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Abstract
We prove cut-elimination for a sequent-style proof system which is sound and complete for the
equational theory of Kleene algebra, and where proofs are potentially non-wellfounded infinite
trees. We extend these results to systems with meets and residuals, capturing ‘star-continuous’
action lattices in a similar way. We recover the equational theory of all action lattices by restrict-
ing to regular proofs (with cut)—those proofs that are unfoldings of finite graphs.
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1 Introduction

The axioms of Kleene algebra are sound and complete for the theory of regular expressions
under language equivalence [18, 24]. As a consequence, the equational theory of Kleene
algebra is decidable (actually PSpace-complete). Models of these axioms of particular in-
terest include formal languages and binary relations. For binary relations, Kleene star is
interpreted as reflexive transitive closure, and the axioms of Kleene algebra make it possi-
ble to reason abstractly about program correctness [20, 21, 3, 15, 1]. The aforementioned
decidability result moreover makes it possible to design automation tactics in proof assis-
tants [4, 22, 27].

In previous work [8], we briefly discussed a sequent system for Kleene algebra, LKA,
where proofs are finitely branching, but possibly infinitely deep (not well-founded). We
observed that this system is sound w.r.t. Kleene algebra but that its regular fragment—
those proofs which are unfoldings of finite graphs—is incomplete without cut. Our main
contribution there was a variant of it based on ‘hypersequents’, whose regular fragment is
sound and complete without cut.

In this paper we step back and study the proof theory of LKA, namely proving cut-
elimination. This completes the corresponding proof-theoretical account of Kleene algebra
and we show how to exploit this method to characterise important extensions of Kleene
algebra: action algebra [28], whose language includes residuals, and action lattices [19],
whose language further inlcudes meets.

Kleene algebra

We focus on pure Kleene algebra first, which is easier to handle and enables a simpler
presentation. Our key contribution here is that we give a simple validity criterion for proofs
with cut, and prove that the corresponding system admits cut-elimination (Thm. 13). The
difficulty in the presence of infinitely deep proofs consists in proving that cut-elimination is
productive; we do so by using the natural interpretation of regular expressions as data types
for parse-trees [11], and by giving an interpretation of proofs as parse-tree transformers.
(Such an idea already appears in [14] but for a finitary natural deduction system rather
than for a non-wellfounded sequent calculus). Cut-elimination is crucial later to obtain
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Figure 1 Context and contributions for Kleene algebra.

completeness results for the aforementioned extensions of Kleene algebra. We also prove that
the system is sound for any star-continuous Kleene algebra (Thm. 10), and conversely, that
it is complete w.r.t. the language theoretic interpretation of regular expressions (Thm. 11).
We actually refine this latter result by showing that any proof from Kleene algebra axioms
can be translated into a regular proof with cut (Thm. 12). Note however that regularity is
not preserved by cut-elimination and, as mentioned above, that the cut-free regular system is
actually incomplete w.r.t. Kleene algebra. These results are summarised in Fig. 1 (notations
are formally defined in Sect. 2 and 3).

Action algebra and action lattices

Despite its finite quasi-equational presentation, the equational theory of Kleene algebra is
not finitely based: Redko proved that any finite set of equational axioms must be incom-
plete [29]. However, by adding two binary operations to the signature, Pratt showed how to
obtain a finitely based extension which is conservative over the equational theory of Kleene
algebras [28]. These two operations, called left residual (\) and right residual (/), are adjoint
to sequential composition. Algebras of this kind are called action algebras. Kozen then pro-
posed to extend the signature further to include a binary meet operation (∩), so as to obtain
a class of algebras, action lattices, which is closed under the formation of matrices [19].

While both action algebra and action lattices are finitely based and conservatively extend
Kleene algebra, they bring some difficulties. By definition, their equational theories are at
most Σ0

1, so that they must differ from their star-continuous variants, which Buszkowski
and Palka proved to be Π0

1-complete [6, 26]. (Buszkowski proved the lower bound and Palka
proved the upper bound.) It is actually not known whether the equational theories of action
algebra and action lattices are decidable, and what their free models are. In contrast, by
Kozen’s completeness result we have that Kleene algebra and star-continuous Kleene algebra
give rise to the same equational theory (which, as we mentioned, is PSpace-complete).

Residuals and meets naturally correspond to linear implication and additive conjunc-
tion [16, 26], from (non-commutative) linear logic [13]. They are also essential connectives
in the Lambek-calculus and related substructural logics [25]. We extend LKA accordingly
into a system LAL and obtain the following additional results: LAL is complete for star
continuous action lattices (Thm. 27); it still admits cut-elimination (Thm. 29); thus it is
also sound w.r.t. star continuous action lattices (Thms. 24). Furthermore we show that its
regular fragment with cut is in fact sound and complete for all action lattices (Thm. 25).
These results are summarised in Fig. 2. Thms 24, 26, and 29 are proved by extending the
proofs of Thms. 10, 12, and 13 to deal with the additional connectives. Amongst those,
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Figure 2 Context and contributions for action lattices.

cut-elimination is the most delicate extension, relying on higher types to interpret residuals,
and proving that LAL proofs still yield finite programs in such a setting. Thm. 11 cannot
be extended directly, due to the lack of a counterpart to languages when adding residuals
and meet, which is why we instead rely on cut-elimination for completeness.

Lastly, we prove soundness of regular proofs with cuts with respect to all action lattices
by reasoning on the cycle structure of such regular proofs (Thm. 25). There we exploit in an
essential way the operations of residuals and meets: for action algebra and Kleene lattices,
it remains open whether the corresponding regular fragments with cut are sound.

As explained above, while all notions are equivalent in the case of Kleene algebra (Fig. 1),
complexity arguments make it possible to separate the lower and upper parts of Fig. 2.
Whether the upper part is decidable remains open. An interesting point to notice here is
that we manage to characterise action lattices in such a way that regularity makes it possible
to tell the difference between the star continuous and the general cases.

Related work

Palka proposed a sequent system for star continuous action lattices, for which she proved
cut-elimination [26]. Its non-star rules are precisely those of LKA, but the system is well-
founded and relies on an ‘omega-rule’ for Kleene star with infinitely many premisses, in the
traditional school of infinitary proof theory, cf. [30]. Doing so does not make it possible to
consider ‘regular’ proofs, i.e., finite objects, as we do in the upper parts of Fig. 1 and 2.
Wurm also proposed a (finite, and thus wellfounded) sequent system for Kleene algebra [31].
Unfortunately his cut-admissibility theorem does not hold—see [8].

The normalisation theory of linear logic with (least and greatest) fixed point operators
has been studied in [10] and, more comprehensively, in [9]. While the latter is a rather
general framework, its exposition still differs significantly from the current work for various
reasons. One immediate difference is that their setting is commutative while ours is non-
commutative, and so those results are not directly applicable. A more important difference is
that they do not have any atoms in their language, reasoning only on closed formulae. This
is rather significant from the point of view of normalisation, since the convergence of cut-
elimination becomes somewhat more complicated in the presence of atoms. The argument
we give in Sect. 4 uses different ideas that are closely related to the language-based models of
our algebras and the natural interpretation of language inclusions as programs [14]. Finally,
due to our more bespoke setting, namely with ∗ as the only fixed point operator, we are able
to arrive at cut-free systems with a genuine subformula property and simpler correctness
criteria.



2 Preliminaries on Kleene algebra and extensions

Let A be a finite alphabet. Regular expressions [17] are generated as follows:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A

Sometimes we may simply write ef instead of e · f . Each expression e denotes a rational
language L(e) ⊆ A∗, defined in the usual way.

