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Abstract
We prove cut-elimination for a sequent-style proof system which is sound and complete for the
equational theory of Kleene algebra, and where proofs are (potentially) non-wellfounded infinite
trees. We extend these results to systems with meets and residuals, capturing ‘star-continuous’
action lattices in a similar way. We recover the equational theory of all action lattices by restrict-
ing to regular proofs (with cut)—those proofs that are unfoldings of finite graphs.
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1 Introduction

The axioms of Kleene algebras are sound and complete for the theory of regular expressions
under language equivalence [22, 27, 4]. As a consequence, the equational theory of Kleene
algebras is decidable (in fact PSpace-complete). Models of these axioms of particular inter-
est include formal languages and binary relations. For binary relations, the Kleene star is
interpreted as reflexive transitive closure, whence the axioms of Kleene algebra make it pos-
sible to reason abstractly about program correctness [24, 25, 3, 19, 1]. The aforementioned
decidability result moreover makes it possible to automate interactive proofs [5, 26, 30].

There are however important extensions of Kleene algebras which are not yet fully un-
derstood. These include action algebras [31], where two ‘residual’ operations are added,
Kleene lattices, where a ‘meet’ operation is added, and action lattices [23], where all three
operations are added. Pratt introduced residuals in order to internalise the induction rules
of the Kleene star, as we explain later; they allow us to express properties of relations
such as well-foundedness in a purely algebraic way [12]. Kozen added the meet operation
to action algebra to obtain a structure closed under taking matrices. In the context of
program verification, meets are useful since they allow us to express conjunctions of local
specifications.

∗ Full version of the extented abstract in Proc. CSL 2018 [11].
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Figure 1 Context and contributions for Kleene algebra and action lattices.

Unfortunately, the decidability of the three corresponding equational theories is still
open, and there is no known notion of ‘free model’ for them that is analogous to the rational
languages for Kleene algebra. In this paper, we explore a proof-theoretic approach to such
questions: we provide sequent calculi that capture these theories which we show admit a
form of cut-elimination. Although this does not (yet) give us decidability, it does improve
our understanding of these theories:

we obtain a computational interpretation of proofs of inequalities in our systems as
program transformers, which could prove useful to describe free models;
we recover two conservativity results: action lattices are conservative over (star-continuous)
Kleene lattices and action algebra, thanks to the sub-formula property; (these results are
also implied by [29]).
we obtain structural properties, e.g., as Whitman did when he proved cut-elimination
for the theory of lattices, which we aim to exploit in consequent research.

We first focus on pure Kleene algebra, which is easier to handle and enables a simpler
presentation. Being a well-established theory, we are able to relate our results to existing
ones in the literature, identifying which issues become relevant when moving to extensions.

Kleene algebra

In our sequent system, called LKA, proofs are finitely branching, but possibly infinitely deep
(i.e. not wellfounded). To prevent fallacious reasoning, we give a simple validity criterion
for proofs with cut, and prove that the corresponding system admits cut-elimination. The
difficulty in the presence of infinitely deep proofs consists in proving that cut-elimination
is productive; we do so by using the natural interpretation of regular expressions as data
types for parse-trees [15], and by giving an interpretation of proofs as parse-tree transformers.
Such an idea already appears in [18] but in a simpler setting, for a finitary natural deduction
system rather than for a non-wellfounded sequent calculus.

The results we prove about LKA are summarised in Fig. 1(left). In addition to cut-
elimination (Thm. 15), we prove that the system is sound for all star-continuous Kleene
algebras (Thm. 11), and conversely, that it is complete w.r.t. the language theoretic inter-
pretation of regular expressions (Thm. 13). We actually refine this latter result by showing
that every proof from Kleene algebra axioms can be translated into a regular proof with cut
(Thm. 14), i.e., a proof with cut which is the unfolding of a finite graph. Note, however,
that regularity is not preserved by cut-elimination: the class of cut-free regular proofs in
LKA is incomplete w.r.t. Kleene algebra.
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Action algebras, Kleene lattices, and action lattices

Despite its finite quasi-equational presentation, the equational theory of Kleene algebra is
not finitely based: Redko proved that any finite set of equational axioms must be incom-
plete [32]. However, by adding two binary operations to the signature, Pratt showed how to
obtain a finitely based extension which is conservative over the equational theory of Kleene
algebras [31]. These two operations, called left residual (\) and right residual (/), are ‘ad-
joint’ to sequential composition and, as we mentioned, such structures are called action
algebras. Kozen then proposed action lattices [23], where the signature is extended further
to include a binary meet operation (∩). We call Kleene lattices the structures consisting of
Kleene algebra extended just with meets.

While both action algebras and action lattices are finitely based and conservatively ex-
tend Kleene algebra, they bring some difficulties. By definition, their equational theories
are at most Σ0

1, so that they must differ from their star-continuous variants which are Π0
1-

complete [7, 29]. (Buszkowski proved the lower bound and Palka proved the upper bound.)
In contrast, by Kozen’s completeness result we have that Kleene algebra and star-continuous
Kleene algebra give rise to the same equational theory, which is PSpace-complete. This
matter remains open for Kleene lattices since Buszkowski’s lower bound does not apply.

Residuals and meets naturally correspond to linear implication and additive conjunc-
tion [20, 29], from (non-commutative intuitionistic) linear logic [17]. They are also essential
connectives in the Lambek-calculus and related substructural logics [28]. We extend LKA
accordingly into a system LAL and obtain the results summarised in Fig. 1(right): LAL
is complete for star continuous action lattices (Thm. 35); it still admits cut-elimination
(Thm. 37); thus it is also sound w.r.t. star continuous action lattices (Thms. 32). Further-
more we are able to show that its regular fragment with cut is in fact sound and complete for
all action lattices (Thm. 33); this somewhat surprising result gives us a nontrivial yet finite
proof theoretic representation of the theory of action lattices. The proof reasons inductively
on the cycle structure of such regular proofs, and we crucially exploit the availability of both
residuals and meets: for action algebra and Kleene lattices, it remains open whether the
corresponding regular fragments with cut are sound.

Thms 32, 34, and 37 are proved by extending the proofs of Thms. 11, 14, and 15 to
deal with the additional connectives. Amongst those, cut-elimination is the most delicate
extension, relying on higher types to interpret residuals, and proving that LAL proofs still
yield terminating programs in such a setting. Thm. 13 cannot be extended directly, due to
the lack of a free model analogous to the regular languages for Kleene algebra when adding
residuals or meet. This is why we instead rely on cut-elimination for completeness.

As explained above, while all notions are equivalent in the case of Kleene algebra
(Fig. 1(left)), complexity arguments make it possible to separate the lower and upper parts
of Fig. 1(right), except for Kleene lattices. Whether the upper part is decidable remains
open, but it is interesting to note that we managed to characterise action lattices in such
a way that the non-regular/regular distinction at the proof-level corresponds precisely to
the difference between the star continuous and general cases, respectively. One potentially
fruitful direction towards the decidability of action lattices is to characterise the image of
regular proofs under cut-elimination. We aim to explore this possibility in future work.

Related work

We briefly discussed the cut-free variant of the system LKA in [10] (with a simpler validity
criterion), observing that its regular fragment is incomplete (due to the absence of cut).

CSL 2018
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Our main contribution was a variant of it based on ‘hypersequents’, HKA, whose regular
fragment is sound and complete without cut, and admits a PSpace proof search procedure.

