; θ

(2))
)

∂ya1(Zi; θ̂
(1)
N,∆)b2(Zi;σ)

−

(
Xi+1 − Ā1(Zi; θ̂

(1)
N,∆)

)(
Yi+1 − Ā2(Zi; θ

(2)
0 )
)

∂ya1(Zi; θ̂
(1)
N,∆)b2(Zi;σ)


T3 =

2

N∆2

N−1∑
i=0

[
(Yi+1 − Ā2(Zi; θ

(2)))2 − (Yi+1 − Ā2(Zi; θ
(2)
0 ))2

]
b2(Zi;σ)

T1 is obviously cancelled. Consider T2:

T2 = − 6

N∆3

N−1∑
i=0

∆
(
Xi+1 − Ā1(Zi; θ

(1)
0 )
)

(a2(Zi; θ
(2))− a2(Zi; θ

(2)
0 ))

∂ya1(Zi; θ̂
(1)
N,∆)b2(Zi;σ)

+

∆2(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆))(a2(Zi; θ

(2))− a2(Zi; θ
(2)
0 ))

∂ya1(Zi; θ̂
(1)
N,∆)b2(Zi;σ)


Then, the first part of the sum converges to zero in probability after applying
Lemma 6. Second part of the sum also converges to zero because N∆→∞
by design, and θ̂

(1)
N,∆

P0−→ θ
(1)
0 (so that a1(Zi; θ

(1)
0 )−a1(Zi; θ̂

(1)
N,∆) also converges
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to 0). So we just have to consider the remaining term T3:

T3 =
2

N∆2

N−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ

(2)
0 ))2+

(Yi+1 − Ā2(Zi; θ
(2)
0 ))(Ā2(Zi; θ

(2)
0 )− Ā2(Zi; θ

(2)))+

(Ā2(Zi; θ
(2)
0 )− Ā2(Zi; θ

(2)))2 − (Yi+1 − Ā2(Zi; θ
(2)
0 ))2

]
=

2

N∆2

N−1∑
i=0

1

b2(Zi;σ)

[
∆(Yi+1 − Ā2(Zi; θ

(2)
0 ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))+

∆2(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2
]

The first part of the sum is canceled due to Lemma 6. Then we apply
Lemma 5 and get the convergence:

lim
N→∞,∆→0

1

N∆

[
LN,∆(θ̂

(1)
N,∆, θ

(2), σ2;Z0:N )− LN,∆(θ̂
(1)
N,∆, θ

(2)
0 , σ2

0;Z0:N )
]
P0−→

2

∫
(a2(z; θ0)− a2(z; θ))2

b2(z;σ)
ν0(dz)

Theorem 2. The proof follows the standard pattern. Throughout the proof
we assume that θ(2) and σ ∈ R in order to simplify the notations. We write
the Taylor expansion of the contrast function defined in (20) and apply an
appropriate scaling∫

CN,∆

(
θ0 + u(θ̂N,∆ − θ0); z

)
du EN,∆ = −DN,∆(θ0),

where by θ we denote (θ(2), σ) and the parameter θ(1) is fixed to its estimate

θ̂
(1)
N,∆ throughout the proof, and

CN,∆(θ) :=

[
1
N∆

∂2

∂θ(2)∂θ(2)
LN,∆(θ(1), θ(2), σ;Z0:N ) 1

N
√

∆
∂2

∂σ∂θ(2)
L(θ(1), θ(2), σ;Z0:N )

1
N
√

∆
∂2

∂θ(2)∂σ
LN,∆(θ(1), θ(2), σ;Z0:N ) 1

N
∂2

∂σ∂σLN,∆(θ(1), θ(2), σ;Z0:N )

]
,

EN,∆ :=

[√
N∆(θ̂

(2)
N − θ

(2)
0 )√

N(σ̂N − σ0)

]
, DN,∆ =

[
1√
N∆

∂
∂θ(2)
LN,∆(θ(1), θ(2), σ;Z0:N )