A Kleene algebra is a tuple (K, 0, 1,+, ·, ·∗) where (K, 0, 1,+, ·) is an idempotent semiring
and where the following properties hold, where x ≤ y is a shorthand for x+ y = y.

(a) 1 + xx∗ ≤ x∗;
(b) if xy ≤ y then x∗y ≤ y;
(c) if yx ≤ y then yx∗ ≤ y.

There are several equivalent variants of this definition [7]. Intuitively we have that x∗y (resp.,
yx∗) is the least fixpoint of the function z 7→ y+xz (resp., z 7→ y+zx). We write KA � e = f

if the equation e = f universally holds in all Kleene algebras—equivalently, if it is derivable
from the axioms of Kleene algebra. We use a similar notation for inequations. Krob [23] and
Kozen [18] have shown that this axiomatisation is complete for language inclusions. This
corresponds to the right-to-left implication in the following characterisation.

I Theorem 1 ([23, 18]). KA � e = f if and only if L(e) = L(f).

A Kleene algebra is star-continuous if for all elements x, y, z, xy∗z is the least upper bound
of the sequence (xyiz)i∈N, where y0 = 1 and yi+1 = yyi. In presence of the other laws,
star-continuity is equivalent to the following implication:

∀xyzt, (∀i ∈ N, xyiz ≤ t)⇒ xy∗z ≤ t .

We write KA∗ � e = f when the equality e = f holds in all star-continuous Kleene algebras.
Formal languages form a star-continuous Kleene algebra, and so by completeness of Kleene
algebra w.r.t. rational languages, we have KA∗ � e = f iff KA � e = f ; this is the triangle
on the left in Fig. 1.

An action lattice is a Kleene algebra with three additional binary operations, left and
right residuals (\, /), and meet (∩) defined by the following equivalences:

∀xyz, y ≤ x\z ⇔ xy ≤ z ⇔ x ≤ z/y ∀xyz, z ≤ x ∩ y ⇔ z ≤ x ∧ z ≤ y

An action algebra is an action algebra with residuals only, a Kleene lattice is a Kleene algebra
with meets only. We extend regular expressions accordingly, writing AL � e = f when the
equation e = f holds in all action lattices, and AL∗ � e = f when it holds in all star
continous action lattices.

Notice that, while rational languages are closed under residuals and intersection, thus
forming an action lattice, they are not the ‘free’ one: Thm. 1 fails. The equational theories
generated by all action lattices and by the star-continuous ones actually differ, cf. [6, 26].

3 The sequent system LKA

A sequent is an expression Γ→ e, where Γ is a list of regular expressions and e is a regular
expression. For such a sequent we refer to Γ as the antecedent and e as the succedent, or
simply the ‘left’ and ‘right’ hand sides, respectively. We say that a sequent e1, . . . , en → e
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Figure 3 The rules of LKA.

is valid if KA∗ � e1 · · · · · en ≤ e. i.e., the comma is interpreted as sequential composition,
and the sequent arrow as containment. We may refer to expressions as ‘formulae’ when it
is more natural proof theoretic terminology, e.g.‘subformula’ or ‘principal formula’.

The rules of LKA are given in Fig. 3. We call LKA− the subset of LKA where the
cut rule is omitted, which corresponds to the version of LKA discussed in [8]. Leaving the
∗-rules aside, these rules are those of the non-commutative variant of intuitionistic linear
logic [13], restricted to the following connectives: multiplicative conjunction (·), additive
disjunction (+) and additive falsity (0) (for which there is no right rule). The rules for
Kleene star can be understood as those arising from the characterisation of e∗ as a fixed
point: e∗ = µx.(1 + ex). In contrast, Palka [26] follows the alternative interpretation of
Kleene star as an infinite sum, e∗ = Σiei, whence her left rule for Kleene star with infinitely
many premisses, and the infinitely many right rules she uses for this operation.

As announced before, we allow infinitely deep proofs; we however need to impose a
validity criterion to make sure derivations remain sound.

I Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of {0, 1}∗. A
preproof is a labelling π of a tree by sequents such that, for every node v with children

v1, . . . vn (n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance of an LKA rule. A

preproof is regular if it has finitely many distinct subtrees, i.e. it can be expressed as the
infinite unfolding of a finite graph. A preproof is cut-free if it does not use the cut-rule.

We will use standard proof theoretic terminology about principal formulas and ancestry in
proofs, e.g. from [5].

I Definition 3. A thread is a maximal path through the graph of (immediate) ancestry in a
preproof. By definition it must start at a conclusion formula or at a cut formula and it only
goes upwards. A thread is valid if it is principal for a ∗-l step infinitely often. A preproof
is valid if every infinite branch eventually has a valid thread. A proof is a valid preproof.
We write LKA `∞ Γ→ e if the sequent Γ→ e admits a proof, LKA `ω Γ→ e if it admits a
regular proof, and LKA− `∞ Γ→ e if it admits a cut-free proof.

Notice that every valid thread eventually follows a unique (star) formula, by the subformula
property.

Let us consider some examples of (pre)proofs. In all cases, we will use the symbol • to
indicate circularities, colours to highlight some of the threads, and double lines to denote
finite derivations.

I Example 4. Here is a regular and cut-free proof of (b+ c)∗ → (c+ b)∗:



∗-r1
→ (c+ b)∗

b+ c→ c+ b

...
∗-l •

(b+ c)∗ → (c+ b)∗
∗-r2

b+ c, (b+ c)∗ → (c+ b)∗
∗-l •

(b+ c)∗ → (c+ b)∗

I Example 5 (Atomicity of identity). As in many common sequent systems, initial identity
steps can be reduced to atomic form, although for this we crucially rely on access to non-
wellfounded (yet regular) proofs. As usual, we proceed by induction on the size of an identity
step, whence the crucial case is for the Kleene star,

∗-r1
→ e∗

IH

e→ e

...
∗-l •
e∗ → e∗

∗-r2
e, e∗ → e∗

∗-l •
e∗ → e∗

where the derivation marked IH is obtained by the inductive hypothesis.

Note that while LKA− satisfies the subformula property, the size and number of sequents
occurring in a cut-free proof is not a priori bounded, due to the ∗-l rule:

I Example 6 (A non-regular proof). The only cut-free proof of the sequent a, a∗ → a∗a is
the one on the left below:

a→ a∗a

a, a→ a∗a

...
∗-l
a, a, a, a∗ → a∗a

∗-l
a, a, a∗ → a∗a

∗-l
a, a∗ → a∗a

a→ a∗a

∗-l •
a, a∗ → a∗a a, a∗a→ a∗a

cut
a, a, a∗ → a∗a

∗-l •
a, a∗ → a∗a

This proof contains all sequents of the form a, . . . , a, a∗ → a∗a, whence non-regularity. A
regular proof with cuts is given on the right; see [8] for more details on the lack of regularity
in LKA− and how to recover regularity in a cut-free setting, using ‘hypersequents’.

I Example 7 (Two invalid preproofs). The following preproofs are not valid; they derive
invalid sequents.

1-r
→ 1

...
∗-r2 •

a→ 1∗
∗-r2 •

a→ 1∗ → b∗

id
a→ a

id
a∗ → a∗

∗-r2
a, a∗ → a∗

...
∗-l •
a∗ → b∗

cut
a, a∗ → b∗

∗-l •
a∗ → b∗

On the right-hand side, note that the principal formula of the ∗-l-rule is the cut formula of
the cut-rule so that the only infinite thread is the one along the occurrences of b∗, and this
formula is never principal for a ∗-l step.

