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Parametric inference for multidimensional

hypoelliptic diffusion with full observations

Anna Melnykova ∗

Abstract

Multidimensional hypoelliptic diffusions arise naturally as models
of neuronal activity. Estimation in those models is complex because of
the degenerate structure of the diffusion coefficient. We build a consis-
tent estimator of the drift and variance parameters with the help of a
discretized log-likelihood of the continuous process in the case of fully
observed data. We discuss the difficulties generated by the hypoel-
lipticity and provide a proof of the consistency of the estimator. We
test our approach numerically on the hypoelliptic FitzHugh-Nagumo
model, which describes the firing mechanism of a neuron.

Keywords: parametric inference, hypoelliptic diffusions, FitzHugh-
Nagumo model, contrast estimator

1 Introduction

Hypoelliptic diffusions naturally occur in various applications, most notably
in neuroscience, molecular physics and in mathematical finance. In par-
ticular, multidimensional models of a neuron population, such as stochastic
approximation of a Hawkes process (Ditlevsen and Löcherbach, 2017), or ex-
otic models of option pricing (Malliavin and Thalmaier, 2006) are described
by a hypoelliptic diffusion.

The main difference to the classical (or elliptic) setting is that in the hy-
poelliptic case the dimensionality of the noise is lower than the dimensional-
ity of the system of stochastic differential equations (SDE), which describes
the process. Hypoellipticity can be intuitively explained in the following
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way: though the covariance matrix of noise is singular due to a degenerate
diffusion coefficient, smooth transition density with respect to the Lebesgue
measure still exists. That is the case when the noise is propagated to all the
coordinates through the drift term.

Properties of hypoelliptic diffusions significantly differ from those of el-
liptic ones, when all coordinates are driven by a Gaussian noise. Thus they
are more difficult to study. The first problem is that each coordinate has
a variance of different order. It is the main cause why classical numeri-
cal approximation methods do not work well with hypoelliptic diffusions.
In particular, it is proven that for hypoelliptic systems the classical Euler-
Maruyama scheme does not preserve ergodic properties of the true process
(Mattingly et al., 2002). The second problem is the degenerate diffusion
coefficient. As the explicit form of the transition density is often unknown,
parametric inference is usually based on its discrete approximation with
the piece-wise Gaussian processes (see, for example Kessler (1997)). But in
the hypoelliptic case this approach cannot be applied directly because the
covariance matrix of the approximated transition density is not invertible.

Now let us be more specific. Consider a two-dimensional system of
stochastic differential equations of the form:{

dXt = a1(Xt, Yt; θ)dt

dYt = a2(Xt, Yt; θ)dt+ b(Xt, Yt;σ)dWt,
(1)

where (Xt, Yt)
T ∈ R × R, (a1(Xt, Yt; θ), a2(Xt, Yt; θ))

T is the drift term,
(0, b(Xt, Yt;σ))T is the diffusion coefficient, (dWt) is a standard Brownian
motion defined on some probability space (Ω,F , P ), (θ, σ) is the vector of
the unknown parameters, taken from some compact set Θ1 ×Θ2.

The goal of this paper is to estimate the parameters of (1) from discrete
observations of both coordinates X and Y . It is achieved in two steps: first,
we consider a discretization scheme in order to approximate the transition
density of the continuous process preserving the ergodic property, and then
we propose an estimation technique which maximizes the likelihood function
of the discrete approximate model. Let us discuss the solutions proposed by
other authors for hypoelliptic systems of different types.

Several works treat the parametric inference problem for a particular
case of system (1). It is natural to introduce first the class of stochastic
Damping Hamiltonian systems, also known as Langevin equations (Gardiner
and Collett, 1985). These hypoelliptic models arise as a stochastic expansion
of 2-dimensional deterministic dynamical systems — for example, the Van
der Pol oscillator (Van der Pol, 1920) perturbed by noise. They are defined
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as the solution of the following SDE:{
dXt = Ytdt

dYt = a2(Xt, Yt; θ)dt+ b(Xt, Yt;σ)dWt.
(2)

The particular case of Hamiltonian systems with b(Xt, Yt;σ) ≡ σ and
a2(Xt, Yt; θ) = g1(Xt; θ)Xt+g2(X1; θ)Yt is considered in Ozaki (1989), where
the link between the continuous-time solution of (2) and the corresponding
discrete model is obtained with the so-called local linearization scheme. The
idea of this scheme is the following: for a system of SDE with a non-constant
drift and a constant variance, its solution can be interval-wise approximated
by a system with a linear drift, and the original covariance matrix being
expanded by adding higher-order terms. It allows to construct a quasi Max-
imum Likelihood Estimator. Pokern et al. (2007) attempt to solve the prob-
lem of the non-invertibility of the covariance matrix for the particular case
of system (2) with a constant variance with the help of Itô-Taylor expan-
sion of the transition density. The parameters are then estimated with a
Gibbs sampler based on the discretized model with the noise propagated
into the first coordinate with order ∆

3
2 . This approach allows to estimate

the variance coefficient, but it is not efficient for estimating the parameters
of the drift term. In Samson and Thieullen (2012) it is shown that a con-
sistent estimator for fully and partially observed data can be constructed
using only the discrete approximation of the second equation of the system
(2). This method works reasonably good in practice even for more general
models when it is possible to convert a system (1) to a simpler form (2).
However, the transformation of the observations sampled from the continu-
ous model (1) requires the prior knowledge of the parameters involved in the
first equation. The other particular case of (1), when b(Xt, Yt;σ) ≡ σ and
the drift term is linear and thus the transition density is known explicitly, is
treated in Le-Breton and Musiela (1985). A consistent maximum likelihood
estimator is then constructed in two steps — first, a covariance matrix of
the process is estimated from available continuous-time observations, and
then it is used for computing the parameters of the drift term. Few other
works are also devoted to a non-parametric estimation of the drift and the
variance terms (Cattiaux et al., 2014, 2016). To the best of our knowledge,
for systems (1) the only reference is Ditlevsen and Samson (2017). They
construct a consistent estimator using a discretization scheme based on a
Itô-Taylor expansion. But the estimation is conducted separately for each
coordinate, so it requires partial knowledge of the parameters of the system.