Palka proposed a sequent system for star continuous action lattices, for which she proved
cut-elimination [29]. Its non-star rules are precisely those of LKA, but the system is well-
founded and relies on an ‘omega-rule’ for Kleene star with infinitely many premisses, in
the traditional school of infinitary proof theory, cf. [33]. Such an approach does not admit
a notion of finite proof analogous to our regular proofs, corresponding to the upper parts
of Fig. 1. Wurm also proposed a (finite, and thus wellfounded) sequent system for Kleene
algebra [34]. Unfortunately his cut-admissibility theorem does not hold—see [10].

The normalisation theory of linear logic with (least and greatest) fixed point operators
has been studied in [14] and, more comprehensively, in [13]. While the latter is a rather
general framework, its exposition still differs significantly from the current work for various
reasons. One immediate difference is that their setting is commutative while ours is non-
commutative, and so those results are not directly applicable. A more important difference
is that they do not have any atoms in their language, reasoning only on closed formulae.
This is rather significant from the point of view of normalisation, since the convergence of
cut-elimination becomes more complicated in presence of atoms. The argument we give
in Sect. 4 uses different ideas that are closely related to the language-based models of our
algebras and the natural interpretation of language inclusions as programs [18]. A game
semantics approach to cut-elimination for non-wellfounded proofs is given in [8], though in
that work only finitely many cuts in a proof are considered and so it does not seem sufficient
to handle the star rules in this work.

2 Preliminaries on Kleene algebra and extensions

Let A be a finite alphabet. Regular expressions [21] are generated as follows:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A

Sometimes we may simply write ef instead of e · f . Each expression e generates a rational
language L(e) ⊆ A∗, defined in the usual way.

A Kleene algebra is a tuple (K, 0, 1,+, ·, ·∗) where (K, 0, 1,+, ·) is an idempotent semiring
and where the following properties hold, where x ≤ y is a shorthand for x+ y = y.

1 + xx∗ ≤ x∗ if xy ≤ y then x∗y ≤ y if yx ≤ y then yx∗ ≤ y (1)

There are several equivalent variants of this definition [9]. Intuitively we have that x∗y
(resp., yx∗) is the least fixpoint of the function z 7→ y + xz (resp., z 7→ y + zx). We write
KA � e ≤ f if the inequality e ≤ f holds universally in all Kleene algebras—or, equivalently,
if it is derivable from the axioms of Kleene algebra. Kozen [22] and Krob [27] showed that
this axiomatisation is complete for language inclusions, corresponding to the right-to-left
implication in the following characterisation (the other direction is routine).

I Theorem 1 ([22, 27]). KA � e ≤ f if and only if L(e) ≤ L(f).

A Kleene algebra is star-continuous if for all elements x, y, z, xy∗z is the least upper bound
of the sequence (xyiz)i∈N, where y0 = 1 and yi+1 = yyi. In presence of the other laws,
star-continuity is equivalent to the following condition:

∀xyzt, (∀i ∈ N, xyiz ≤ t)⇒ xy∗z ≤ t .



A. Das and D. Pous 18:5

∆→ e Γ, e,Σ→ f
cut

Γ,∆,Σ→ f
id
e→ e

0-l
Γ, 0,∆→ e

Γ,∆→ e
1-l

Γ, 1,∆→ e
1-r
→ 1

Γ, e, f,∆→ g
·-l

Γ, e · f,∆→ g

Γ, e,∆→ g Γ, f,∆→ g
+-l

Γ, e+ f,∆→ g

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f

Γ→ e ∆→ f
·-r

Γ,∆→ e · f
Γ→ ei

+-ri i ∈ {1, 2}
Γ→ e1 + e2

∗-r1
→ e∗

Γ→ e ∆→ e∗
∗-r2

Γ,∆→ e∗

Figure 2 The rules of LKA.

We write KA∗ � e = f when the equality e = f holds in all star-continuous Kleene algebras.
Formal languages form a star-continuous Kleene algebra, and so by completeness of Kleene
algebra w.r.t. rational languages, we have KA∗ � e = f iff KA � e = f ; this is the triangle
on the left in Fig. 1.

An action lattice is a Kleene algebra with three additional binary operations, left and
right residuals (\, /), and meet (∩) defined by the following equivalences:

∀xyz, y ≤ x\z ⇔ xy ≤ z ⇔ x ≤ z/y ∀xyz, z ≤ x ∩ y ⇔ z ≤ x ∧ z ≤ y

An action algebra is a Kleene algebra with residuals, a Kleene lattice is a Kleene algebra with
meets. We extend regular expressions accordingly, writing AL � e ≤ f when the inequation
e ≤ f holds in all action lattices, and AL∗ � e ≤ f when it holds in all star continuous action
lattices. Note that while rational languages are closed under residuals and intersection, thus
forming an action lattice, they are not the ‘free’ one: Thm. 1 fails. The equational theories
generated by all action lattices and by the star-continuous ones actually differ, cf. [7, 29].

3 The sequent system LKA

A sequent is an expression Γ→ e, where Γ is a list of regular expressions and e is a regular
expression. For such a sequent we refer to Γ as the antecedent and e as the succedent, or
simply the ‘left’ and ‘right’ hand sides, respectively. We say that a sequent e1, . . . , en → e

is valid if KA∗ � e1 · · · · · en ≤ e. i.e., the comma is interpreted as sequential composition,
and the sequent arrow as containment. We may refer to expressions as ‘formulae’ when it
is more natural from a proof theoretic perspective, e.g. ‘subformula’ or ‘principal formula’.

The rules of LKA are given in Fig. 2. We call LKA− the subset of LKA where the
cut rule is omitted (which corresponds to the system called LKA in [10]). Leaving the
∗-rules aside, these rules are those of the non-commutative variant of intuitionistic linear
logic [17], restricted to the following connectives: multiplicative conjunction (·), additive
disjunction (+) and additive falsity (0) (for which there is no right rule). The rules for
Kleene star can be understood as those arising from the characterisation of e∗ as a fixed
point: e∗ = µx.(1 + ex). In contrast, Palka [29] follows the alternative interpretation of
Kleene star as an infinite sum, e∗ = Σie

i, whence her left rule for Kleene star with infinitely
many premisses, and the infinitely many right rules she uses for this operation.

As previously mentioned, we consider infinitely deep proofs, so it is necessary to impose
a validity criterion to ensure that derivations remain sound.

I Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of {0, 1}∗; elements
of {0, 1}∗ are called nodes. A preproof is a labelling π of a tree by sequents such that, for

CSL 2018
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every node v with children v1, . . . vn (n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance

of an LKA rule. Given a node v in a preproof π, we write πv for the sub-preproof rooted at
v, defined by πv(w) = π(vw). A preproof is regular if it has finitely many distinct subtrees,
i.e. it can be expressed as the infinite unfolding of a finite graph. A preproof is cut-free if it
does not use the cut-rule.

We will use standard proof theoretic terminology about principal formulas and ancestry in
proofs, e.g. from [6] (see App. A for further details). The notion of validity below is similar
to [13], adapted to our setting.

I Definition 3. A thread is a maximal path through the graph of (immediate) ancestry in a
preproof. By definition it must start at a conclusion formula or at a cut formula and it only
goes upwards. A thread is valid if it is principal for a ∗-l step infinitely often. A preproof
is valid if every infinite branch eventually has a valid thread. A proof is a valid preproof.
We write LKA `∞ Γ→ e if the sequent Γ→ e admits a proof, LKA `ω Γ→ e if it admits a
regular proof, and LKA− `∞ Γ→ e if it admits a cut-free proof.

Notice that every valid thread eventually follows a unique (star) formula, by the subformula
property. Let us consider some examples of (pre)proofs. In all cases, we will use the symbol
• to indicate circularities, colours to mark some of the threads, and double lines to denote
finite derivations.