The notion of validity we use here actually generalises the notion of fairness we used in [8],
where we were working only with cut-free preproofs:

I Proposition 8. A cut-free preproof is valid if and only if it is fair for ∗-l, i.e. every infinite
branch contains infinitely many occurrences of ∗-l.

Proof. The direct implication is immediate. Conversely, every infinite path in a fair cut-free
preproof has infinitely many ∗-l steps, and their principal formulas are finitely many by the
subformula property. One can thus extract a valid thread. J



An even simpler criterion for cut-free preproofs is obtained as follows:

I Proposition 9. Let π be a cut-free preproof. If the the antecedent of the left premiss of
every ∗-r2 step is non-empty, then π is valid.

Proof. See App. C. J

Observe that the proof on the left in Ex. 7 does not satisfy this condition.
The cut-free system LKA− is sound and complete for Kleene algebras. Thanks to Krob

and Kozen’s completeness theorem for Kleene algebras (the triangle on the left in Fig. 1),
it suffices to prove soundness with respect to star-continuous Kleene algebra.

I Theorem 10 (Soundness). If LKA− `∞ e1, . . . , en → e, then KA∗ � e1 · · · · · en ≤ e.

Proof sketch. Note that finite derivations in LKA are easily proven sound; the difficulty
consists in handling infinite derivations. The proof follows the same strategy as the one given
in [8] for the hypersequent system HKA. We proceed by induction on the multiset of the
star heights of the formulas in the antecedent, relying on star-continuity and the following
lemma for ∗-l-steps.

If LKA− `∞ Γ, e∗,∆→ f then, for all n ∈ N, LKA− `∞ Γ, en,∆→ f .1

See App. A for a detailed proof. J

For completeness of LKA−, we can get a direct proof by starting from the free model of
rational languages (Fig. 1). This strategy is no longer possible for action algebras and
lattices, for which we will need to go through cut-elimination.

I Theorem 11 (Completeness). If L(e1 · · · · · en) ⊆ L(e) then LKA− `∞ e1, . . . , en → e.

Proof sketch. Again this can be proved like in [8] for HKA: all left rules of LKA− are
invertible so that they can be applied greedily; doing so, one obtain an infinite tree whose
leaves are sequents of the shape a1, . . . , ak → e, with k ≥ 0, where a1 . . . ak is a word in
L(e1 · · · · · en) and thus in L(e) by assumption. Those leaves can be replaced by finite
derivations using only right rules. See App. B for a detailed proof. J

The previous proof builds infinite and non-regular derivations whenever the language of the
starting antecedent is infinite. For instance, it would yield the proof given on the left in
Ex. 6. By using a different technique, we show in the following theorem, that we can get
regular proofs if we allow the cut-rule.

I Theorem 12 (Regular completeness). If KA � e ≤ f then LKA `ω e→ f .

Proof. We prove the statement for equalities. Consider the relation ≡ defined by e ≡ f if
LKA `ω e → f and LKA `ω f → e. This relation is an equivalence on regular expressions
thanks to the cut rule, and it is easily shown to be preserved by all contexts (i.e. it is a
congruence). Also remark that we have e + f ≡ f iff LKA `ω e → f , thanks to the cut-
rule and the rules about sum. It then suffices to show that regular expressions quotiented
by ≡ form a Kleene algebra, thanks to soundness, Thm. 10. The (in)equational axioms
defining KA can be proved by finite derivations. The only difficulty is in dealing with the
two implications (b) and (c) from the definition of Kleene algebra. We implement them as
follows:

1 Where e0 = 1 and en+1 = e · en.



id
f → f

...
∗-l •
e∗, f → f

IH

e, f → f
cut

e, e∗, f → f
∗-l •

e∗, f → f

id
f → f

IH

f, e→ f

...
∗-l •
f, e∗ → f

cut
f, e, e∗ → f

∗-l •
f, e∗ → f

where the derivations marked IH are already obtained from the inductive hypothesis. The
preproofs we construct in this way are valid and regular, by inspection. In particular, for
the derivations above corresponding to (b) and (c), the only infinite branch not in IH has a
valid thread on e∗, coloured green above. J

Note the asymmetry when we interpret the implications (b) and (c): the premisses of the
cut rule are swapped when we move from one to the other. This asymmetry comes from the
fact that we have a single left rule for Kleene star, which unfolds the star from the left.

4 Cut-elimination for LKA

This section is devoted to proving the following cut-elimination theorem.

I Theorem 13. If LKA `∞ Γ→ e then LKA− `∞ Γ→ e.

Combined with Thm. 10, it establishes the soundness of our criterion for proofs with cuts.
This serves as a ‘warm-up’ for the analogous result for action lattices, in Sect. 6, where the
proof is considerably more technical, although follows a similar template.

It will be useful to consider proofs as certain transducers, transforming parse-trees of
input words of languages computed by terms. This leads to the notion of a ‘run’ that
allows us to identify finite parts of proofs that are later used as certain invariants during
the cut-elimination argument.

We do not give full proofs here but further details may be found in App. C.

4.1 Programs from proofs
We first define programs and their reduction semantics, based on which we prove cut-
elimination, in Sect. 4.2.

I Definition 14 (Programs). Programs are defined by the following syntax, where x ranges
over countable set of variables, i ranges over 1, 2, and π ranges over (valid) LKA proofs.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | π[ ~M ]

Intuitively, programs compute parse-trees for words belonging to the language of an expres-
sion. Given a proof π of the sequent Γ → e, the last entry corresponds to the application
of π to a list ~M of programs for the antecedent (Γ); it should eventually return a parse-tree
for the succedent (e). This is formalised using the following notion of types.

I Definition 15 (Types). A typing environment, written E, is a list of pairs of variables and
expressions, written x : e. We say that a program M has type e in environment E, written
E `M : e if this judgement can be derived from the rules in Fig. 4.

Note that the type system is linear; this is crucial for handling residuals in Sect. 5.



x : e ` x : e ` ? : 1
E `M : e F ` N : f
E, F ` 〈M,N〉 : ef

E `M : ei
E ` iniM : e1 + e2 ` [] : e∗

E `M : e E′ ` N : e∗

E,E′ `M :: N : e∗
π ends with e1, . . . , en → f ∀i, Ei `Mi : ei

~E ` π[ ~M ] : f

Figure 4 Typing rules for programs.

I Observation 16. Let x1, . . . , xn be variables. We have a1 . . . an ∈ L(e) iff there exists a
ground program M (i.e. without proof symbols π) such that x1 : a1, . . . , xn : an ` M : e.
This observation actually also holds for non-ground programs a posteriori, as a consequence
of soundness (Thm. 10) and cut-elimination (Thm. 13 below).
Also note that one can always provide trivial arguments to a given proof:
I Observation 17. For every proof π of e1, . . . , en → f , we have x1 : e1, . . . , xn : en ` π[~x] : f .

I Definition 18 (Reduction). Reduction, written  , is the closure under all contexts of the
following rules based on the last step of a proof π. Those rules are written concisely for lack
of space; in each case, π′ and π′′ denote the premisses (when they exist), ordered from left
to right. We moreover assume that the sizes of the vectors match those that arise from the
various rules. See App. E for an extensive definition.

id: π[M ] M .
cut: π[ ~M, ~N, ~P ] π′′[ ~M, π′[ ~N ], ~P ].
1-r: π[] ?.
·-r: π[ ~M, ~N ] 〈π′[ ~M ], π′′[ ~N ]〉.
+-ri: π[ ~M ] ini(π′[ ~M ]).
∗-r1: π[] [].
∗-r2: π[ ~M, ~N ] π′[ ~M ] :: π′′[ ~N ].
1-l: π[ ~M, ?, ~N ] π′[ ~M, ~N ].
·-l: π[ ~M, 〈M,N〉, ~N ] π′[ ~M,M,N, ~N ].
+-l: π[ ~M, in1M, ~N ] π′[ ~M,M, ~N ] and π[ ~M, in2M, ~N ] π′′[ ~M,M, ~N ].
∗-l: π[ ~M, [], ~N ] π′[ ~M, [], ~N ] and π[ ~M,M :: N, ~N ] π′′[ ~M,M,N, ~N ].