In this paper we propose a new estimation method, adjusting the local
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linearization scheme described in Ozaki (1989) developed for the models of
type (2) to the more general class of SDEs (1). Under the hypoellipticity
assumption this scheme propagates the noise to both coordinates of the
system and allows to obtain an invertible covariance matrix. We start with
describing the discretization scheme, approximating the transition density
and proposing a contrast estimator based on the discretized log-likelihood.
While we attempt to estimate the parameters included in the drift and
diffusion coefficient simultaneuously, we also explain in which cases and
how the estimation can be splitted. Then we study the convergence of the
scheme and prove the consistency of the proposed estimator based on the
2-dimensional contrast. We also detail the different speeds of convergence
of the diffusion parameters, which are implied by the hypoellipticity. To
the best of our knowledge, the proof of this consistency is the first in the
literature. We finish with some numerical experiments, testing the proposed
approach on the hypoelliptic FitzHugh-Nagumo model and compare it to
other estimators.

This paper is organized as follows: Section 2 presents the model and
assumptions. Discrete model is introduced in Section 3. The estimators
are studied in Section 4 and illustrated numerically in Section 5. We close
with Section 6, devoted to conclusions and discussions. Formal proofs are
gathered in Appendix.

2 Models and assumptions

2.1 Notations

We consider system (1). We assume that both variables are discretely ob-
served at equally spaced periods of time on some finite time interval [0, T ].
The vector of observations at time i∆ is denoted by Zi = (Xi, Yi)

T , where
Zi is the value of the process at the time i∆, i ∈ 0 . . . N . We further assume
that it is possible to draw a sufficiently large and accurate sample of data, i.e
that T may be arbitrary large, and the partition size ∆ — arbitrary small.
Let us also introduce the vector notations:

dZt = A(Zt; θ)dt+B(Zt;σ)dW̃t, Z0 = ω0, t ∈ [0, T ] (3)

where Zt = (Xt, Yt)
T , W̃t is a standard two-dimensional Brownian motion

defined on the filtered probability space, ω0 is a F0-measurable 2−dimensional
random vector. Matrices A and B represent, respectively, the drift and the
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diffusion coefficient, that is A(Zt; θ) = (a1(Xt, Yt; θ), a2(Xt, Yt; θ))
T and

B(Zi;σ) =

(
0 0
0 b(Zt;σ)

)
. (4)

Throughout the paper we use the following abbreviations: ∂xf ≡ ∂f
∂x (x, y; θ)

and ∂yf ≡ ∂f
∂y (x, y; θ). We suppress the dependency on the parameter θ,

when its value is clear from context, otherwise additional indices are intro-
duced. True values of the parameters are denoted by θ0, σ0. We also adopt
the notations from Pokern et al. (2007) and refer to the variable Yt which is
directly driven by Gaussian noise as ”rough”, and to Xt as ”smooth”.

2.2 Assumptions

Further, we are working under the following assumptions:

A1 Functions a1(x, y; θ) and a2(x, y; θ) have bounded partial derivatives
of every order, uniformly in θ. Furthermore ∂ya1 6= 0 ∀(x, y) ∈ R2.

A2 Global Lipschitz and linear growth conditions. ∀t, s ∈ [0,∞) ∃Kθ s.t.:

‖A(Zt; θ)−A(Zs; θ)‖+ ‖B(Zt;σ)−B(Zs;σ)‖ ≤ K‖Zt − Zs‖
‖A(Zt; θ)‖2 + ‖B(Zt;σ)‖2 ≤ K2(1 + ‖Zt‖2),

where ‖ · ‖ is the standard Euclidean norm. Further, denote by ξ0 the
initial value of the process Zt, then E‖ξ0‖2 <∞.

A3 Process Zt is ergodic and there exists a unique invariant probability
measure ν0 with finite moments of any order.

A4 Both functions a1(Zt; θ) and a2(Zt; θ) are identifiable, that is ai(Zt; θ) =
ai(Zt; θ0)⇔ θ = θ0.

Assumption (A1) ensures that the weak Hörmander condition is satisfied,
thus the system is hypoelliptic in the sense of stochastic calculus of variations
(Nualart, 2006, Malliavin and Thalmaier, 2006). In order to prove it we first
write the coefficients of system (3) as two vector fields, converting (3) from
Itô to the Stratonovich form:

A0(x, y) =

(
a1(x, y; θ)

a2(x, y; θ)− 1
2b(x, y;σ)∂yb(x, y;σ)

)
A1(x, y) =

(
0

b(x, y;σ)

)
.
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Then their Lie bracket is equal to

[A0, A1] =

(
∂ya1

∂xa2(x, y; θ)− 1
2∂xb(x, y;σ)∂2

xyb(x, y;σ)

)
.

By (A1) the first element of this vector is not equal to 0, thus we conclude
that A1 and [A0, A1] generate R2. That means that the weak Hörmander
condition is satisfied and as a result the transition density for system (3)
exists, though not necessarily has an explicit form.

(A2) implies the existence and uniqueness in law of the weak solution of
the system (3) Karatzas and Shreve (1987) and (A4) is a standard condition
which is needed to prove the consistency of the estimator.

(A3) ensures that we can apply the weak ergodic theorem, that is, for
any continuous function f with polynomial growth at infinity:

1

T

∫ T

0
f(Zs)ds −→

T→∞
ν0(f) a.s.

We do not investigate the conditions under which process Zt is ergodic, as
it is not the main focus of this work. Ergodicity of the stochastic damping
Hamiltonian system (2) is studied in Wu (2001). Conditions for a wider
class of hypoelliptic SDEs can be found in Mattingly et al. (2002). It is
also important to know that if the process Zt is ergodic, then its sampling
{Zi}, i ∈ [0, N ] is also ergodic (Genon-Catalot et al., 2000).