I Example 4. Here is a regular and cut-free proof of (b+ c)∗ → (c+ b)∗:

∗-r1
→ (c+ b)∗

b+ c→ c+ b

...
∗-l •

(b+ c)∗ → (c+ b)∗
∗-r2

b+ c, (b+ c)∗ → (c+ b)∗
∗-l •

(b+ c)∗ → (c+ b)∗

I Example 5 (Atomicity of identity). As in many common sequent systems, initial identity
steps can be reduced to atomic form, although for this we crucially rely on access to non-
wellfounded (yet regular) proofs. As usual, we proceed by induction on the size of an identity
step, whence the crucial case is for the Kleene star,

∗-r1
→ e∗

IH

e→ e

...
∗-l •
e∗ → e∗

∗-r2
e, e∗ → e∗

∗-l •
e∗ → e∗

where the derivation marked IH is obtained by the inductive hypothesis.

Note that while LKA− satisfies the subformula property, the size and number of sequents
occurring in a cut-free proof is not a priori bounded, due to the ∗-l rule:

I Example 6 (A non-regular proof). The only cut-free proof of the sequent a, a∗ → a∗a is
the one on the left below:

a→ a∗a

a, a→ a∗a

...
∗-l
a, a, a, a∗ → a∗a

∗-l
a, a, a∗ → a∗a

∗-l
a, a∗ → a∗a

a→ a∗a

∗-l •
a, a∗ → a∗a a, a∗a→ a∗a

cut
a, a, a∗ → a∗a

∗-l •
a, a∗ → a∗a

This proof contains all sequents of the form a, . . . , a, a∗ → a∗a, whence non-regularity. A
regular proof with cuts is given on the right; see [10] for more details on the lack of regularity
in LKA− and how to recover regularity in a cut-free setting, using ‘hypersequents’.
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I Example 7 (Two invalid preproofs). The following preproofs are not valid; they derive
invalid sequents.

1-r
→ 1

...
∗-r2 •

a→ 1∗
∗-r2 •

a→ 1∗ → b∗

id
a→ a

id
a∗ → a∗

∗-r2
a, a∗ → a∗

...
∗-l •
a∗ → b∗

cut
a, a∗ → b∗

∗-l •
a∗ → b∗

The left-hand preproof is cut-free and infinite; since it does not contain any ∗-l-rule, it
cannot be valid. On the right-hand side, the principal formula of the ∗-l-rule is the cut
formula of the cut-rule so that the only infinite thread is the one along the occurrences of
b∗, and this formula is never principal for a ∗-l step.

The notion of validity we use here actually generalises the notion of fairness we used in [10],
where we were working only with cut-free preproofs:

I Proposition 8. A cut-free preproof is valid if and only if it is fair for ∗-l, i.e. every infinite
branch contains infinitely many occurrences of ∗-l.

Proof. The left-right implication is immediate. Conversely, every infinite path in a fair cut-
free preproof has infinitely many ∗-l steps, and their principal formulae are finitely many by
the subformula property. One can thus extract a valid thread. J

An alternative criterion for cut-free preproofs is obtained as follows:

I Proposition 9. A cut-free preproof is valid if and only if it has no infinite branch with a
tail of only ∗-r2-steps.

Proof. Define the ‘weight’ of a sequent to be the multiset of its formulae, ordered by the
subformula relation. This measure strictly decreases when reading LKA− rules bottom-up,
except for the right premisses of rules ∗-l and ∗-r2; for the latter, it either remains unchanged
(when Γ is empty) or it strictly decreases. Thus every infinite branch of a cut-free preproof
either contains infinitely many ∗-l steps, or eventually contains only ∗-r2 steps. J

Observe that the proof on the left in Ex. 7 does not satisfy this condition.
The cut-free system LKA− is sound and complete for Kleene algebras. Thanks to the

completeness theorem for Kleene algebras, Thm. 1, it suffices to prove soundness with respect
to star-continuous Kleene algebra. We first prove the following lemma:

I Lemma 10. If LKA− `∞ Γ, e∗,∆→ f then, for each n ∈ N, LKA− `∞ Γ, en,∆→ f .

Proof. We define appropriate preproofs from by induction on n. Replace every direct an-
cestor of e∗ by en, adjusting origins as follows,

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
7→

Γ,∆→ f
1-l

Γ, 1,∆→ f
or

Γ, e, en−1,∆→ f
·-l

Γ, en,∆→ f

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive hypothesis.
Notice that, on branches where e∗ is never principal, this is simply a substitution of en

for e∗ everywhere along the branch. The preproof resulting from this entire construction is
fair since every infinite branch will share a tail with the proof we began with. J

We can now prove soundness w.r.t. star continuous Kleene algebra:

I Theorem 11 (Soundness). If LKA− `∞ e1, . . . , en → e, then KA∗ � e1 · · · · · en ≤ e.

CSL 2018
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Proof. First observe that every rule of LKA is sound: if its premisses are valid then so is its
conclusion. Let π be an LKA− proof of Σ→ f . We proceed by induction on the multiset of
formulae in its conclusion, performing case analysis on the last rule. For all but two cases,
we just use soundness of the rule and the induction hypotheses. The first remaining case is
∗-r2, where we must appeal to a sub-induction since the measure does not always strictly
decrease in the right premiss (Prop. 9). The last case is ∗-l, where Σ = Γ, e∗,∆. By Lem. 10,
π can be transformed into proofs πn of Γ, fn,∆ → f for each n ∈ N. Each πn derives a
sequent whose weight is strictly smaller than that of Σ → f , which is thus valid by the
inductive hypothesis. Finally, this means that Γ, f∗,∆→ g is valid, by star-continuity. J

For completeness of LKA−, we can get a direct proof by starting from the free model of
rational languages (Fig. 1). This strategy is no longer possible for Kleene lattices, action
algebras and action lattices, for which we will need to go through cut-elimination. We first
prove completeness for sequents whose antecedent is a word:

I Lemma 12. If a1 . . . an is a word in L(e) for some expression e, then there is a finite
proof of the sequent a1, . . . , an → e using only right logical rules.

Proof. By a straightforward induction on e. J

I Theorem 13 (Completeness). If L(e1 · · · · · en) ⊆ L(e) then LKA− `∞ e1, . . . , en → e.

Proof. This is proved like in [10] for HKA: all left rules of LKA− are invertible so that they
can be applied greedily; doing so, one obtains an infinite tree whose leaves are sequents of
the shape a1, . . . , ak → e, with k ≥ 0, where a1 . . . ak is a word in L(e1 · · · · · en) and thus in
L(e) by assumption. Those leaves can be replaced by finite derivations using by Lem. 12.
Notice, that we obtain fairness, since any infinite branch of only left rules must contain ∗-l
infinitely often. J

The previous proof builds infinite and non-regular derivations whenever the language of the
starting antecedent is infinite. For instance, it would yield the proof given on the left in
Ex. 6. By using a different technique, we show in the following theorem, that we can get
regular proofs if we allow the cut-rule.

I Theorem 14 (Regular completeness). If KA � e ≤ f then LKA `ω e→ f .

Proof. We prove the statement for equalities. Consider the relation ≡ defined by e ≡ f if
LKA `ω e → f and LKA `ω f → e. This relation is an equivalence on regular expressions
thanks to the cut rule, and it is easily shown to be preserved by all contexts (i.e. it is a
congruence). Also remark that we have e+ f ≡ f iff LKA `ω e→ f , thanks to the cut-rule
and the rules about sum. It then suffices to show that regular expressions quotiented by
≡ form a Kleene algebra. The (in)equational axioms defining KA can be proved by finite
derivations. The only difficulty is in dealing with the two implications from the definition
of Kleene algebra (1). We implement them as follows:

id
f → f

...
∗-l •
e∗, f → f

IH

e, f → f
cut

e, e∗, f → f
∗-l •

e∗, f → f

id
f → f

IH

f, e→ f

...
∗-l •
f, e∗ → f

cut
f, e, e∗ → f

∗-l •
f, e∗ → f

where the derivations marked IH are obtained from the inductive hypothesis. The preproofs
we construct in this way are valid and regular, by inspection. In particular, the only infinite
branch not in IH in the above derivations has a valid thread on e∗, coloured in green. J
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Note the asymmetry when we interpret the two implications: the premisses of the cut rule
are swapped when we move from one to the other. This asymmetry comes from the fact
that we have a single left rule for Kleene star, which unfolds the star from the left.