Notice that the proofs appearing in a reduct of a program are all subproofs of the proofs
already appearing in that program. As one might expect, we have subject reduction:

I Proposition 19 (Subject reduction). If E `M : e and M  N , then E ` N : e.

For the sake of simplicity, we assume in the sequel the following (weak) reduction strategy:
the second reduction rule for ∗-l is applicable only once M and N are irreducible.

I Definition 20 (Supports and runs). The support of a program M is the set of proofs
appearing as subterms of any program reachable fromM by a sequence of reductions. If the
proofs occurring in M are subproofs of some global proof π, the run of M is the subgraph
of π induced by the conclusions of proofs in the support of M .

The following result is the key observation:

I Proposition 21. If E `M : e, for some evironment E and expression e, then the support
(and so also the run) of M is finite.



Proof sketch. First observe that the run of M has finitely many connected components.
Then suppose by contradiction that the run of M is not finite. By König’s Lemma one
can extract an infinite branch through the run and thus, by validity, a thread along a star
formula e∗ which is infinitely often principal. By analysis of the reduction rules, we find a
sequence of programs of type e∗ whose sizes are strictly decreasing, which is impossible. J

Although this is not needed, one could also prove that reductions from well-typed programs
are strongly normalising.

4.2 Cut reduction: production of cut-free prefixes
Our cut-elimination argument will be driven by a standard set of cut reduction rules, which
we do not have space to present in the main text. These include key and commutative cases,
as usual, and are fully presented in App. D.

To produce an infinite cut-free proof, we must show that we may produce arbitrarily large
cut-free proofs in a continuous manner. One issue here is to show that such a procedure is
productive, i.e., eventually produces non-cut steps. To this end we use the following notion
of run and we show that they are in some sense ‘preserved’ by cut-reduction:

I Definition 22 (Bar). A bar in a proof π is a set B of sequents that conclude disjoint
subproofs of π, such that every infinite branch of π intersects B.

Notice that, by definition, a bar must be finite.

I Lemma 23 (Cut-reduction lemma). For any proof π with a designated bar B, there is
a proof π′ of the same conclusion with a designated bar B′ under which it is cut-free and
satisfies the condition of Prop. 9 for ∗-r2 rules. Furthermore, appealing to Obs. 17, if the
run of π[~x] lies below B in π, then the run of π′[~x] lies below B′ in π′.

Proof sketch. First remove all the (useless) instances of rule ∗-r2 below the bar that do not
satisfy the condition, by using directly their right premiss. Then proceed by induction on
the multiset of cut degrees underneath bar. By appealing to a sub-induction on the distance
of a cut step from the bar, we may operate on a topmost cut step to reduce this measure
by applying cut reduction steps from App. D. For instance, one interesting case is the key
∗-cut reduction:

πe

∆→ e

πe∗

Σ→ e∗
∗-r2 ∆,Σ→ e∗

π1
f

Γ,Π→ f

π+
f

Γ, e, e∗,Π→ f
∗-l

Γ, e∗,Π→ f
cut

Γ,∆,Σ,Π→ f

7→ πe

∆→ e

πe∗

Σ→ e∗

π+
f

Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f

Here we must apply the sub-inductive hypothesis to the remaining e∗ cut. Notice that any
run on the left can have no branch through π1

f , by construction, and so is indeed preserved
on the right. In this case its size has decreased, and B′ is defined by restricting B to the
subproofs πe, πe∗ and π+

f . J

We can now prove cut-elimination.

Proof sketch of Thm. 13. We show that we can define cut-free prefixes of proofs under
arbitrarily high bars. Given a bar bounding a cut-free prefix of a proof, consider a sequent
in the bar concluding some subproof π ending in a cut-step (in the worst case). Choose
any new bar above the run of π[~x] and apply Lemma 23 above to produce a proof with a



bar under which it is cut-free and contains the run. By definition of runs, we must have
added some non-cut steps beneath the bar, and so we have defined a larger cut-free prefix,
as required. Finally, the preproof at the limit of this construction satisfies the condition of
Prop. 9 (since it is a local condition), so it must be valid. J

5 Action algebras, Kleene lattices, and action lattices

We now consider extensions of Kleene algebra by residuals and meets, as axiomatised in [28]
and [19]. We first extend the system LKA with the following rules, which are standard from
substructural logic [25, 12], writing LAL for the corresponding system.

∆→ e Γ, f,Σ→ g
\-l

Γ,∆, e\f,Σ→ g

∆→ e Γ, f,Σ→ g
/-l

Γ, f/e,∆,Σ→ g

Γ, ei,∆→ f
∩-li i ∈ {1, 2}

Γ, e1 ∩ e2,∆→ f

e,Γ→ f
\-r

Γ→ e\f
Γ, e→ f

/-r
Γ→ f/e

Γ→ e Γ→ f
∩-r

Γ→ e ∩ f

We define judgements as previously. Unless stated explicitly, the results below also hold for
action algebras and Kleene lattices using the appropriate fragment of LAL.

To prove soundness w.r.t. star-continuous models, we need to slightly refine the measure
we use, to take negative occurrences of star in the succedent into account.

I Theorem 24 (Soundness). If LAL− `∞ e1, . . . , en → e, then AL∗ � e1 · · · · · en ≤ e.

Proof sketch. The proof is similar to that for star-continuous Kleene algebra, Thm. 10,
only when defining the multiset measure we must take into account star sub-expressions
that occur in negative context, even on the right, due to the presence of residuals. A
detailed proof is given in App. A. J

As announced in the Introduction, regular proofs are sound for all (non-necessarily star-
continuous) action lattices. We prove it using proof-theoretical arguments to translate every
regular proof into an inductive proof from the axioms of action lattices. We crucially rely on
the presence of both residuals and intersection to compute invariants for Kleene stars here,
so that our proof does not immediately carry over to action algebras and Kleene lattices.

I Theorem 25 (Regular soundness). If LAL `ω e1, · · · , en → f then AL � e1 · · · · · en ≤ f .

Proof. We prove the statement for all regular proofs in *-normal form, where every back-
pointer points to a ∗-l-step. We proceed by induction on the number of simple cycles in such
a proof π. W.l.o.g., suppose that π ends with a ∗-l step that is the target of a backpointer,
and colour in red all ancestors of its principal formula that are the same expression, e∗. Let
{Γi, e∗,∆i → fi}i∈I be the set of all sequents in π with e∗ principal (thus for a ∗-l step)
and let (πli : Γi,∆i → fi)i∈I and (πri : Γi, e, e∗,∆i → fi)i∈I be the set of subproofs rooted
at their left and right premisses, respectively.