3 Discrete model

3.1 Derivation

Now we introduce a discretization scheme which approximates the transition
density of system (3). It is a generalized version of the local linearization
scheme presented in Ozaki (1989) for systems (2). Recall that the process
Zt is observed at equally spaced periods of time of size ∆. On each interval
we consider a new process Zt described by the homogeneous linear system
with the constant diffusion coefficient. That is, we use the approximation
A(Zt; θ) ∼ JtZt on each interval of length ∆, where Jt := J(Zt; θ) is the
Jacobian of the drift coefficient A(Zt; θ), computed at the beginning of such
an interval. In other words, instead of working with (3), we study N systems
of the following type:

dZs = JτZsds+B(Zτ ;σ)dW̃s, Z0 = Zτ , s ∈ (τ, τ + ∆], (5)
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where the initial value Z0 is given by the observation of the true process Zt
at time τ . Note that the value of the diffusion matrix B is fixed at time τ .
Solution of (5) has an explicit form:

Zs = Zτe
Jτ s +

∫ s

τ
eJτ (s−v)B(Zτ ;σ)dW̃v, ∀s ∈ (τ, τ + ∆].

Then the first moment and the covariance matrix of the process Zs on
each interval (τ, τ + ∆] are given, respectively, by:

E[Zs] = Zτe
Jτ s, (6)

Σ(Zs; θ, σ2) = E

[(∫ s

τ
eJτ (s−v)B(Zτ ;σ)dW̃v

)(∫ s

τ
eJτ (s−v)B(Zτ ;σ)dW̃v

)T]
.

(7)

Continuous representation of the drift and the variance terms (6) - (7) is
not convenient for the numerical implementation, so it has to be discretized.
For the drift term the discretization is straightforward and follows directly
from the definition of the matrix exponent. For the covariance matrix we
use the following proposition, proof of which is postponed to appendix:

Proposition 1. The second-order Taylor approximation of matrix Σ(Z∆; θ, σ2)
defined in (7) has the following form:

b2(Zτ ;σ)

(
(∂ya1)2 ∆3

3 (∂ya1)∆2

2 + (∂ya1)(∂ya2)∆3

3

(∂ya1)∆2

2 + (∂ya1)(∂ya2)∆3

3 ∆ + (∂ya2)∆2

2 + (∂ya2)2 ∆3

3

)
+O(∆4),

(8)
where the derivatives are computed at time τ .

Note that the noise in the first coordinate appears only through ∂ya1.
Thus, under assumption (A1) matrix (7) has rank 2, while the original
covariance matrix BBT is of rank 1. This fact allows us to use techniques
developed for non-degenerate Gaussian diffusions. However, note that this
matrix is still highly ill-conditioned, as its determinant is of order O(∆4).

At this point we give up the continuous time setting and move to the
discrete process. Let us denote the approximated form (8) of matrix (7) by
Σ∆. Then the approximation for the solution of (5) is given by:

Zi+1 = Ā(Zi; θ) + B̄(Zi; θ, σ)Ξi, (9)

where Ξi is a standard Gaussian 2-dimensional random vector, B̄ is any
matrix such that B̄B̄T = Σ∆, Ā is an approximation of the conditional
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expectation of the drift (6), given ∀k ∈ N by:

Ā(Zi; θ) = Zi + ∆A(Zi; θ) +
∆2

2
JiA(Zi; θ) + · · ·+ ∆k

k!
Jki A(Zi; θ) +O(∆k+1)

(10)
Thus, on each small interval the discretized process can be approximated

by the Gaussian process such that E [Zi+1|Zi] ∼ N
(
Ā(Zi; θ),Σ∆(Zi; θ, σ)

)
.

3.2 Properties of the discrete model

The difference between the true process and its approximation cannot be
computed explicitly since the transition density of the process is in general
unknown. But the moments of the process can be approximated by a mo-
ment generator function. For sufficiently smooth and integrable function
f : R×R→ R we know that:

E(f(Zt+∆)|Zt = z) =

j∑
i=0

∆i

i!
Lif(z) +O(∆j+1), (11)

where Lif(z) is the i times iterated generator of model (3), given by

Lf(z) = (∂zf(z))A(z) +
1

2
52
B f(z),

where 52
B(·) = σ2 ∂2

∂y2 (·) is a weighted Laplace type operator. Thus, the
value of the process is approximated by:

E(Zt+∆|Zt = z) = z + ∆A(z; θ) +
∆2

2
LA(z; θ) +O(∆3), (12)

which coincides with (10) up to the terms of order ∆2. Adding more terms
to (10) does not improve the accuracy of the scheme unless the model is
linear. Further we assume that k = 2. Now let us denote by Ā1(Zi; θ) the
first element of the vector Ā(Zi; θ), and by Ā2(Zi; θ) the second. We have
the following proposition:

Proposition 2 (Weak convergence of the local linearization scheme). For
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k ≥ 2 the following holds:

E
(
Xi+1 − Ā1(Zi; θ0)

)
= O(∆3)

E
(
Yi+1 − Ā2(Zi; θ0)

)
= O(∆3)

E
(
Xi+1 − Ā1(Zi; θ0)

)2
= (∂ya1)2

θ0

∆3

3
b2(Zi;σ0) +O(∆4)

E
(
Yi+1 − Ā2(Zi; θ0)

)2
= ∆b2(Zi;σ0) +O(∆2)

E
[(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)]
= (∂ya1)θ0

∆2

2
b2(Zi;σ0) +O(∆3)

Proof. It follows directly from the comparison between the scheme (8) - (10)
and the moment generator function (11). More detailed expansion of (11)
can be found in Kloeden et al. (2003).

For systems (3) it is suitable to approximate the drift term up to the or-
der ∆2. It is not sufficient to use a first-order approximation, as in that case
the variance of the first coordinate would be suppressed by the error in the
drift term. However, for elliptic systems it is often enough to approximate
a drift only up to ∆.