1√
N

∂
∂σLN,∆(θ(1), θ(2), σ;Z0:N )

]
.
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First, we compute the partial derivatives of first and second order with
respect to θ(2) and σ:

∂

∂θ(2)
LN,∆(·) =

N−1∑
i=1

[
−6

∆(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ
(1)))

∆2b2(Zi;σ)(∂θ(1)a1)
+

2
∆(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ

(2)))

∆b2(Zi;σ)

]
=: D1

N,∆

∂

∂σ
LN,∆(·) = −

N−1∑
i=1

∂σb

b3(Zi;σ)

[
6

(Xi+1 − Ā1(Zi; θ
(1)))2

∆3(∂θ(1)a1)2
−

6
(Xi+1 − Ā1(Zi; θ

(1))(Yi+1 − Ā2(Zi; θ
(2)))

∆2(∂θ(1)a1)
+ 2

(Yi+1 − Ā2(Zi; θ
(2)))2

∆

]
+

∂σb

b(Zi;σ)
=: D2

N,∆

∂2

∂θ(2)∂θ(2)
LN,∆(·) =

N−1∑
i=1

[
−6

∆(∂2
θ(2)θ(2)

a2)(Xi+1 − Ā1(Zi; θ
(1)))

∆2b2(Zi;σ)(∂θ(1)a1)
+

2
∆(∂2

θ(2)θ(2)
a2)(Yi+1 − Ā2(Zi; θ

(2)))

∆b2(Zi;σ)
+

∆2(∂θ(2)a2)2

∆b2(Zi;σ)

]
=: C11

N,∆

∂2

∂θ(2)∂σ
LN,∆(·) =

N−1∑
i=1

∂σb

b2(Zi;σ)

[
12

∆(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ
(1)))

∆2b(Zi;σ)(∂θ(1)a1)
+

4
∆(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ

(2)))

∆b(Zi;σ)

]
=: C12

N,∆ = C21
N,∆

∂2

∂σ2
LN,∆(·) = −

N−1∑
i=1

6(∂σb)
2 − 2b(Zi;σ)(∂2

σσb)

b4(Zi;σ)

[
6

(Xi+1 − Ā1(Zi; θ
(1)))2

∆3(∂θ(1)a1)2
−

6
(Xi+1 − Ā1(Zi; θ

(1)))(Yi+1 − Ā2(Zi; θ
(2)))

∆2(∂θ(1)a1)
+ 2

(Yi+1 − Ā2(Zi; θ
(2)))2

∆

]
+

2
b(Zi;σ)(∂2

σσb)− (∂σb)
2

b2(Zi;σ)
=: C22

N,∆

We start with proving the convergence for the terms CN,∆. Note that the

parameter θ(1) is not fixed, and thus we plug-in the estimated sequence θ̂
(1)
N,∆.

Then we can obtain a convergence in probability after few technical steps.
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We start with C11
N,∆:

1

N∆
C11
N,∆ =

1

N∆

N−1∑
i=1

−6
∆(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ̂

(1)
N,∆))

∆2b2(Zi;σ)(∂θ(1)a1)
+

2
∆(∂2

θ(2)θ
(2)
0

a2)(Yi+1 − Ā2(Zi; θ
(2)))

∆b2(Zi;σ)
+

∆2(∂θ(2)a2)2

∆b2(Zi;σ)

 =

1

N∆

N−1∑
i=1

−6
∆(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ

(1)
0 ))

∆2b2(Zi;σ)(∂θ(1)a1)
− 6

∆2(∂2
θ(2)θ(2)

a2)(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆))

∆2b2(Zi;σ)(∂θ(1)a1)

2
∆(∂2

θ(2)θ
(2)
0

a2)(Yi+1 − Ā2(Zi; θ
(2)))

∆b2(Zi;σ)
+

∆2(∂θ(2)a2)2

∆b2(Zi;σ)


Note that thanks to Lemma 6 we know that

1

N∆

N−1∑
i=1

[
−6

∆(∂2
θ(2)θ(2)

a2)(Xi+1 − Ā1(Zi; θ
(1)
0 ))