Define expressions gi =
∏

Γi, di =
∏

∆i, hi = (gi\fi)/di, and h =
⋂
i∈I hi. For i ∈ I,

construct proofs πr ′i from πri by replacing each e∗ by h, modifying critical steps as follows:

Γj ,∆j → fj Γj , e, e∗,∆j → fj
∗-l

Γj , e∗,∆j → fj
7→

·-r
∆j → dj

·-r
Γj → gj fj → fj

\-l
Γj , gj\fj → fj

/-l
Γj , hj ,∆j → fj

∩-l
Γj , h,∆j → fj


ρj



Note that the proofs πli and πr ′i have fewer simple cycles than π, so that by induction
hypothesis we have that gidi ≤ fi and giehdi ≤ fi hold universally in action lattices, for
all i ∈ I. From those we deduce 1 ≤ h and eh ≤ h using the laws about residuals and
conjunction. Thus we have e∗ ≤ h by star induction (b). Finally note that following the
above proof ρj we have in action lattices that gjhdj ≤ fj and thus gje∗dj ≤ fj . We conclude
by choosing j such that (Γj ,∆j , fj) = (Γ,∆, f). J

Although we cannot have a counterpart to Thm. 11, the regular fragment of LAL is indeed
complete in the presence of cut for action lattices.

I Theorem 26 (Regular completeness). If AL � e ≤ f then LAL `ω e→ f .

Proof. The axioms defining meet and residual immediately translate to finite derivations in
LAL, one can thus extend the proof of Thm. 12. J

Note that the regular fragment cannot be complete for star continuous models: a regular
proof is a finite verifiable object and the equational theory of star-continuous action lattices
is Π0

1-complete [6]. The full system of non-wellfounded proofs is however complete for star-
continuous models:

I Theorem 27 (Star-continuous completeness). If AL∗ � e ≤ f then LAL `∞ e→ f .

Proof. As for Thms. 12 and 26, consider the relation ≡′ defined by e ≡′ f if LAL `∞ e→ f

and LAL `∞ f → e. Expressions quotiented by this slightly larger relation also form an
action lattice, which we prove star-continuous using the natural simulation of an ω-rule for
Kleene star: combine proofs (πi)i∈N of the sequents (Γ, ei,∆→ f)i∈N as follows:

π0

Γ, e,∆→ f

π1

Γ, e, e,∆→ f

π2

Γ, e, e,∆→ f . .
.

∗-l
Γ, e, e, e∗,∆→ f

∗-l
Γ, e, e∗,∆→ f

∗-l
Γ, e∗,∆→ f

J

The remaining property to establish is cut-elimination: combined with Thm. 24 it gives
soundness of the system with cut w.r.t. star-continuous models, and combined with Thm. 27
it gives completeness of LAL− w.r.t. those models.

6 Cut-elimination in LAL

The main alteration to the proof for Kleene algebra is that we need a more sophisticated
notion of parse-trees and programs. For this we associate with a residual a functional that
transforms (generalised) parse-trees appropriately. Meets are easier to handle: a parse-tree
for e ∩ f is given by a parse-tree for e and another one for f .

We first extend the syntax of programs (Dfn. 14) to include λ-abstractions, which will
be used for residuals. We do not add anything for meets since we can reuse tuples.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | π[ ~M ] | λx.M

The type system (Fig. 4) is extended by the following rules:

x : e, E `M : f
E ` λx.M : e\f

E, x : e `M : f
E ` λx.M : f/e

E `M : e E ` N : f
E ` 〈M,N〉 : e ∩ f



I Lemma 28 (Substitution lemma). If F, x : e, F ′ ` M : f and E ` N : e then we have
F,E, F ′ `M{N/x} : f , where M{N/x} is M with occurrences of x substituted by N .2

The following reductions are added, using the same conventions as in Dfn. 18:

∩-r: π[ ~M ] 〈π′[ ~M ], π′′[ ~M ]〉.
∩-li: π[ ~M, 〈M1,M2〉, ~N ] π′[ ~M,Mi, ~N ].
\-r: π[ ~M ] λx.π′[x, ~M ].
\-l: π[ ~M, ~N, λx.F, ~P ] π′′[ ~M,F{π′[ ~N ]/x}, ~P ].
/-r: π[ ~M ] λx.π′[ ~M, x].
/-l: π[ ~M, λx.F, ~N, ~P ] π′′[ ~M,F{π′[ ~N ]/x}, ~P ].

Props. 19 and 21, still hold in this setting (see App. C), so that it remains to show that cuts
can be removed from finite proofs while preserving runs (Lem. 23). Here is the key meet
case:

π1

∆→ e1

π2

∆→ e2
∩-r

∆→ e1 ∩ e2

π

Γ, ei,Σ→ f
∩-li Γ, e1 ∩ e2,Σ→ f

cut
Γ,∆,Σ→ f

7→
πi

∆→ ei

π

Γ, ei,Σ→ f
cut

Γ,∆,Σ→ f

This reduction reduces the size of a run by throwing away the decomposition information
from one of the branches, and so the bar B′ is just the restriction of B to π and πi. This is
a dual phenomenon to the key case for +.

Here is the key left residual case:

π

e,∆→ f
\-r

∆→ e\f

πe

Γ2 → e

πf

Γ1, f,Σ→ g
\-l

Γ1,Γ2, e\f,Σ→ g
cut

Γ1,Γ2,∆,Σ→ g

7→ πe

Γ2 → e

π

e,∆→ f

πf

Γ1, f,Σ→ g
cut

Γ1, e,∆,Σ→ g
cut

Γ1,Γ2,∆,Σ→ g

This reduction again reduces the size of runs by directly composing the associated runs
rather than first abstracting and Currying. In this case, we may simply preserve the same
bounding bar.

The other cases can be found in App. D. After arriving at this generalised form of
Lem. 23, the rest of the proof follows the same template as Thm. 13.

I Theorem 29 (Cut elimination). If LAL `∞ Γ→ e then LAL− `∞ Γ→ e.

One useful application of this cut-elimination result is the following alternative proof of
Palka’s result that the equational theory of star-continuous action lattices is co-recursively-
enumerable, by proof search.

I Corollary 30 (Palka [26]). AL∗ is in Π0
1.

Proof sketch. We say that a sequent Γ→ d has a d-derivation, for d ∈ N, if there is a LAL−

derivation ending in Γ→ e for which each branch has length d, or otherwise terminates at a
correct initial sequent in length < d. To avoid validity issues, we assume that the derivation

2 Formally speaking, those occurrences that are selected by the typing derivation of M .



must satisfy the side-condition on ∗-r2 steps from Prop. 9, that the left premiss has nonempty
antecedent, so that all preproofs become valid without sacrificing provability.

We define a Π0
1 predicate Prov(Γ → e) as ∀d ∈ N.“there is a d-derivation of Γ → e”.

Notice that this is indeed Π0
1 since the size of a d-derivation is exponentially bounded.

Furthermore, if Prov(Γ → e) then, by the infinite pigeonhole principle, we may in fact
recover an infinite proof of Γ → e, by inductively choosing premisses resulting in larger
derivations that nonetheless prefix infinitely many d-derivations. J

7 Conclusions

We presented a simple sequent system LKA that admits non-wellfounded proofs and showed
it to be sound and complete for Kleene algebra, KA, by consideration of the free model of
rational languages. We showed that its regular fragment is already complete, in the presence
of cut, by a direct simulation of KA. We also gave a cut-elimination result for LKA, obtaining
an alternative proof of completeness of its cut-free fragment.

We were able to generalise these arguments to an extended system LAL of Kleene al-
gebras with residuals and meets, resulting in a sound and complete cut-free system for
the equational theory of star-continuous action lattices, AL∗. Thanks to the sub-formula
property in cut-free proofs, this also gives us proof-theoretical characterisations for star-
continuous action algebras and Kleene lattices, and conservativity of AL∗ over those two
theories. Furthermore, this gives rise to an alternative proof of Palka’s result that AL∗ and
its fragments are in Π0

1.
Finally, we characterised the theory of all action lattices by just the regular proofs of

LAL. Wether the equational theory of action lattices is decidable remains open: despite
regularity, our characterisation does not allow for a proof search algorithm due to the need
for the cut rule. It would be interesting to see if techniques such as interpolants for our LAL
could yield decidability.