4 Parameter estimation

Let us introduce a contrast function for system (3). In the elliptic case this
function is defined as −2 times the log-likelihood of the discretized model
(Florens-Zmirou (1989), Kessler (1997)). In hypoelliptic case, however, we
must modify this criterion taking into account the specific structure of the
covariance matrix. Most notably, the contrast is obtained by dividing the
first part by 2:

L(θ, σ2;Z0:N ) =
1

2

N−1∑
i=0

(Zi+1 − Ā(Zi; θ))
TΣ−1

∆ (Zi; θ, σ
2)(Zi+1 − Ā(Zi; θ))

+

N−1∑
i=0

log det(Σ∆(Zi; θ, σ
2)). (13)

Then the estimator is defined as:

(θ̂, σ̂2) = arg min
θ,σ2

L(θ, σ2;Z0:N ) (14)
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For system (2) this correction is not proposed nor in Ozaki (1989), nor in
Pokern et al. (2007). We justify this bias theoretically in Lemma 1. However,
the 2-dimensional criterion (14) is tricky to analyze because of the different
orders of variance for the first and the second coordinate. As a result, under
the scaling which allows to estimate the parameters included in the rough
coordinate, we cannot say anything about the parameters from the smooth
coordinate and vice versa. It does not introduce any additional restrictions
on the numerical implementation, but must be taken into account during the
theoretical study. When both equations are driven by the same parameters,
the task is simplified as the parameters can be then estimated from a one-
dimensional criteria, which involves only one of the two equations.

Let us denote the parameters in the first coordinate by ϕ, and in the
second by ψ. We start with considering the variance term. In order to prove
the convergence of the estimator for the σ̂2, we fix the value of the parameter
in the first coordinate in order to focus on the parameters which directly
regulate the diffusion term of the original process. It results in the following
Lemma:

Lemma 1. Under assumptions (A1)-(A4), ϕ ≡ ϕ0 and ∆N → 0 while
N∆N →∞ the following holds:

1

N
LN,∆N

(θ, σ2;Z0:N )
Pθ−→
∫ (

b2(z;σ0)

b2(z;σ)
+ log b2(z;σ)

)
ν0(dz) (15)

Then we proceed with the drift term. Note that the first statement of
the Lemma 2 suffices to obtain the consistency of the estimator, but only in
the case when both equations are driven by the same parameters. However,
in combination with the second term it allows us to establish the main result
of the paper:

Lemma 2. Under assumptions (A1)-(A4), ∆N → 0 and N∆N → ∞ the
following holds:

lim
N→∞,∆N→0

∆N

N

[
LN,∆N

(θ, σ2
0;Z0:N )− LN,∆N

(θ0, σ
2
0;Z0:N )

] Pθ−→

6

∫
(a1(z; θ0)− a1(z; θ))2

b2(z;σ2
0)(∂ya1)2

θ

ν0(dz)

lim
N→∞,∆N→0

1

N∆N

[
LN,∆N

(ϕ0, ψ, σ
2
0;Z0:N )− LN,∆N

(ϕ0, ψ0, σ
2
0;Z0:N )

] Pθ−→

2

∫
(a2(z;ψ)− a2(z;ψ0))2

b2(z;σ2
0)

ν0(dz)
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Note that consistency for each term is obtained under different scal-
ings. Scaling 1

∆ is standard for the diffusion coefficient, while 1
N∆ — for

the drift parameter (Kessler (1997)). But ∆
N is very unusual. That means

that each parameter converges to its real value with different speed. It is the
main theoretical difficulty encountered while constructing a two-dimensional
contrast, compared to 2 different one-dimensional contrasts proposed in
Ditlevsen and Samson (2017). Finally, we establish the following theorem:

Theorem 1. Under assumptions (A1)-(A4) and ∆N → 0 and N∆N →∞
the following holds:

(θ̂, σ̂2)
Pθ−→ (θ0, σ

2
0)

Proof. Let us start with the variance term. The result follows from Lemma
1. Denote the integral on the right side of (15) by I(σ, σ0). We can choose
some subsequence Nk such that σ̂Nk,∆Nk

converges to some σ∞. By the
definition of the estimator we know that I(σ∞, σ0) ≤ I(σ0, σ0). But we also

know that b2(z;σ0)
b2(z;σ)

+ log b2(z;σ) ≥ 1 + log b2(z;σ0) and thus I(σ∞, σ0) ≥
I(σ0, σ0). It proves the consistency of σ̂.

Consistency for the drift term essentially follows from Lemma 2 and
from the identifiability of the drift functions. We can state that there exists
a subsequence θ̂N,∆N

which converges to θ̂∞. At the same time, as a1 is

identifiable, thus θ̂∞ ≡ θ0. That means that the estimator is consistent
with respect to the parameters of the first coordinate. Proof for the ψ is
analogous.

Another way to unify the scaling and simplify the task of parameter es-
timation is to consider a quadratic variance of the drift term. This approach
does not allow to estimate the parameters of the diffusion term, but is ef-
fective for the parameters of the drift. Its main advantage consists in the
fact that the computation of the contrast function does not require finding
an inverse of matrix (8), which is ill-conditioned and can cause numerical
problems for small values of ∆. Consider

θ̂QV = arg min
θ

1

N − 1

N−1∑
i=0

∥∥Zi+1 − Ā(Zi; θ)
∥∥2
, (16)

with Ā(Zi; θ) being defined in (10).

Proposition 3. Under assumptions (A1)-(A4) the following holds:

θ̂QV
Pθ−→ θ0
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What about the diffusion term, in the case when b(x, y;σ) ≡ σf(x, y),
parameter σ can be computed explicitly with the help of the sample co-
variance matrix. Good properties of this approach for the elliptic case are
proven in Florens-Zmirou (1989). When it comes to the hypoelliptic sys-
tems, this approach must be modified, as the discretization step of order
∆ does not allow to compute the terms of order ∆3, which represent the
propagated noise. However, the value of σ can still be inferred from the
observations of the rough coordinate by computing

σ̄2 =
1

N∆

N−1∑
i=0

(Yi+1 − Yi)2

f(Xi, Yi)
(17)