4 Cut-elimination for LKA

This section is devoted to proving the following cut-elimination theorem.

I Theorem 15. If LKA `∞ Γ→ e then LKA− `∞ Γ→ e.

Combined with Thm. 11, it establishes the soundness of our criterion for proofs with cuts.
This serves as a ‘warm-up’ for the analogous result for the extended system (Sect. 6), which
is obtained using the same template.

We show that proofs can be considered as certain transducers, transforming parse-trees of
input words of languages computed by terms. We design them so that a given computation
only explores a finite prefix of the proof, which we call the head. We then prove that cut-
reductions, restricted to the head of a proof, preserve these computations, always terminate,
and eventually produce some non-cut rules. We can then repeatedly apply this procedure
to remove all cuts from an infinite proof, in a productive way.

4.1 Programs from proofs
We first define programs and their reduction semantics, based on which we prove cut-
elimination, in Sect. 4.2. We fix in this section a (valid) LKA proof π and we let v range
over its nodes, which we recall are elements of {0, 1}∗, cf. Dfn. 2.

I Definition 16 (Programs). Programs are defined by the following syntax, where x ranges
over a countable set of variables, and i ranges over {1, 2}.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | v[ ~M ]

Intuitively, programs compute parse-trees for words belonging to the language of an ex-
pression. Given a node v of π such that π(v) = Γ → e, the last entry corresponds to the
application of the subproof πv, rooted at v, to a list ~M of programs for the antecedent (Γ);
it should eventually return a parse-tree for the succedent (e). This is formalised using the
following notion of types.

I Definition 17 (Typing environment). A typing environment, written E, is a list of pairs of
variables and expressions, written x : e, together with a finite antichain of nodes: for any two
nodes v and w in the antichain, v is not a prefix of w. We write E,F for the concatenation
of two typing environments, which is defined only when this antichain condition on nodes is
preserved.

Intuitively, typing environments keep track of which variables and proof nodes are used in
a program, to impose linearity constraints; those constraints become crucial when we add
residuals and meets, in Sect. 5.

I Definition 18 (Types). A program M has type e in an environment E, written E `M : e
if this judgement can be derived from the rules in Fig. 3.

I Example 19. With the proof from Ex. 4, letting ε denote the root node, we have:

ε, x : b, y : c ` ε[in0x :: in1y :: []] : (c+ b)∗

ε, z : b+ c, z′ : b+ c, q : (b+ c)∗ ` ε[z :: z′ :: q] : (c+ b)∗

CSL 2018



18:10 Non-wellfounded proof theory for (Kleene+action)(algebras+lattices)

x : e ` x : e ` ? : 1
E `M : e F ` N : f
E, F ` 〈M,N〉 : ef

E `M : ei

E ` iniM : e1 + e2 ` [] : e∗

E `M : e E′ ` N : e∗

E,E′ `M :: N : e∗
∀i, Ei `Mi : ei π(v) = e1, . . . , en → f

v,E1, . . . , En ` v[ ~M ] : f

Figure 3 Typing rules for programs.

I Observation 20. Let x1, . . . , xn be variables. We have a1 . . . an ∈ L(e) iff there exists
a program M such that x1 : a1, . . . , xn : an ` M : e. This (unused) observation has no
counterpart when considering extensions of Kleene algebra, where there is no longer an
appropriate notion of ‘language’ for expressions that constitutes a free model.

I Definition 21 (Reduction). Reduction, written  , is the closure under all contexts of the
following rules defined by case analysis on the last step of the subproof πv rooted at v. These
rules are written concisely for lack of space; in each case, v0 and v1 are the nodes of the
premisses, when they exist. We moreover assume that the sizes of the vectors match those
that arise from the various rules. See App. B for an extensive definition.

id : v[M ] M cut : v[ ~M, ~N, ~P ] v1[ ~M, v0[ ~N ], ~P ]

1-l : v[ ~M, ?, ~N ] v0[ ~M, ~N ] 1-r : v[] ?

·-l : v[ ~M, 〈M,N〉, ~N ] v0[ ~M,M,N, ~N ] ·-r : v[ ~M, ~N ] 〈v0[ ~M ], v1[ ~N ]〉

+-l : v[ ~M, iniM, ~N ] vi[ ~M,M, ~N ] +-ri : v[ ~M ] ini(v0[ ~M ])

∗-l : v[ ~M, [], ~N ] v0[ ~M, ~N ] and ∗-r1 : v[] []

v[ ~M,M :: N, ~N ] v1[ ~M,M,N, ~N ] ∗-r2 : v[ ~M, ~N ] v0[ ~M ] :: v1[ ~N ]

When useful, we write  cut indicate a reduction according to the cut rule above.

I Example 22. Continuing with the proof from Ex. 4 we have the following complete
reductions. The second program still contains calls to proofs in the end because the inputs
were under-specified.

ε[in0x :: in1y :: []]
 1[in0x, in1y :: []]
 10[in0x] :: 11[in1y :: []]
 100[x] :: 11[in1y :: []]
 in1x :: 11[in1y :: []]
 in1x :: 111[in1y, []]
 in1x :: 1110[in1y] :: 1111[[]]
 4 in1x :: in0y :: []

ε[z :: z′ :: q]
 1[z, z′ :: q]
 10[z] :: 11[z′ :: q]
 10[z] :: 111[z′, q]
 10[z] :: 1110[z′] :: 1111[q]

As one might expect, we have subject reduction. We need the following notion of extension
to state it properly.

I Definition 23 (Extension). Given two typing environments E,E′, we say that E′ extends
E if E and E′ coincide after removing all nodes, and if all nodes in E′ are either already in
E, or are immediate successors of some nodes in E.
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I Proposition 24 (Subject reduction). If E ` M : e and M  M ′, then E′ ` M ′ : e for
some environment E′ extending E.

For instance, along the reductions on the left in Ex. 22, the antichain part of the typing
environment evolves as follows: {ε}, {1}, {10, 11}, {100, 11}, {11}, {111}, {1110, 1111}, ∅.

Our objective now is to prove that well-typed programs terminate. For the sake of
simplicity, we work in the sequel with the ‘leftmost innermost’ strategy: a redex v[ ~M ] is
fired only when the programs in ~M are irreducible and there are no other redexes to its left.

I Definition 25 (Runs). The run of a program M is the sequence of nodes corresponding
to the redexes fired during the (potentially infinite) innermost leftmost reduction of M .

I Lemma 26. If E ` M : e then every node w appears at most once in the run of M ; in
this case we have that w = uv for some nodes u, v with u in E and, for every prefix v′ of v,
uv′ appears in the run of M before w.

Proof. These are immediate consequences of Prop. 24. J

In particular, the run of a well-typed program has finitely many connected components. We
finally obtain that well typed programs terminate, thanks to the validity criterion.

I Proposition 27. If E `M : e, then the run of M is finite.