It would be natural to consider systems which are commutative and/or contain arbitrary
fixed points, bringing the subject matter closer to that of [9]. We would however not be
able to arrive at a similar sub-formula property once fixed point formulae are allowed to
contain meets and residuals, since this property is essentially thanks to the presence of only
‘positive’ connectives in KA, from the point of view of focussing [2].
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A Soundness of LAL without cut w.r.t. star continuous models

We give here a detailed proof for Thms. 10 and 24: soundness of cut-free proofs w.r.t.
star continuous models. The proofs are independent from the considered fragment (Kleene
algebra, action algebra, action lattices) thanks to the sub-formula property.

I Observation 31. Every rule of LAL is sound (for Kleene algebra, action algebra, or action
lattices depending on the connectives it mentions): if its premisses are valid then so is its
conclusion.

We first prove the lemma mentioned in the proof sketch we gave for Thm. 10.

I Lemma 32. If LAL− `∞ Γ, e∗,∆→ f then, for each n ∈ N, LAL− `∞ Γ, en,∆→ f .

Proof. We define appropriate preproofs from by induction on n. Replace every direct an-
cestor of e∗ by en, adjusting origins as follows,

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
7→

Γ,∆→ f
1-l

Γ, 1,∆→ f
or

Γ, e, en−1,∆→ f
·-l

Γ, en,∆→ f

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive hypothesis.
Notice that, on branches where e∗ is never principal, this is simply a substitution of en

for e∗ everywhere along the branch. The preproof resulting from this entire construction is
fair since every infinite branch will share a tail with the proof we began with. J

Now we formally define the measure on sequents which allows us to prove soundness of
infinite proofs by induction.

I Definition 33 (Weight of a sequent). The two functions h∗+ and h∗− from expressions to
natural numbers, are defined by mutual recursion:

h∗s(0) = h∗s(1) = h∗s(a) = 0
h∗s(e · f) = h∗s(e+ f) = h∗s(e ∩ f) = max(h∗s(e), h∗s(f))
h∗s(e\f) = h∗s(f/e) = max(h∗−s(e), h∗s(f))
h∗−(e∗) = h∗−(e) + 1
h∗+(e∗) = h∗+(e)

The weight of a sequent is the multiset wh∗(e1, . . . , en → f) = {h∗−(e1), . . . , h∗−(en), h∗+(f)}.

When e is a regular expression (without residuals or intersection), h∗+(e) = 0 and h∗−(e)
is the star height of the expression e, i.e., the maximum nesting of ∗ in its term tree. In
presence of residuals, h∗− (resp. h∗+) counts the maximum nesting of ∗ appearing in positive
(resp. negative) position.

I Observation 34. For every rule of LAL− except ∗-l, the antecedent of each premiss has
weight bounded by that of the conclusion.

We can now prove our soundness result:

Proof of Thms. 10 and 24. Let π be an LAL− proof of Σ → e and let us proceed by
induction on the weight of its conclusion. For each infinite branch of π take the least ∗-l
step that occurs and notice that their conclusions, together with any initial sequents in π,
form a bar B through the infinite tree of π. Since π labels a binary tree, the prefix closure
of B must be finite by König’s Lemma. By using Obs. 31 a finite number of times, it thus
suffices to show that every sequent in B is valid.



Let us consider a subproof π′ that derives a sequent in B. If it is initial then it is
necessarily valid; otherwise it must derive a sequent Γ, f∗,∆→ g with a distinguished star-
expression which is principal for the concluding ∗-l-step of π′. By construction and Obs. 34
notice that wh∗(Γ, f∗,∆ → g) ≤ wh∗(Σ → e). Now, by Lem. 32, π′ can be transformed
into proofs π′n of Γ, fn,∆ → g for each n ∈ N. Each π′n derives a sequent whose weight is
strictly smaller than that of Σ → e, and so is sound by the inductive hypothesis. Finally,
this means that Γ, f∗,∆→ g is valid, by star-continuity. J

B Completeness of LKA without cut for Kleene algebra

I Observation 35. All left rules of LKA− are (weakly) invertible: the validity of their con-
clusion implies the validity of all their premisses.

I Lemma 36. If a1 . . . an is a word in L(e) for some expression e, then there is a finite
proof of the sequent a1, . . . , an → e using only right logical rules.

Proof. By a straightforward induction on e. J

Proof of Thm. 11. Suppose L(e1 · · · · · en) ⊆ L(e). We construct an LKA− proof of
e1, · · · , en → e bottom-up, by first apply left-rules forever. By invertibility every sequent
encountered will be valid, although this will not necessarily terminate due to ∗-l. Notice,
however that we obtain fairness, since any infinite branch of only left rules must contain ∗-l
infinitely often.

The branches which terminate to a normal form have leaves of the form a1, . . . , an → e.
Since such a leaf must be valid, we have a1 . . . an ∈ L(()e) and we can replace this leaf by a
finite proof using Lem. 36. J

C Proofs for the cut-elimination arguments of Sects. 4 and 6

Here we present some further proof details of the intermediate results required for cut-
elimination, all formulated for the general LAL case, as required in Sect. 6.

We first prove Prop. 9, which we need to assess the validity of the proofs produced by
cut-elimination: every cut-free preproof such that the antecedent of the left premiss of every
∗-r2 rule is non-empty is valid.

Proof of Prop. 9. Let the size of a sequent Γ→ e be the multiset of the sizes of e and the
formulas in Γ. By Prop. 8 it suffices to show that π is fair. Suppose by contradiction it
contains an infinite branch containing only finitely many ∗-l step. We get a contradiction by
observing that bottom-up, from the point where this branch no longer contains any ∗-l step,
the size of the sequents strictly decreases. (The only interesting case is the ∗-r2 rule, for
which we know that ∆ → e∗ is smaller than Γ,∆ → e∗ thanks to the condition we impose
on this rule.) J

Now we establish the basic properties of the type system for programs: substitution
lemma and subject reduction. We use the following notation:
I Notation 37. We write ~E ` ~M : Γ when Γ has the same length as ~E and ~M and for all i,
we have Ei `Mi : Γi.

Proof sketch for Lemma 28. Given the typing derivation for F, x : e, F ′ ` M : f , replace
every ancestor of x : e on the left by E and every ancestor of x inM by N . The only critical
case is the initial step, which can simply be replaced by a typing derivation for E ` N : e. J



Proof sketch of Prop. 19. We argue by induction on the structure of a typing derivation for
E `M : e. If the reduction takes place under a context, we use the induction hypothesis and
the substitution lemma. Otherwise, it suffices to conduct a ‘last step analysis’, extracting the
immediate subderivations to form a new typing derivation for E ` N : e. Some interesting
cases are the following:

cut : π[ ~M, ~N, ~P ] π′′[ ~M, π′[ ~N ], ~P ]. A typing derivation for the LHS has the form on
the left below, so we recover a typing derivation for the RHS on the right below.