∆2b2(Zi;σ)(∂θ(1)a1)
+

2
∆(∂2

θ(2)θ
(2)
0

a2)(Yi+1 − Ā2(Zi; θ
(2)))

∆b2(Zi;σ)
+

∆2(∂θ(2)a2)2

∆b2(Zi;σ)

 P0→
∫

(∂θ(2)a2)2

b2(z;σ)
ν0(dz)

What about the remaining term, we can recall the condition (H1):

− 6

N∆

N−1∑
i=1

(∂2
θ(2)θ(2)

a2)(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
N,∆))

b2(Zi;σ)(∂θ(1)a1)
=

− 6√
N∆

1

N

N−1∑
i=1

(∂2
θ(2)θ(2)

a2)a1(Zi;
√

N
∆

(
θ

(1)
0 − θ̂

(1)
N,∆

)
)

b2(Zi;σ)(∂θ(1)a1)

We know that
(
θ

(1)
0 − θ̂

(1)
N,∆

)√
N
∆ is normally distributed by Theorem 1,

and 1
N

∑N−1
i=1

(∂2
θ(2)θ(2)

a2)

b2(Zi;σ)(∂
θ(1)

a1)
converges to its invariant density by Lemma 4.

Then by Slutsky’s and the continuous mapping theorem the product also
converges in distribution to a normal variable, which is, divided by

√
N∆

converges to zero since N∆ → ∞ by design. However, as N∆ → ∞, this
term converges to 0 in probability. As a result,

1

N∆
C11
N,∆

P0→
∫

(∂θ(2)a2)2

b2(z;σ)
ν0(dz)
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With the same arguments we prove that 1
N
√

∆
C12
N,∆ = 1

N
√

∆
C21
N,∆

P0→ 0 and

that
1

N
C22
N,∆

P0→ −4

∫
(∂σb)

2

b2(z;σ0)
ν0(dz)

Then we consider the remaining term. Recall the assumption (H1), namely
that the function a1(Zi; θ

(1)) is linear with respect to θ(1). We start with
the term

1√
N∆

D1
N,∆ =

1√
N∆

N−1∑
i=1

−6
∆(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂

(1)
N,∆))

∆2b2(Zi;σ)(∂θ(1)a1)
+

2
∆(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ

(2)))

∆b2(Zi;σ)

]
=

1√
N∆

N−1∑
i=1

[
−6

(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ
(1)
0 ))

∆b2(Zi;σ)(∂θ(1)a1)
−

6
(∂θ(2)a2)a1(Zi; θ̂

(1)
N,∆ − θ

(1)
0 )

b2(Zi;σ)(∂θ(1)a1)
+ 2

(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ
(2)))

b2(Zi;σ)


For the first and the third term we simply apply Lemma 7 and obtain con-

vergence in distribution to N
(

0, ν0

(
(∂
θ(2)

a2)2

b2(z;σ0)

))
. For the second term we

apply the result of Theorem 1, as well as the continuous mapping and Slut-
sky’s theorem we may state that:

−6
N−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

N
∆ (θ̂

(1)
N,∆ − θ

(1)
0 ))

b2(Zi;σ)(∂θ(1)a1)

D−→ −6

∫
(∂θ(2)a2)

b2(z;σ)(∂θ(1)a1)
a1(z; η̃)ν0(dz),

where η̃ is distributed as stated in Theorem 1. Then, as N → 0,

− 6

N

N−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

N
∆ (θ̂

(1)
N,∆ − θ

(1)
0 ))

b2(Zi;σ)(∂θ(1)a1)

P0−→ 0

By analogy, we prove the convergence for the term D2
N,∆, obtaining:

1√
N
D2
N,∆

D−→ N
(

0, 32ν0

(
(∂σb)

2

b2(z;σ0)

))
That gives the result.
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7.4 Consistency and normality of the least squares contrast