Proof. Suppose the run of M is infinite. Then by Lem. 26 and König’s Lemma one can
extract an infinite branch of π which is contained in the run. By validity, this branch
must eventually have a thread along a star formula f∗ which is infinitely often principal. By
analysis of the reduction rules, and thanks to the innermost strategy, we may find an infinite
sequence of programs of type f∗ whose sizes are strictly decreasing, which is impossible. J

4.2 Cut reduction
Our cut-elimination argument is driven by a standard set of cut reduction rules, which we
do not have space to present in the main text. These include key and commutative cases, as
usual, and are fully presented in App. D. To produce an infinite cut-free proof, we must show
that we may produce proofs with arbitrarily large cut-free prefixes in a continuous manner.
The main difficulty is to show that such a procedure is productive, i.e., eventually produces
non-cut steps. To this end, we use the previous notion of ‘run’ to drive cut-reductions.

I Definition 28 (Head). Let π be a proof of Γ → e. The head of π, written hd(π), is the
run of the program ε[~x] in π, where ~x is a list of variables of the same length as Γ.

Note that the above program is well-typed in the appropriate environment. The head is a
sequence of nodes, but we shall sometimes see it as the underlying sequence of programs. Also
note that the nodes of a cut step appearing in the head correspond to program reductions
where the redex is a cut ( cut).

I Definition 29 (Weight). The weight of a proof π, written w(π), is the multiset of cut
nodes in its head, ordered by their distance to the end of the head.

I Lemma 30. Let π′ be obtained from a proof π by a cut-reduction. We have that:
(i) π′ is a valid proof;
(ii) |hd(π′)| ≤ |hd(π)|, where |s| is the length of a sequence s;
(iii) if the reduced cut was the last  cut step in hd(π), then w(π′) < w(π).
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Proof sketch. By case analysis; key cases strictly decrease the length of the head while it
is only conserved by commutative cases. We list and discuss all cases in App. D; one of the
two ∗-key cases is the following one:

∆→ e Σ→ e∗
∗-r2

∆,Σ→ e∗
Γ,Π→ f Γ, e, e∗,Π→ f

∗-l
Γ, e∗,Π→ f

cut
Γ,∆,Σ,Π→ f

7→ ∆→ e

Σ→ e∗ Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f

If the reduced cut (with conclusion at v) occurs in the head of π then the heads of the two
proofs only differ by the following subsequences, inside some evaluation context:

v[ ~M, ~N, ~O, ~P ]
 cute∗ v1[ ~M, v0[ ~N, ~O], ~P ]
 v1[ ~M, v00[ ~N ] :: v01[ ~O], ~P ]
 n v1[ ~M,N ′ :: v01[ ~O], ~P ]
 o v1[ ~M,N ′ :: O′, ~P ]
 v11[ ~M,N ′, O′, ~P ]

v[ ~M, ~N, ~O, ~P ]
 cute v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 cute∗ v11[ ~M,N ′, v10[ ~O], ~P ]
 o v11[ ~M,N ′, O′, ~P ]

(Note that the programs ~M, ~N, ~O, ~P are irreducible due to the innermost strategy, and that
v00 in the starting proof and v0 in the resulting one both point to the same subproof:
πv00 = π′v0.) The new head is shorter by one step, and the initial cut on e∗ is replaced by
two cuts which are closer to the end of the head.

Commutative cases do not always shorten the head, but either they move the cut closer
to its end, or the head no longer visits it. For instance, when the left premiss of the reduced
cut ends with a ·-l step, the rule is

∆, e, f,Σ→ g
·-l

∆, ef,Σ→ g Γ, g,Π→ h
cut

Γ,∆, ef,Σ,Π→ h

7→
∆, e, f,Σ→ g Γ, g,Π→ h

cut
Γ,∆, e, f,Σ,Π→ h

·-l
Γ,∆, ef,Σ,Π→ h

If the head of π goes through the step v[ ~M, ~N,O, ~P , ~Q]  cutef
v1[ ~M, v0[ ~N,O, ~P ], ~Q], then

there are two cases to consider:
either O = 〈O1, O2〉 and the sequence continues with v1[ ~M, v00[ ~N,O1, O2, ~P ], ~Q]; then in
π′ we get v[ ~M, ~N,O, ~P , ~Q] v0[ ~M, ~N,O1, O2, ~P , ~Q] cutef

v01[ ~M, v00[ ~N,O1, O2, ~P ], ~Q];
the length is preserved and the cut has been pushed towards the end;
or not, and the head of π′ stops earlier, without visiting the cut on ef anymore, thus
decreasing the weight.

For (iii), the assumption that the cut-reduction took place on the last cut node of the head
is used in some of the cases to ensure that the weight of the other cut nodes of the head
does not increase (e.g., in some of the right ·-r and ∗-r2 cases). J

I Proposition 31 (Productive cut-reduction). For a proof π, there exists a proof π′ obtained
from π by a sequence of cut-reductions, which does not start with a cut.
Proof. By induction on the weight, reduce the last cut visited by the head until the head
no longer contains any cut. The resulting proof cannot start with a cut, by definition. J

We can finally prove cut-elimination.

Proof of Thm. 15. Focus on a lowest cut, at node v, and apply Prop. 31 to the correspond-
ing subproof (πv). By iterating this process, we obtain in the limit a cut-free preproof π′
with the same conclusion as the starting one. Moreover, thanks to Lem. 30(i), all heads of
subproofs of π′ are finite, so that π′ is valid by Prop. 9: an infinite branch of ∗-r2 steps
would give rise to a subproof with an infinite head. J



A. Das and D. Pous 18:13

5 Action algebras, Kleene lattices, and action lattices

We now consider extensions of Kleene algebra by residuals and meets, as axiomatised in [31]
and [23]. We first extend the system LKA with the following rules, which are standard from
substructural logic [28, 16]. We write LAL for the corresponding system.

∆→ e Γ, f,Σ→ g
\-l

Γ,∆, e\f,Σ→ g

∆→ e Γ, f,Σ→ g
/-l

Γ, f/e,∆,Σ→ g

Γ, ei,∆→ f
∩-li i ∈ {1, 2}

Γ, e1 ∩ e2,∆→ f

e,Γ→ f
\-r

Γ→ e\f
Γ, e→ f

/-r
Γ→ f/e

Γ→ e Γ→ f
∩-r

Γ→ e ∩ f

We define judgements as previously. Except for Thm. 33, the results below also hold for
action algebras and Kleene lattices using the appropriate fragment of LAL. We prove sound-
ness w.r.t. star-continuous models exactly like for Kleene algebra (Thm. 11).

I Theorem 32 (Soundness). If LAL− `∞ e1, . . . , en → e, then AL∗ � e1 · · · · · en ≤ e.

As announced in the introduction, regular proofs are sound for all (non-necessarily star-
continuous) action lattices. We prove it using proof-theoretical arguments to translate every
regular proof into an inductive proof from the axioms of action lattices.

I Theorem 33 (Regular soundness). If LAL `ω e1, · · · , en → f then AL � e1 · · · · · en ≤ f .

Proof. We prove the statement for all regular proofs in *-normal form, where every back-
pointer points to a ‘validating’ ∗-l-step: every infinite branch of the starting proof has a
valid thread; since the proof is regular, this thread must be infinitely often principal for
∗-l-step of some sequent of the branch; cut the infinite branch by using a backpointer the
second time this sequent appears in the branch.

We proceed by induction on the number of simple cycles in such a proof π. The interesting
case is when π ends with a ∗-l step that is the target of a backpointer. Colour in red all
ancestors of its principal formula that are the same expression, e∗. Let {Γi, e

∗,∆i → fi}i∈I

be the set of all sequents in π with e∗ principal (thus for a ∗-l step) and let (πl
i : Γi,∆i →

fi)i∈I and (πr
i : Γi, e, e

∗,∆i → fi)i∈I be the set of subproofs rooted at their left and right
premisses, respectively.