5 Simulation study

5.1 The model

The two estimators (θ̂, σ̂2) and (θ̂QV , σ̃
2) are evaluated on the simulation

study with a hypoelliptic stochastic neuronal model called FitzHugh-Nagumo
model (Fitzhugh, 1961). It is a simplified version of the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952), which describes in a detailed manner
activation and deactivation dynamics of a spiking neuron. First it was stud-
ied in the deterministic case, then it was improved by adding two sources
of noise to the both coordinates, what results in an elliptic SDE. However,
it is often argued that only ion channels are perturbed by noise, while the
membrane potential depends on them in a deterministic way. This idea
leads to a 2-dimensional hypoelliptic diffusion. In this paper we consider a
hypoelliptic version with noise only in the second coordinate as studied in
Leon and Samson (2017). More precisely, the behaviour of the neuron is
defined through the solution of the system{

dXt = 1
ε (Xt −X3

t − Yt − s)dt
dYt = (γXt − Yt + β)dt+ σdWt,

(18)

where the variable Xt represents the membrane potential of the neuron at
time t, and Yt is a recovery variable, which could represent channel kinetic.
Parameter s is the magnitude of the stimulus current and is often known in
experiments, ε is a time scale parameter and is typically significantly smaller
than 1, since Xt moves ”faster” than Yt. Parameters to be estimated are
θ = (γ, β, ε, σ).

Hypoellipticity and ergodicity of (18) are proven in Leon and Samson
(2017). In Jensen et al. (2012) it is proven that s is unidentifiable when
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only one coordinate is observed. Parametric inference for elliptic FitzHugh-
Nagumo model both in fully- and partially observed case is investigated in
Jensen (2014). The same problem, but for the hypoelliptic setting is studied
in Ditlevsen and Samson (2017).

5.2 Experimental design

In order to make our experiments more representative, we consider two
different settings: an excitatory and an oscillatory behaviour. For the first
regime, the drift parameters are set to γ = 1.5, β = 0.3, ε = 0.1, s = 0.01 and
the diffusion coefficient σ = 0.6, and for the second γ = 1.2, β = 1.3, ε =
0.1, s = 0.01 and σ = 0.4. The diffusion coefficient does not change the
behaviour pattern, only the ”noisiness” of the observations.

We organize the trials as follows: first, we generate 100 trajectories using
formula (9) for each set of parameters with ∆ = 0.001 and N = 500000.
Then we downsample the sequence and work only with each 10-th value of
the process, so that ∆ = 0.01 and N = 50000. We estimate the parameters
corresponding to the contrast given by (13). We refer to this method as
linearized contrast. For the ”quadratic variance” estimation (QV) we do
the following: we estimate the parameter σ explicitly from the observations
of the second variable by (17), and then compute the parameters of the
drift by minimizing (16). In addition, we compare both methods to the 1.5
strong order scheme (Ditlevsen and Samson, 2017), based on two separate
estimators for each coordinate.

The minimization of the criterions is conducted with the optim function
in R with the Conjugate Gradient method. In Table 1 we present the mean
value of the estimated parameters and the standard deviation (in brackets).
Figure 1 illustrates the estimation densities. Linearized estimator is depicted
in blue, Quadratic-Variance in red, 1.5 scheme in green.

The first thing is that the estimation of the diffusion coefficient σ with
the 2-dimensional linearized estimator is biased in both sets of data, even
though the contrast is corrected with respect to the hypoellipticity of the
system. This bias does not appear in the one-dimensional criteria and when
the value is directly computed from the observations. Thus its origin may
be explained by the dimensionality of the system. Parameters of the second
coordinate γ and β are estimated efficiently with all three methods, though
the 1.5 scheme provides a more accurate estimation. It is expected, since
one of the parameters is fixed to its real value. However, in the case of
ε, 1-dimensional criteria does not score better than the linearized and QV
estimators. This parameter seems to be underestimated in the case of 1.5

13



γ β ε σ

Set 1: 1.5 0.3 0.1 0.6

Lin. contrast 1.477 (1.056) 0.289 (0.428) 0.100 (0.561) 0.672 (0.291)
QV 1.460 (1.059) 0.311 (0.403) 0.100 (0.562) 0.611 (0.287)

1.5 scheme 1.497 (1.055) 0.299 (0.393) 0.099 (0.563) 0.597 (0.288)

Set 2: 1.2 1.3 0.1 0.4

Lin. contrast 1.199 (0.531) 1.315 (0.621) 0.102 (0.683) 0.472 (0.340)
QV 1.170 (0.423) 1.268 (0.598) 0.100 (0.678) 0.400 (0.381)

1.5 scheme 1.221 (0.645) 1.324 (0.777) 0.088 (0.575) 0.398 (0.338)

Table 1: Comparison between different schemes
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scheme, and a bit overestimated with the linearization scheme, as well as
the diffusion coefficient. During the simulation study it is also observed that
ε is the most sensitive to the initial value with which the optim function is
initialized, since it directly regulates the amount of noise which is propagated
to the first coordinate.

6 Conclusions

The proposed estimator successfully generalizes parametric inference meth-
ods developed for models of type (2) for more general class (1). Numerical
study shows that it can be used with no prior knowledge of the parameters.
It is the most prominent advantage of our method over the analogous works.

From the theoretical point of view, our estimators also reveal good prop-
erties. Both linearized and the quadratic variance contrasts are consistent.
We did not study the question of the asymptotic normality of the estimator,
since in multidimensional case this question is much more harder to treat
in comparison to the elliptic case because of the different orders of variance
for each coordinate.

The most important direction of prospective work is the adaptation of
the estimation method to the case when only the observations of the first
coordinate are available. Under proper conditions it must be possible to
couple the contrast minimization with one of the existing filtering methods
and estimate the parameters of the system (at least, partially). It would
allow to face real experimental data.