~E ` ~M : Γ ~F ` ~N : ∆ ~G ` ~P : Σ
~E, ~F , ~G ` π[ ~M, ~N, ~P ] : f

~E ` ~M : Γ

~F ` ~N : ∆
~F ` π′[ ~N ] : e ~G ` ~P : Σ

~E, ~F , ~G ` π′′[ ~M, ~N, ~P ] : f

\-l : π[ ~M, ~N, λx.P, ~Q]. A typing derivation for the LHS has the following form,

~E ` ~M : Γ ~F ` ~N : ∆
x : e, ~G ` P : f
~G ` λx.P : e\f ~H ` ~Q : Σ

~E, ~F , ~G, ~H ` π[ ~M, ~N, λx.P, ~Q] : g

so we recover a typing derivation for the RHS as,

~E ` ~M : Γ

~F ` ~N : ∆
~F ` π′[ ~N ] : e x : e, ~G ` P : f

subst
~F , ~G ` P{π′[N ]/x} : f ~H ` ~Q : Σ

~E, ~F , ~G, ~H ` π′′[ ~M,P{π′[ ~N ]/x}, ~Q] : g

where we mark by subst an application of the substitution lemma. The case of /-l is
similar.
\-r : π[ ~M ]  λx.π′[x, ~M ]. A typing derivation for the LHS has the form on the left
below, so we recover a typing derivation for the RHS on the right below.

~E ` ~M : Γ
~E ` π[ ~M ] : e\f

x : e ` x : e ~E ` ~M : Γ
x : e, ~E ` π′[x,M ] : f
~E ` λx.π′[x,M ] : e\f

The case of /-r is similar. J

We now show that the support of a program is finite (Prop. 21). We need the following
intermediate result.

I Proposition 38 (Connectedness). Runs have only finitely many connected components.

Proof. Notice that any term M has only finitely many proofs occurring in it, say k; we
show by induction on a reduction sequence from M  ∗ N that N has at most k connected
components. For each reduction step N  N ′, N ′ may only contain proofs that either
already occur in N or are immediate subproofs of those already occurring in N . Thus the
number of connected components cannot increase. J

Proof of Prop. 21. Suppose otherwise, and let M be a program whose run ρ is infinite.
Since runs have only finitely many connected components, ρ must contain an infinite branch,



along which there must be a valid thread (since ρ is a subgraph of the valid proof π). Let
Γi, e∗,∆i → fi be this infinite branch, with the valid thread on e∗, and πi be the associated
subproofs. By assumption, we have that M  ∗ Ci[πi[ ~Mi, Ni, ~Pi]] for some Ci, ~Mi, Ni, ~Pi
well-typed and with Ni irreducible, due to the evaluation strategy (i.e. the next step would
be ∗-l on πi). The resulting reduction sequence reduces the size of Ni infinitely often, due
to the fact that the thread on e∗ is valid, which is a contradiction. J

D Cut elimination rules

D.1 Key cases for cut reduction
We give the key cases for cut elimination, when the two cut formulae are principal for a
logical or initial step. Referring to cut-reduction, Lemma 23, all bars are preserved in these
cases due to the definition of a run: the bar cannot cross a key case of a run that it bounds.
Identity:

id
e→ e

π

Γ, e,∆→ f
cut

Γ, e,∆→ f

7→ π

Γ, e,∆→ f

Product:

πe

∆→ e

πf

Σ→ f
·-r

∆,Σ→ ef

πg

Γ, e, f,Π→ g
·-l

Γ, ef,Π→ g
cut

Γ,∆,Σ,Π→ g

7→ πe

∆→ e

πf

Σ→ f

πg

Γ, e, f,Π→ g
cut

Γ, e,Σ,Π→ g
cut

Γ,∆,Σ,Π→ g

Sum:

πi

∆→ ei
+-ri ∆→ e1 + e2

π1
f

Γ, e1,Σ→ f

π2
f

Γ, e2,Σ→ f
+-l

Γ, e1 + e2,Σ→ f
cut

Γ,∆,Σ→ f

7→
πi

∆→ ei

πi
f

Γ, ei,Σ→ f
cut

Γ,∆,Σ→ f

Kleene star:

∗-r1 → e∗

π1
f

Γ,∆→ f

π+
f

Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
cut

Γ,∆→ f

7→ π1
f

Γ,∆→ f

This case eliminates the e∗ component in the flow graph.
Other Kleene star:

πe

∆→ e

πe∗

Σ→ e∗
∗-r2 ∆,Σ→ e∗

π1
f

Γ,Π→ f

π+
f

Γ, e, e∗,Π→ f
∗-l

Γ, e∗,Π→ f
cut

Γ,∆,Σ,Π→ f

7→ πe

∆→ e

πe∗

Σ→ e∗

π+
f

Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f



One:

1-r
→ 1

π

Γ,∆→ f
1-l

Γ, 1,∆→ f
cut

Γ,∆→ f

7→ π

Γ,∆→ f

Zero has no key case since it does not have any right introduction rule.

Meet:

π1

∆→ e1

π2

∆→ e2
∩-r

∆→ e1 ∩ e2

π

Γ, ei,Σ→ f
∩-li Γ, e1 ∩ e2,Σ→ f

cut
Γ,∆,Σ→ f

7→
πi

∆→ ei

π

Γ, ei,Σ→ f
cut

Γ,∆,Σ→ f

Left residual:

π

e,∆→ f
\-r

∆→ e\f

πe

Γ2 → e

πf

Γ1, f,Σ→ g
\-l

Γ1,Γ2, e\f,Σ→ g
cut

Γ1,Γ2,∆,Σ→ g

7→ πe

Γ2 → e

π

e,∆→ f

πf

Γ1, f,Σ→ g
cut

Γ1, e,∆,Σ→ g
cut

Γ1,Γ2,∆,Σ→ g

Right residual: symmetrical to the left residual

D.2 Commutative cases
We give the commutative cases for cut-elimination, when at least one of the cut formulae is
not principal for a logical step. In these cases, it is possible that the bounding bar is moved
below the cut-step, since the run may lie below the cut after commutation. This is actually
why cut-elimination is productive at all.

Left ·-l:

π1

∆, e, f,Σ→ g
·-l

∆, ef,Σ→ g

π2

Γ, g,Π→ h
cut

Γ,∆, ef,Σ→ h

7→
π1

∆, e, f,Σ→ g

π2

Γ, g,Π→ h
cut

Γ,∆, e, f,Σ→ h
·-l

Γ,∆, ef,Σ→ h

Right ·-l:

π1

Σ→ g

π1

Γ, e, f,∆, g,Π→ h
·-l

Γ, ef,∆, g,Π→ h
cut

Γ, ef,∆,Σ,Π

7→
π1

Σ→ g

π1

Γ, e, f,∆, g,Π→ h
cut

Γ, e, f,∆,Σ,Π→ h
·-l

Γ, ef,∆,Σ,Π→ h



Right ·-r:

π1

∆→ e

π2

Γ, e,Σ1 → f

π3

Σ2 → g
·-r

Γ, e,Σ1,Σ2 → fg
cut

Γ,∆,Σ1,Σ2 → fg

7→
π1

∆→ e

π2

Γ, e,Σ1 → f
cut

Γ,∆,Σ1 → f

π3

Σ2 → g
·-r

Γ,∆,Σ1,Σ2 → fg

(also an analogous case when e appears in the right premiss of ·-r)
Left +-l:

π1

∆, e,Σ→ g

π2

∆, f,Σ→ g
+-l

∆, e+ f,Σ→ g

π3

Γ, g,Π→ h
cut

Γ,∆, e+ f,Σ,Π→ h

7→
π1

∆, e,Σ→ g

π3

Γ, g,Π→ h
cut

Γ,∆, e,Σ,Π→ h

π2

∆, f,Σ→ g

π3

Γ, g,Π→ h
cut

Γ,∆, f,Σ,Π→ h
+-l

Γ,∆, e+ f,Σ,Π→ h

(analogous cases for +-l on the right hand side)
Case for +-ri is simple.
Left ∗-l:

π1

∆,Σ→ f

π2

∆, e, e∗,Σ→ f
∗-l

∆, e∗,Σ→ f

π3

Γ, f,Π→ g
cut

Γ,∆, e∗,Σ,Π→ g

7→
π1

∆,Σ→ f

π3

Γ, f,Π→ g
cut

Γ,∆,Σ,Π→ g

π2

∆, e, e∗,Σ→ f

π3

Γ, f,Π→ g
cut

Γ,∆, e, e∗,Σ,Π→ g
∗-l

Γ,∆, e∗,Σ,Π→ g

(analogous case for ∗-l on the right hand side)
Right ∗-r2:

π1

∆→ e

π2

Γ, e,Σ1 → f

π3

Σ2 → f∗
·-r

Γ, e,Σ1,Σ2 → f∗
cut

Γ,∆,Σ1,Σ2 → f∗

7→
π1

∆→ e

π2

Γ, e,Σ1 → f
cut

Γ,∆,Σ1 → f

π3

Σ2 → f∗
·-r

Γ,∆,Σ1,Σ2 → f∗

(If Γ,∆,Σ1 is empty, just use π3 to satisfy the condition from Prop. 9 we impose on ∗-r2
rules during cut-elimination.)
Other right ∗-r2:

π1

∆→ e

π2

Γ→ f

π3

Σ1, e,Σ2 → f∗
·-r

Γ,Σ1, e,Σ2 → f∗
cut

Γ,Σ1,∆,Σ2 → f∗

7→ π2

Γ→ f

π1

∆→ e

π3

Σ1, e,Σ2 → f∗
cut

Σ1,∆,Σ2 → f∗
·-r

Γ,Σ1,∆,Σ2 → f∗

(Here we know that Γ is non-empty by construction, and preserve the invariant.)
Left ∩-li:



π

∆, ei,Σ→ f
∩-li ∆, e1 ∩ e2,Σ→ f

π′

Γ, f,Π→ g
cut

Γ,∆, e1 ∩ e2,Σ,Π→ g

7→
π

∆, ei,Σ→ f

π′

Γ, f,Π→ g
cut

Γ,∆, ei,Σ,Π→ g
∩-li Γ,∆, e1 ∩ e2,Σ,Π→ g

(analogous case for ∩-li on the right hand side)
Right ∩-r:

π

∆→ f

π1

Γ, f,Σ→ e1

π2

Γ, f,Σ→ e2
∩-r

Γ, f,Σ→ e1 ∩ e2
cut

Γ,∆,Σ→ e1 ∩ e2

7→
π

∆→ f

π1

Γ, f,Σ→ e1
cut

Γ,∆,Σ→ e1

π

∆→ f

π2

Γ, f,Σ→ e2
cut

Γ,∆,Σ→ e1
∩-r

Γ,∆,Σ→ e1 ∩ e2

Left \-l:

πe

∆2 → e

πf

∆1, f,Σ→ g
\-l

∆1,∆2, e\f,Σ→ g

π

Γ, g,Π→ h
cut

Γ,∆1,∆2, e\f,Σ,Π→ h

7→ πe

∆2 → e

πf

∆1, f,Σ→ g

π

Γ, g,Π→ h
cut

Γ,∆1, f,Σ,Π→ h
\-l

Γ,∆1,∆2, e\f,Σ,Π→ h

Right \-l:

π

Γ→ g

πe

∆2, g,∆3 → e

πf

∆1, f,Σ→ h
\-l

∆1,∆2, g,∆3, e\f,Σ→ h
cut

∆1,∆2,Γ,∆3, e\f,Σ,Π→ h

7→
π

Γ→ g

πe

∆2, g,∆3 → e
cut

∆2,Γ,∆3 → e

πf

∆1, f,Σ→ h
\-l

∆1,∆2,Γ,∆3, e\f,Σ→ h

Other right \-l:

π

Γ→ g

πe

∆3 → e

πf

∆1, g,∆2, f,Σ→ h
\-l

∆1, g,∆2,∆3, e\f,Σ→ h
cut

∆1,Γ,∆2,∆3, e\f,Σ,Π→ h

7→ πe

∆3 → e

π

Γ→ g

πf

∆1, g,∆2, f,Σ→ h
cut

∆1,Γ,∆2, f,Σ→ h
\-l

∆1,Γ,∆2,∆3, e\f,Σ→ h

(Last case of a right \-l is similar.)
Right \-r:

π

Γ→ g

π′

e,∆, g,Σ→ f
/-l

∆, g,Σ→ e\f
cut

∆,Γ,Σ→ e\f

7→
π

Γ→ g

π′

e,∆, g,Σ→ f
cut

e,∆,Γ,Σ→ f
/-l

∆,Γ,Σ→ e\f

(Cases for right residuals are symmetrical to those for left residuals.)



E Summary of the reduction rules

If π is id
e→ e

then π[M ] M .

If π is 1-r
→ 1

then π[] ?.

If π is
π′

Γ→ e

π′′

∆→ f
·-r

Γ,∆→ ef

then π[ ~M, ~N ] 〈π′[ ~M ], π′′[ ~N ]〉.

If π is
π′

Γ→ ei
+-ri

Γ→ e1 + e2

then π[ ~M ] ini(π′[ ~M ]).

If π is ∗-r1
→ f∗

then π[] [].

If π is
π′

Γ→ e

π′′

∆→ e∗
∗-r2

Γ,∆→ e∗

then π[ ~M, ~N ] π′[ ~M ] :: π′′[ ~N ].

If π is
π′

Γ→ f1

π′′

Γ→ f2
∩-r

Γ→ f1 ∩ f2

then π[ ~M ] 〈π′[ ~M ], π′′[ ~M ]〉.

If π is
π′

e,Γ→ f
\-r

Γ→ e\f
then π[ ~M ] λx.π′[x, ~M ].

If π is
π′

Γ, e→ f
/-r

Γ→ f/e

then π[ ~M ] λx.π′[ ~M, x].

If π is
π′

∆→ e

π′′

Γ, e,Σ→ f
cut

Γ,∆,Σ→ f

then π[ ~M, ~N, ~P ] π′′[ ~M, π′[ ~N ], ~P ].

If π is
π′

Γ,∆→ f
1-l

Γ, 1,∆→ f

then π[ ~M, ?, ~N ] π′[ ~M, ~N ].

If π is
π′

Γ, e, f,∆→ f
·-l

Γ, ef,∆→ f

then π[ ~M, 〈M,N〉, ~N ] π′[ ~M,M,N, ~N ].

If π is
π′

Γ, e1,∆→ f

π′′

Γ, e2,∆→ f
+-l

Γ, e1 + e2,∆→ f

then π[ ~M, in1M, ~N ] π′[ ~M,M, ~N ]
and π[ ~M, in2M, ~N ] π′′[ ~M,M, ~N ].

If π is
π′

Γ,∆→ f

π′′

Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f

then π[ ~M, [], ~N ] π′[ ~M, [], ~N ]
and π[ ~M,M :: N, ~N ] π′′[ ~M,M,N, ~N ].

If π is
π′

Γ, ei,∆→ f
∩-li

Γ, e1 ∩ e2,∆→ f

then π[ ~M, 〈M1,M2〉, ~N ] π′[ ~M,Mi, ~N ].

If π is
π′

∆→ e

π′′

Γ, f,Σ→ g
\-l

Γ,∆, e\f,Σ→ g

then π[ ~M, ~N, λx.F, ~P ] π′′[ ~M,F{π′[ ~N ]/x}, ~P ].

If π is
π′

∆→ e

π′′

Γ, f,Σ→ g
/-l

Γ, f/e,∆,Σ→ g

then π[ ~M, λx.F, ~N, ~P ] π′′[ ~M,F{π′[ ~N ]/x}, ~P ].