Define expressions gi =
∏

Γi, di =
∏

∆i, hi = (gi\fi)/di, and h =
⋂

i∈I hi. For i ∈ I,
construct proofs πr ′

i from πr
i by replacing each e∗ by h, modifying critical steps as follows:

Γj ,∆j → fj Γj , e, e∗,∆j → fj
∗-l

Γj , e∗,∆j → fj
7→

·-r
∆j → dj

·-r
Γj → gj fj → fj

\-l
Γj , gj\fj → fj

/-l
Γj , hj ,∆j → fj

∩-l
Γj , h,∆j → fj


ρj

Note that the proofs πl
i and πr ′

i have fewer simple cycles than π, so that by induction
hypothesis we have that gidi ≤ fi and giehdi ≤ fi hold universally in action lattices, for
all i ∈ I. From those we deduce 1 ≤ h and eh ≤ h using the laws about residuals and
conjunction. Thus we have e∗ ≤ h by star induction (1). Finally note that following the
above proof ρj we have in action lattices that gjhdj ≤ fj and thus gje

∗dj ≤ fj . We conclude
by choosing j such that (Γj ,∆j , fj) = (Γ,∆, f). J
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Note that we crucially rely on the presence of both residuals and meet to compute invariants
for Kleene stars in the above proof, so that it does not immediately carry over to action
algebras and Kleene lattices.

Conversely, the regular fragment of LAL (with cut) is complete for action lattices.

I Theorem 34 (Regular completeness). If AL � e ≤ f then LAL `ω e→ f .

Proof. The axioms defining meet and residual immediately translate to finite derivations in
LAL, one can thus extend the proof of Thm. 14. J

Note that the regular fragment cannot be complete for star continuous models: a regular
proof is a finite verifiable object and the equational theory of star-continuous action lattices
is Π0

1-complete [7]. The full, non-regular system is however complete for star-continuous
models:

I Theorem 35 (Star-continuous completeness). If AL∗ � e ≤ f then LAL `∞ e→ f .

Proof. As for Thms. 14 and 34, consider the relation ≡′ defined by e ≡′ f if LAL `∞ e→ f

and LAL `∞ f → e. Expressions quotiented by this slightly larger relation also form an
action lattice, which we prove star-continuous using the natural simulation of an ω-rule for
Kleene star: combine proofs (πi)i∈N of the sequents (Γ, ei,∆→ f)i∈N as follows:

π0

Γ, e,∆→ f

π1

Γ, e, e,∆→ f

π2

Γ, e, e,∆→ f . .
.

∗-l
Γ, e, e, e∗,∆→ f

∗-l
Γ, e, e∗,∆→ f

∗-l
Γ, e∗,∆→ f

J

The remaining property to establish is cut-elimination: combined with Thm. 32 it gives
soundness of proofs with cut w.r.t. star-continuous models, and combined with Thm. 35 it
gives completeness of LAL− w.r.t. these models.

6 Cut-elimination in LAL

The main alteration to the proof for LKA is that we need a more sophisticated notion of
programs. We associate linear functions to residuals, and additive pairs to meets: a program
for e∩ f waits to see whether the environment wants a value for e or a value for f—but not
both, and reacts accordingly. We thus extend the syntax of programs (Dfn. 16) to include
λ-abstractions, which will be used for residuals, and a new kind of pairs for meets.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | π[ ~M ] | λx.M | 〈〈M,N〉〉

The type system (Fig. 3) is extended by the following rules, where in the final rule, E1 and
E2 are extensions of E.

x : e, E `M : f
E ` λx.M : e\f

E, x : e `M : f
E ` λx.M : f/e

E1 `M : e E2 ` N : f
E ` 〈〈M,N〉〉 : e ∩ f

I Lemma 36 (Substitution lemma). If E ` N : e and F, x : e, F ′ ` M : f with F,E, F ′

defined, then F,E, F ′ `M{N/x} : f , where M{N/x} is M with x substituted by N .1

1 More precisely, the occurrences of x selected by the typing derivation of M .
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The following reductions are added, using the same conventions as in Dfn. 21:

∩-li : v[ ~M, 〈〈N1, N2〉〉, ~P ] v0[ ~M,Ni, ~P ] ∩-r : v[ ~M ] 〈〈v0[ ~M ], v1[ ~M ]〉〉

\-l : v[ ~M, ~N, λx.F, ~P ] v1[ ~M,F{v0[ ~N ]/x}, ~P ] \-r : v[ ~M ] λx.v0[x, ~M ]

/-l : v[ ~M, λx.F, ~N, ~P ] v1[ ~M,F{v0[ ~N ]/x}, ~P ] /-r : v[ ~M ] λx.v0[ ~M, x]

One has to be careful about what we deem to be evaluation contexts: lambda abstractions
and additive pairs are not considered evaluation contexts. This is crucial to obtain subject-
reduction: otherwise some redexes duplicated by the ∩-r rule can be active at the same
time, thus breaking the property of Lem. 26 used in our termination proof that a given node
appears at most once in the run of a program.

Despite this subtlety, Prop. 24 (subject reduction) and Prop. 27 (termination) are proved
for this extended system exactly as in the Kleene algebra case—see App. C. It thus remains
to show that the new cut reductions do not increase the length of heads, and strictly decrease
the weight (Lem. 30). The key cases are easy: they strictly decrease the length and replace
the cut by smaller ones. Amongst the commutative cases, some care is required when a right
introduction rule appears on the right of the cut. For instance, for meet:

∆→ f

Γ, f,Σ→ e1 Γ, f,Σ→ e2
∩-r

Γ, f,Σ→ e1 ∩ e2
cut

Γ,∆,Σ→ e1 ∩ e2

7→
∆→ f Γ, f,Σ→ e1

cut
Γ,∆,Σ→ e1

∆→ f Γ, f,Σ→ e2
cut

Γ,∆,Σ→ e1
∩-r

Γ,∆,Σ→ e1 ∩ e2

If the head of π contains the sequence,

v[ ~M, ~N, ~O] v1[ ~M, v0[ ~N ], ~O] n v1[ ~M,N ′, ~O] 〈〈v10[ ~M,N ′, ~O], v11[ ~M,N ′, ~O]〉〉

where v is the reduced cut-node, then in the head of π′ we just get:

v[ ~M, ~N, ~O] 〈〈v0[ ~M, ~N, ~O], v1[ ~M, ~N, ~O]〉〉

Here we see the need for 〈〈−,−〉〉 not being an evaluation context: the computations involving
~N would otherwise be duplicated, thus potentially increasing the length of the run. If the
head of π never touches the produced additive pair, then the head of π′ is strictly shorter,
and the cut on e1 ∩ e2 is not visited anymore. Otherwise, this pair can only be destroyed by
a ∩-li rule: 〈〈v10[ ~M,N ′, ~O], v11[ ~M,N ′, ~O]〉〉 v1i[ ~M,N ′, ~O], and the head of π′ can ‘catch
up’ by doing:

〈〈v0[ ~M, ~N, ~O], v1[ ~M, ~N, ~O]〉〉 vi[ ~M, ~N, ~O] vi1[ ~M, vi0[ ~N ], ~O] n vi1[ ~M,N ′, ~O]

The size of the head has not changed, but the cut is closer to the end. The analogous case
for residuals is similar since the creation of a λ-abstraction temporarily blocks reductions;
other cases can be found in App. D. Finally, by the same argument as for Thm. 15 we obtain:

I Theorem 37 (Cut elimination). If LAL `∞ Γ→ e then LAL− `∞ Γ→ e.

One useful application of this cut-elimination result is the following alternative proof of the
upper bound result of Palka for star-continuous action lattices:

I Corollary 38 (Palka [29]). AL∗ is in Π0
1.