Theorem 3. Consistency. The proof follows the one of the classical con-
trast. Recall that (23) is written as

LdN,∆(θ;Z0:N ) =
N−1∑
i=0

(
(Xi+1 − Ā1(Zi; θ

(1)
0 ))2 + (Yi+1 − Ā2(Zi; θ

(2)
0 ))2

)
Let us now consider the following difference:

1

N∆2

[
LdN,∆(θ;Z0:N )− LdN,∆(θ0;Z0:N )

]
=

1

N∆2

N−1∑
i=0

[
(Xi+1 − Ā1(Zi; θ

(1)))2

+(Yi+1 − Ā2(Zi; θ
(2)))2 − (Xi+1 − Ā1(Zi; θ

(1)
0 ))2 − (Yi+1 − Ā2(Zi; θ

(2)
0 ))2

]
=

1

N∆2

N−1∑
i=0

[
2(Xi+1 − Ā1(Zi; θ

(1)
0 ))(Ā1(Zi; θ

(1)
0 )− Ā1(Zi; θ

(1))) + (Ā1(Zi; θ
(1)
0 )− Ā1(Zi; θ

(1)))2

+2(Yi+1 − Ā2(Zi; θ
(2)
0 ))(Ā2(Zi; θ

(2)
0 )− Ā2(Zi; θ

(2))) + (Ā2(Zi; θ
(2)
0 )− Ā2(Zi; θ

(2)))2
]

Then we have from Lemmas 5, 6:

2∆

N∆2

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)
0 ))(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))
P0−→ 0

2∆

N∆2

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(2)
0 ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))
P0−→ 0

∆2

N∆2

N−1∑
i=0

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))2 P0−→
∫

(a1(z; θ
(1)
0 )− a1(z; θ(1)))2ν0(dz)

∆2

N∆2

N−1∑
i=0

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2 P0−→
∫

(a2(z; θ
(2)
0 )− a2(z; θ(2)))2ν0(dz)

From that we can conclude that there exists a subsequence θ̂N,∆ = arg min
θ
LdN,∆(θ;Z0:N )

that tends to θ∞. Since the minimum is attained at the point θ0, we con-
clude that θ∞ = θ0. Then the result follows from the identifiability of the
drift functions.

Asymptotic normality. We apply again a Taylor formula for a func-
tion (23): ∫

CN

(
θ0 + u(θ̂N − θ0

)
)du EN = DN (θ0),
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where we define

CN (θ) :=

[
1

N∆3
∂2

∂θ(1)∂θ(1)
LdN,∆(θ;Z0:N ) 1

N∆2
∂2

∂θ(1)∂θ(2)
LdN,∆(θ;Z0:N )

1
N∆2

∂2

∂θ(1)∂θ(2)
LdN,∆(θ;Z0:N ) 1

N∆
∂2

∂θ(2)∂θ(2)
LdN,∆(θ;Z0:N ))

]
,

EN :=

[√
N∆3(θ̂

(1)
N,∆ − θ

(1)
0 )

√
N∆(θ̂

(2)
N − θ

(2)
0 )

]
, DN (θ) =

[
1

N
√

∆3

∂
∂θ(1)
LdN,∆(θ;Z0:N )

1
N
√

∆
∂

∂θ(2)
LdN,∆(θ;Z0:N )

]
.

Using Lemma 7 we get:

DN (θ0)
D−→ −2

N (0, 1
3

∫
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2(∂θ(1)a1(z; θ

(1)
0 ))2ν0(dz)

)
N
(

0,
∫
b2(z;σ0)(∂θ(2)a2(z; θ

(2)
0 ))2ν0(dz)

) 
And by Lemmas 5, 4 we have the result for CN (θ):

CN (θ0)
P0−→ −2

[∫
(∂θ(1)a1(z; θ

(1)
0 ))2ν0(dz) 0

0
∫

(∂θ(2)a2(z; θ
(2)
0 ))2ν0(dz)

]

That, in combination with the consistency result, gives the theorem.
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