Another point is the generalization of the contrast to systems of higher
dimension. In practice we deal with arbitrary number of rough and smooth
variables, and the general rule which describes the behaviour of the contrast
in that case is not yet deriven.
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8 Appendix

8.1 Properties of the scheme

Proof of the Proposition 1. Let us consider each integral of (8) separately.
Denote:

Wt+∆ =

∫ t+∆

t
eJ(t+∆−s)B(Zt;σ)dW̃s,

where we suppress the dependency of the Jacobian of the starting point on
the interval in order to keep notations simple. Recalling the Jacobian of
system (3) and the definition of the matrix exponent, we have:

Wt+∆ =

∫ t+∆

t
(I + J(t+ ∆− s) +O(∆2))B(Zt;σ)dW̃s =

=

∫ t+∆

t

[(
1 + ∂xa1(t+ ∆− s) ∂ya1(t+ ∆− s)
∂xa2(t+ ∆− s) 1 + ∂ya2(t+ ∆− s)

)
+O(∆2)

](
0
1

)
b(Zt;σ)dWs

= b(Zt;σ)

[
∂ya1

∫ t+∆
t (t+ ∆− s)dWs +O(∆2)∫ t+∆

t dWs + ∂ya2

∫ t+∆
t (t+ ∆− s)dWs +O(∆2)

]

Then we can calculate E
[
Wt+∆W ′t+∆

]
:

E
[
Wt+∆W ′t+∆

]
= b2(Zt;σ)E

(
Σ

(1)
∆ Σ

(12)
∆

Σ
(12)
∆ Σ

(2)
∆

)
+O(∆4),

where entries are given by:

Σ
(1)
∆ = (∂ya1)2

[∫ t+∆

t
(t+ ∆− s)dWs

]2

Σ
(12)
∆ =

(
∂ya1

∫ t+∆

t
(t+ ∆− s)dWs

)(∫ t+∆

t
dWs + ∂ya2

∫ t+∆

t
(t+ ∆− s)dWs

)
Σ

(2)
∆ =

(∫ t+∆

t
dWs + ∂ya2

∫ t+∆

t
(t+ ∆− s)dWs

)2

The first entry can be easily calculated by the Itô isometry:

E[Σ
(1)
∆ ] = (∂ya1)2

E

[∫ t+∆

t
(t+ ∆− s)dWs

]2

= (∂ya1)2
∫ t+∆

t
(t+∆−s)ds = (∂ya1)2 ∆3

3
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Now consider the product of two stochastic integrals in the remaining terms.
Assume for simplicity that t = 0. From the properties of the stochastic
integrals (Karatzas and Shreve (1987)), it is straightforward to see that:

E

 lim
n→∞

∑
ti,ti−1∈[0,∆]

(∆− s)(Wti −Wti−1)
∑

ti,ti−1∈[0,∆]

(Wti −Wti−1)

 =

= lim
n→∞

∑
ti,ti−1∈[0,∆]

(∆− s)E
[
(Wti −Wti−1)2

]
=

∫ ∆

0
(∆− s)ds =

∆2

2

That gives the proposition.

8.2 Auxiliary results

In this section we introduce an index in the notation for the time step in
order to highlight that it depends on the experimental design. Whenever
this dependency is not important, the old notations are used. We start with
an important Lemma which links the sampling and the probabilistic law of
the continuous process:

Lemma 3 (Kessler (1997)). Let ∆→ 0 and N∆→∞, let f ∈ R×Θ→ R

be such that f is differentiable with respect to z and θ, with derivatives of
polynomial growth in z uniformly in θ. Then:

1

N

N∑
i=1

f(Zi; θ)
Pθ0−→

∫
f(z; θ)ν0(dz) as N →∞ uniformly in θ.

Lemma is proven in Kessler (1997) for the one-dimensional case. How-
ever, as its proof is based only on ergodicity of the process and the assump-
tions analogous to ours, and not on the discretization scheme or dimension-
ality, we take it for granted without giving a formal generalization for a
multi-dimensional case. Then proposition 2 in combination with the con-
tinuous ergodic theorem and Lemma 3 allow us to establish the following
important result:

Lemma 4. Let f : R2 × Θ → R be a function with the derivatives of
polynomial growth in x, uniformly in θ. Then:

1. Assume ∆N → 0 and N∆N →∞.

1

N∆3
N

N−1∑
i=0

f(Zi; θ)

(∂ya1(Zi; θ0))2

(
Xi+1 − Ā1(Zi; θ0)

)2 PΘ−→ 1

3

∫
f(z; θ)b2(z;σ0)ν0(dz)
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2. Assume ∆N → 0 and N∆N →∞.

1

N∆N

N−1∑
i=0

f(Zi; θ)
(
Yi+1 − Ā2(Zi; θ0)

)2 PΘ−→
∫
f(z; θ)b2(z;σ0)ν0(dz)

3. Assume ∆N → 0 and N∆N →∞.

1

N∆2
N

n−1∑
i=0

f(Zi; θ)

(∂ya1(Zi; θ0))

(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

) PΘ−→ 1

2

∫
f(z; θ)b2(z;σ0)ν0(dz)

Proof. Let us denote:

ζ
(1)
i =

1

N∆3
N

f(Zi; θ)

(∂ya1(Zi; θ0))2

(
Xi+1 − Ā1(Zi; θ0)

)2
ζ

(2)
i =

1

N∆N
f(Zi; θ)

(
Yi+1 − Ā2(Zi; θ0)

)2
ζ

(1,2)
i =

1

N∆2
N

f(Zi; θ)

∂ya1(Zi; θ0)

(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)
Thanks to Proposition 2 we know that:

Eθ0

[
ζ

(1)
i |Fi

]
=

1

3N

N−1∑
i=0

f(Zi; θ)b
2(Zi;σ0) +O(∆N ).

Then from Lemma 3 it follows that for N →∞ uniformly in θ:

Eθ0

[
ζ

(1)
i |Fi

]
PΘ−→ 1

3

∫
f(z; θ)b2(z;σ0)ν0(dz).

The same applies for terms ζ
(2)
i and ζ

(1,2)
i .

Let us introduce an auxiliary lemma which repeats Lemma 3 in Ditlevsen
and Samson (2017). Its proof is based on Lemma 9 from Genon-Catalot and
Jacod (1993) and Lemma 3:

Lemma 5. Let f : R2×Θ→ R be a function with derivatives of polynomial
growth in x, uniformly in θ.

1. Assume ∆N → 0 and N∆N →∞. Then

1

N∆2
N

N−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ0))
Pθ−→ 0

uniformly in θ.
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2. Assume ∆N → 0 and N∆N →∞. Then

1

N∆N

N−1∑
i=0

f(Zi; θ)(Yi+1 − Ā2(Zi; θ0))
Pθ−→ 0

uniformly in θ.