Proof. We say that a sequent Γ → e has a d-derivation, for d ∈ N, if there is a LAL−

derivation ending in Γ→ e for which each branch has length d, or otherwise terminates at a
correct initial sequent in length < d. To avoid validity issues, we assume that the left premiss
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of every ∗-r2 step has nonempty antecedent, so that all preproofs become valid without
sacrificing provability (cf. Prop. 9). We define a Π0

1 predicate Prov(Γ→ e) as ∀d ∈ N.“there
is a d-derivation of Γ → e”. Notice that this is indeed Π0

1 since the size of a d-derivation
is exponentially bounded. Furthermore, if Prov(Γ → e) then, by the infinite pigeonhole
principle, we may recover an infinite proof of Γ → e, by inductively choosing premisses
resulting in larger derivations that nonetheless prefix infinitely many d-derivations. J

7 Conclusions

We presented a simple sequent system LKA that admits non-wellfounded proofs and showed
it to be sound and complete for Kleene algebra, KA, by consideration of the free model of
rational languages. We showed that its regular fragment is already complete, in the presence
of cut, by a direct simulation of KA. We also gave a cut-elimination result for LKA, obtaining
an alternative proof of completeness of its cut-free fragment.

We were able to generalise these arguments to an extended system LAL of Kleene al-
gebras with residuals and meets, resulting in a sound and complete cut-free system for the
equational theory of star-continuous action lattices, AL∗. Thanks to the subformula property
in cut-free proofs, this also gives us proof-theoretical characterisations for star-continuous
action algebras and Kleene lattices. This yields alternative proofs of several results of Palka
[29], namely conservativity of AL∗ over its fragments, as well as their membership in Π0

1.
Finally, we characterised the theory of all action lattices by just the regular proofs of

LAL. Whether the equational theory of action lattices is decidable remains open. It would
be interesting to see if techniques such as interpolants for our system LAL could yield
decidability.

It would be natural to consider systems which are commutative and/or contain arbitrary
fixed points, bringing the subject matter closer to that of [13]. We would however not be
able to arrive at a similar subformula property once fixed point formulae are allowed to
contain meets and residuals, since this property is essentially thanks to the presence of only
‘positive’ connectives in KA, from the point of view of focusing [2].
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A Proof ancestry

We recall some basic notions of proof ancestry, e.g. from [6], adapted to our setting. Let ρ
be a rule instance of LAL, as written in Fig. 2 or in the beginning of Sect. 5.

If ρ is a left rule then its principal formula is the indicated expression in the antecedent of
its lower sequent. If ρ is a right rule then its principal formula is just the succedent formula
of its lower sequent. id and cut have no principal formula. Any other formulae in the lower
sequent of ρ are called side formulas.

If ρ is a non-residual right rule then its auxiliary formulae are just the succedents of its
upper sequent(s), and if it is a non-residual left rule then its auxiliary formulae are just the
indicated expressions in the antecedent(s) of its upper sequent(s). If ρ is \-r or /-r then
the auxiliary formulae are the indicated occurrences of e and f in its upper sequent, and if
ρ is \-l or /-l then then auxiliary formulae are the indicated occurrences of e and f in its
upper sequents. id has no auxiliary formulae, while cut has two auxiliary formulae: the two
occurrences of e in its upper sequents; in this case we also call these formula occurrences
the cut formulae of ρ.

An expression occurrence e in an upper sequent of ρ is an immediate ancestor of an
expression occurrence f in its lower sequent if either f is principal and e is auxiliary, or if f
is a side formula and e corresponds to the same occurrence of that side formula in an upper
sequent, defined in the natural way. In a proof, the ancestor relation between two formula
occurrences is defined as the reflexive transitive closure of the immediate ancestor relation;
i.e. e is an ancestor of f if there is a path from f upwards, always choosing immediate
ancestors, that ends in e. We also say that f is a (immediate) descendant of e if e is an
(immediate, resp.) ancestor of f .

http://dx.doi.org/10.4204/EPTCS.161.7
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B Summary of the reduction rules

If πv is id
e→ e

then v[M ] M .

If πv is 1-r
→ 1

then v[] ?.

If πv is
Γ→ e ∆→ f

·-r
Γ,∆→ ef

then v[ ~M, ~N ] 〈v0[ ~M ], v1[ ~N ]〉.

If πv is
Γ→ ei

+-ri

Γ→ e1 + e2

then v[ ~M ] ini(v0[ ~M ]).

If πv is ∗-r1
→ f∗

then v[] [].

If πv is
Γ→ e ∆→ e∗

∗-r2
Γ,∆→ e∗

then v[ ~M, ~N ] v0[ ~M ] :: v1[ ~N ].

If πv is
Γ→ f1 Γ→ f2

∩-r
Γ→ f1 ∩ f2

then v[ ~M ] 〈v0[ ~M ], v1[ ~M ]〉.

If πv is
e,Γ→ f

\-r
Γ→ e\f

then v[ ~M ] λx.v0[x, ~M ].

If πv is
Γ, e→ f

/-r
Γ→ f/e

then v[ ~M ] λx.v0[ ~M, x].

If πv is
∆→ e Γ, e,Σ→ f

cut
Γ,∆,Σ→ f

then v[ ~M, ~N, ~P ] v1[ ~M, v0[ ~N ], ~P ].

If πv is
Γ,∆→ f

1-l
Γ, 1,∆→ f

then v[ ~M, ?, ~N ] v0[ ~M, ~N ].

If πv is
Γ, e, f,∆→ f

·-l
Γ, ef,∆→ f

then v[ ~M, 〈M,N〉, ~N ] v0[ ~M,M,N, ~N ].

If πv is
Γ, e1,∆→ f Γ, e2,∆→ f

+-l
Γ, e1 + e2,∆→ f

then v[ ~M, iniM, ~N ] vi[ ~M,M, ~N ].

If πv is
Γ,∆→ f Γ, e, e∗,∆→ f

∗-l
Γ, e∗,∆→ f

then v[ ~M, [], ~N ] v0[ ~M, [], ~N ]
and v[ ~M,M :: N, ~N ] v1[ ~M,M,N, ~N ].

If πv is
Γ, ei,∆→ f

∩-li

Γ, e1 ∩ e2,∆→ f

then v[ ~M, 〈M1,M2〉, ~N ] v0[ ~M,Mi, ~N ].

If πv is
∆→ e Γ, f,Σ→ g

\-l
Γ,∆, e\f,Σ→ g

then v[ ~M, ~N, λx.F, ~P ]  v1[ ~M,F{v0[ ~N ]/x}, ~P ].

If πv is
∆→ e Γ, f,Σ→ g

/-l
Γ, f/e,∆,Σ→ g

then v[ ~M, λx.F, ~N, ~P ] v1[ ~M,F{v0[ ~N ]/x}, ~P ].

C Subject reduction proof

Here we present some further proof details about the subject reduction, which is the key
step to obtain that programs terminate (Prop. 27).

We use the following notation:

I Notation 39. We write ~E ` ~M : Γ when Γ has the same length as ~E and ~M and for all i,
we have Ei `Mi : Γi.

Proof of Lem. 36 (substitution lemma). Given the typing derivation for F, x : e, F ′ `M :
f , replace every ancestor of x : e on the left by E and every ancestor of x in M by N . The
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only critical case is the initial step, which can simply be replaced by a typing derivation for
E ` N : e. J

Proof of Prop. 24 (subject reduction). We argue by induction on the structure of a typing
derivation for E `M : e. If the reduction takes place under a context, we use the induction
hypothesis and the substitution lemma. Otherwise, it suffices to conduct a ‘last step analy-
sis’, extracting the immediate subderivations to form a new typing derivation for E ` N : e.
Some interesting cases are the following:

cut : v[ ~M, ~N, ~P ] v1[ ~M, v0[ ~N ], ~P ]. A typing derivation for the LHS has the form on
the left below, so we recover a typing derivation for the RHS on the right below.