3. ∆N → 0 and N →∞. Then

1

N

N−1∑
i=0

f(Zi; θ)(Yi+1 − Ā2(Zi; θ0))
Pθ−→ 0

uniformly in θ.

Proof. Expectation of the first sum tends to zero for ∆N → 0 and N∆N →
∞ due to Proposition 2. Convergence for θ is due Lemma 9 in Genon-
Catalot and Jacod (1993) and uniformity in θ follows the proof of Lemma
10 in Kessler (1997). The second and the third assertions are proven in the
same way, with the proper scaling.

8.3 Consistency of the estimator

Proof of Lemma 1. We can split the contrast in the following sum:

lim
N→∞,∆N→0

1

2N
LN,∆N

(θ, σ2;Z0:N ) = lim
N→∞,∆N→0

[3T1 − 3T2 + T3 + T4]

where terms are given by follows:

T1 =
1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ))
2

∆3
Nb

2(Zi;σ)(∂ya1)2
θ

T2 =
1

N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ))(Yi+1 − Ā2(Zi; θ))

∆2
Nb

2(Zi;σ)(∂ya1)θ

T3 =
1

N

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ))
2

∆Nb2(Zi;σ)

T4 =
1

N

N−1∑
i=0

log b2(Zi;σ)

By the assumption of the lemma (Xi+1 − Ā1(Zi; θ)) = (Xi+1 − Ā1(Zi; θ0)),
what in combination with Lemma 5 gives the convergence in probability to
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zero for terms T1 and T2. T4 converges in probability to
∫

log b2(z;σ)ν0(dz)
due to Lemma 3. Consider T3:

T3 =
1

N∆N

N−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ0))2 + (Yi+1 − Ā2(Zi; θ0))(Ā2(Zi; θ0)− Ā2(Zi; θ))+

(Ā2(Zi; θ0)− Ā2(Zi; θ))
2
]

=
1

N∆N

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ0))2

b2(Zi;σ)
+

∆N

N∆N

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ0))(a2(Zi; θ0)− a2(Zi; θ))

b2(Zi;σ)
+

∆2
N

N∆N

N−1∑
i=0

(a2(Zi; θ0)− a2(Zi; θ))
2

b2(Zi;σ)

Thanks to Lemma 4 and 5 we conclude that

T3
Pθ−→
∫
b2(z;σ0)

b2(z;σ)
ν0(dz) + 0 + 0

That gives the result.

Proof of Lemma 2. Consider

∆N

N

[
LN,∆N

(θ, σ2
0;Z0:N )− LN,∆N

(θ0, σ
2
0;Z0:N )

]
= T1 + T2 + T3 + T4,

where the terms are given as follows:

T1 =
6∆N

N∆3
N

N−1∑
i=0

1

b2(Zi;σ0)

[(
Xi+1 − Ā1(Zi; θ)

)2
(∂ya1(Zi; θ))2

−
(
Xi+1 − Ā1(Zi; θ0)

)2
(∂ya1(Zi; θ0))2

]

T2 = − 6∆N

N∆2
N

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ)

) (
Yi+1 − Ā2(Zi; θ)

)
∂ya1(Zi; θ)b2(Zi;σ0)

−
(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)
∂ya1(Zi; θ0)b2(Zi;σ0)

]

T3 =
2∆N

N∆N

N−1∑
i=0

[
(Yi+1 − Ā2(Zi; θ))

2 − (Yi+1 − Ā2(Zi; θ0))2
]

b2(Zi;σ0)

T4 =
∆N

N

N−1∑
i=0

log

(
∂ya1(Zi; θ)

∂ya1(Zi; θ0)

)
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Consider term T1:

T1 =
6∆N

N∆3
N

N−1∑
i=0

1

b2(Zi;σ0)

[(
Xi+1 − Ā1(Zi; θ0) + Ā1(Zi; θ0)− Ā1(Zi; θ)

)2
(∂ya1(Zi; θ))2

−

(
Xi+1 − Ā1(Zi; θ0)

)2
(∂ya1(Zi; θ0))2

]
=

6∆N

N∆3
N

N−1∑
i=0

1

b2(Zi;σ0)

[(
Xi+1 − Ā1(Zi; θ0)

)2 [ 1

(∂ya1(Zi; θ))
−

1

(∂ya1(Zi; θ0))

]
+

∆N

(∂ya1(Zi; θ))

(
Xi+1 − Ā1(Zi; θ0)

)
(a1(Zi; θ0)− a1(Zi; θ))+

∆2
N

(∂ya1(Zi; θ))2
(a1(Zi; θ0)− a1(Zi; θ))

2

]
.

Recalling Lemmas 3, 5 and 4 we have that:

6

N∆2
N

N−1∑
i=0

(
Xi+1 − Ā1(Zi; θ0)

)2
b2(Zi;σ0)

[
1

(∂ya1(Zi; θ))
− 1

(∂ya1(Zi; θ0))

]
Pθ−→ 0

6

N∆N

N−1∑
i=0

1

b2(Zi;σ0)(∂ya1(Zi; θ))

(
Xi+1 − Ā1(Zi; θ0)

)
(a1(Zi; θ0)− a1(Zi; θ))

Pθ−→ 0

6

N

N−1∑
i=0

(a1(Zi; θ0)− a1(Zi; θ))
2

b2(Zi;σ0)(∂ya1(Zi; θ))2

Pθ−→ 6

∫
(a1(z; θ0)− a1(z; θ))2

b2(z;σ0)(∂ya1(z; θ))2
ν0(dz).

Now consider T2:

− 6

N∆N

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ0) + Ā1(Zi; θ0)− Ā1(Zi; θ)

) (
Yi+1 − Ā2(Zi; θ0) + Ā2(Zi; θ0)− Ā2(Zi; θ)

)
b2(Zi;σ0)∂ya1(Zi; θ)

−

(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)
b2(Zi;σ0)∂ya1(Zi; θ0)

]
= − 6

N∆N

N−1∑
i=0

[(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)
b2(Zi;σ0)[

1

(∂ya1(Zi; θ))
− 1

(∂ya1(Zi; θ0))

]
+

∆N

b2(Zi;σ0)(∂ya1(Zi; θ))

[(
Xi+1 − Ā1(Zi; θ0)

)
(a2(Zi; θ0)− a2(Zi; θ))+

(
Yi+1 − Ā2(Zi; θ0)

)
(a1(Zi; θ0)− a1(Zi; θ))

]
+

∆2
N

(∂ya1(Zi; θ))
(a1(Zi; θ0)− a1(Zi; θ))(a2(Zi; θ0)− a2(Zi; θ))

]
.

Thanks to Lemma 5 we know that:

− 6

N

N−1∑
i=0

1

b2(Zi;σ0)(∂ya1(Zi; θ))

[(
Xi+1 − Ā1(Zi; θ0)

)
(a2(Zi; θ0)− a2(Zi; θ))+

(
Yi+1 − Ā2(Zi; θ0)

)
(a1(Zi; θ0)− a1(Zi; θ))

] Pθ−→ 0
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and, respectively, for the cross-term we have:

−6∆N

N

N−1∑
i=0

1

b2(Zi;σ0)(∂ya1(Zi; θ))
(a1(Zi; θ0)− a1(Zi; θ))(a2(Zi; θ0)− a2(Zi; θ))

Pθ−→ 0.

Finally, by Lemma 4:

− 6

N∆N

N−1∑
i=0

(
Xi+1 − Ā1(Zi; θ0)

) (
Yi+1 − Ā2(Zi; θ0)

)
b2(Zi;σ0)(∂ya1(Zi; θ0))

[
(∂ya1(Zi; θ0))

(∂ya1(Zi; θ))
− 1

]
Pθ−→ 0.

Finally, consider the term T3:

T3 =
2

N

N−1∑
i=0

1

b2(Zi;σ0)

[
(Yi+1 − Ā2(Zi; θ0))2 + (Yi+1 − Ā2(Zi; θ0))(Ā2(Zi; θ0)− Ā2(Zi; θ))+

(Ā2(Zi; θ0)− Ā2(Zi; θ))
2 − (Yi+1 − Ā2(Zi; θ0))2

]
=

2

N

N−1∑
i=0

1

b2(Zi;σ0)

[
∆N (Yi+1 − Ā2(Zi; θ0))(a2(Zi; θ0)− a2(Zi; θ)) + ∆2

N (a2(Zi; θ0)− a2(Zi; θ))
2
]

Lemma 5 implies that T3
Pθ−→ 0. The same holds for T4. Thus, we indeed

have

lim
N→∞,∆N→0

∆N

N

[
LN,∆N

(θ, σ2
0;Z0:N )− LN,∆N

(θ0, σ
2
0;Z0:N )

] Pθ−→

6

∫
(a1(z; θ0)− a1(z; θ))2

b2(z;σ0)(∂ya1(z; θ))2
ν0(dz). (19)

Note that we cannot infer the value of ψ with that scaling because the
estimator for each variable converges with a different speed. Thus, we fix the
parameter ϕ to ϕ0 and consider the same sum, but with a different scaling,
namely:

lim
N→∞,∆N→0

1

N∆N

[
LN,∆N

(θ, σ2
0;Z0:N )− LN,∆N

(θ0, σ
2
0;Z0:N )

]
=

1

∆2
N

[T1+T2+T3+T4]

As ψ ≡ ψ0, we only have to consider term 1
∆2
N
T3

1

∆2
N

T3 =
2

N∆2
N

N−1∑
i=0

1

b2(Zi;σ0)

[
∆N (Yi+1 − Ā2(Zi; θ0))(a2(Zi; θ0)− a2(Zi; θ))+

∆2
N (a2(Zi; θ0)− a2(Zi; θ))

2
]
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From Lemma 3 and 5 we conclude that

1

∆2
N

T3
Pθ−→ 2

∫
(a2(z; θ0)− a2(z; θ))2

b2(z;σ0)
ν0(dz) (20)

Then (19)-(20) give the lemma.

Proof of Lemma 3. Let us now consider the following difference:

1

N∆N
2 [LV F (Z0:N ; θ)− LV F (Z0:N ; θ0)] =

1

N∆2
N

N−1∑
i=0

[
(Xi+1 − Ā1(Zi; θ))

2

+(Yi+1 − Ā2(Zi; θ))
2 − (Xi+1 − Ā1(Zi; θ0))2 − (Yi+1 − Ā2(Zi; θ0))2

]
=

1

N∆2
N

N−1∑
i=0

[
2(Xi+1 − Ā1(Zi; θ0))(Ā1(Zi; θ0)− Ā1(Zi; θ)) + (Ā1(Zi; θ0)− Ā1(Zi; θ))

2

+2(Yi+1 − Ā2(Zi; θ0))(Ā2(Zi; θ0)− Ā2(Zi; θ)) + (Ā2(Zi; θ0)− Ā2(Zi; θ))
2
]

Then we have from Lemmas 4, 5:

2∆2
N

N∆2
N

N−1∑
i=0

(Xi+1 − Ā1(Zi; θ0))(a1(Zi; θ0)− a1(Zi; θ))
Pθ−→ 0

2∆2
N

N∆2
N

N−1∑
i=0

(Yi+1 − Ā2(Zi; θ0))(a2(Zi; θ0)− a2(Zi; θ))
Pθ−→ 0

∆2
N

N∆2
N

N−1∑
i=0

(a1(Zi; θ0)− a1(Zi; θ))
2 Pθ−→

∫
(a1(z; θ0)− a1(z; θ))2ν0(dz)

∆2
N

N∆2
N

N−1∑
i=0

(a2(Zi; θ0)− a2(Zi; θ))
2 Pθ−→

∫
(a2(z; θ0)− a2(z; θ))2ν0(dz)

From that we can conclude that there exists a subsequence θ̂N,∆N
= arg min

θ
LV F (Z0:N ; θ)

that tends to θ∞. Then the result follows from the identifiability of the drift
functions.
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