~E ` ~M : Γ ~F ` ~N : ∆ ~G ` ~P : Σ
v, ~E, ~F , ~G ` v[ ~M, ~N, ~P ] : f

~E ` ~M : Γ

~F ` ~N : ∆
v0, ~F ` v0[ ~N ] : e ~G ` ~P : Σ

v1, ~E, v0, ~F , ~G ` v1[ ~M, ~N, ~P ] : f

Note that v1, ~E, v0, ~F , ~G is well-defined since v, ~E, ~F , ~G is, and that it forms an extension.
∩-r : v[ ~M ] 〈〈v0[ ~M ], v1[ ~M ]〉〉. A typing derivation for the LHS has the form on the left
below, so we recover a typing derivation for the RHS on the right below:

~E ` ~M : Γ
v, ~E ` v[ ~M ] : e ∩ f

~E ` ~M : Γ
v0, ~E ` v0[ ~M ] : f

~E ` ~M : Γ
v1, ~E ` v1[ ~M ] : f

v, ~E ` 〈〈v0[ ~M ], v1[ ~M ]〉〉 : e ∩ f

v0, ~E and v1, ~E are indeed extensions of v, ~E.
∩-li : v[ ~M, 〈〈N1, N2〉〉, ~P ]  v0[ ~M,Ni, ~P ]. A typing derivation for the LHS has the
following form,

~E ` ~M : Γ
F1 ` N1 : e1 F2 ` N2 : e2

F ` 〈〈N1, N2〉〉 : e1 ∩ e2 ~G ` ~P : Σ
v, ~E, F, ~G ` v[ ~M, 〈〈N1, N2〉〉, ~P ] : g

where F1 and F2 are extensions of F . We deduce

~E ` ~M : Γ Fi ` Ni : ei
~G ` ~P : Σ

v0, ~E, Fi, ~G ` v0[ ~M,Ni, ~P ] : g

where v0, ~E, Fi, ~G is indeed an extension of v, ~E, F, ~G.
\-l : v[ ~M, ~N, λx.P, ~Q]  v1[ ~M,P{v0[ ~N ]/x}, ~Q]. A typing derivation for the LHS has
the following form,

~E ` ~M : Γ ~F ` ~N : ∆
x : e, ~G ` P : f
~G ` λx.P : e\f ~H ` ~Q : Σ

v, ~E, ~F , ~G, ~H ` v[ ~M, ~N, λx.P, ~Q] : g

so we recover the following typing derivation for the RHS:

~E ` ~M : Γ

~F ` ~N : ∆
v0, ~F ` v0[ ~N ] : e x : e, ~G ` P : f

subst
v0, ~F , ~G ` P{v0[N ]/x} : f ~H ` ~Q : Σ

v1, ~E, v0, ~F , ~G, ~H ` v1[ ~M,P{v0[ ~N ]/x}, ~Q] : g
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where we mark by subst an application of the substitution lemma. Again, v1, ~E, v0, ~F , ~G, ~H
is well-defined since v, ~E, ~F , ~G, ~H is, and that it forms an extension.
\-r : v[ ~M ]  λx.v0[x, ~M ]. A typing derivation for the LHS has the form on the left
below, so we recover a typing derivation for the RHS on the right below.

~E ` ~M : Γ
v, ~E ` v[ ~M ] : e\f

x : e ` x : e ~E ` ~M : Γ
v0, x : e, ~E ` v0[x, ~M ] : f
v0, ~E ` λx.v0[x, ~M ] : e\f

(Note that v0, x : e, ~E and x : e, v0, ~E are the same typing environment.) J

D Cut elimination rules

We list all cut-reduction rules. In each case, we sketch the analysis required by Lem. 30, by
showing the relevant parts of the head before the cut-reduction (π) and after (π′); in those
reductions, we assume the cut-reduction took place at a node v belonging to the head of π
(otherwise the lemma holds trivially).

D.1 Key cases for cut reduction
We first give the key cases for cut elimination, when the two cut formulae are principal for
a logical or initial step.

Identity:

id
e→ e

...

Γ, e,∆→ f
cut

Γ, e,∆→ f

7→
...

Γ, e,∆→ f

v[ ~M,N, ~O]
 v1[ ~M, v0[N ], ~O]
 v1[ ~M,N, ~O]

v[ ~M,N, ~O]

We have πv1 = π′v, the head is reduced by two steps, and the cut is removed.
Product:

...

∆→ e

...

Σ→ f
·-r

∆,Σ→ ef

...

Γ, e, f,Π→ g
·-l

Γ, ef,Π→ g
cut

Γ,∆,Σ,Π→ g

7→
...

∆→ e

...

Σ→ f

...

Γ, e, f,Π→ g
cut

Γ, e,Σ,Π→ g
cut

Γ,∆,Σ,Π→ g

v[ ~M, ~N, ~O, ~P ]
 cutef

v1[ ~M, v0[ ~N, ~O], ~P ]
 v1[ ~M, 〈v00[ ~N ], v01[ ~O]〉, ~P ]
 n v1[ ~M, 〈N ′, v01[ ~O]〉, ~P ]
 o v1[ ~M, 〈N ′, O′〉, ~P ]
 v11[ ~M,N ′, O′, ~P ]

v[ ~M, ~N, ~O, ~P ]
 cute

v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 cutf

v11[ ~M,N ′, v10[ ~O], ~P ]
 o v11[ ~M,N ′, O′, ~P ]

The head is reduced by one step; the cut is replaced by two cuts on occurring closer to
the end of the head.
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One:

1-r
→ 1

...

Γ,∆→ f
1-l

Γ, 1,∆→ f
cut

Γ,∆→ f

7→
...

Γ,∆→ f

v[ ~M, ~N ]
 cut1 v1[ ~M, v0[], ~N ]
 v1[ ~M, ?, ~N ]
 v10[ ~M, ~N ]

v[ ~M, ~N ]

We have πv10 = π′v, the head is reduced by three steps, the cut disappears.
Sum:

...

∆→ ei
+-ri ∆→ e0 + e1

...

Γ, e0,Σ→ f

...

Γ, e1,Σ→ f
+-l

Γ, e0 + e1,Σ→ f
cut

Γ,∆,Σ→ f

7→

...

∆→ ei

...

Γ, ei,Σ→ f
cut

Γ,∆,Σ→ f

v[ ~M, ~N, ~O]
 cute0+e1

v1[ ~M, v0[ ~N ], ~O]
 v1[ ~M, ini v00[ ~N ], ~O]
 n v1[ ~M, ini N

′, ~O]
 v1i[ ~M,N ′, ~O]

v[ ~M, ~N, ~O]
 cutei

v1[ ~M, v0[ ~N ], ~O]
 n v1[ ~M,N ′, ~O]

We have πv1i = π′v1, the head is reduced by two steps, the cut is replaced by a cut
occurring closer to the end.
Zero has no key case since it does not have any right introduction rule.
Kleene star 1 (which is similar to one):

∗-r1 → e∗

...

Γ,∆→ f

...

Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
cut

Γ,∆→ f

7→
...

Γ,∆→ f

v[ ~M, ~N ]
 cute∗ v1[ ~M, v0[], ~N ]
 v1[ ~M, [], ~N ]
 v10[ ~M, ~N ]

v[ ~M, ~N ]

We have πv10 = π′v, the head is reduced by three steps, the cut disappears.
Kleene star 2 (which is similar to product)

...

∆→ e

...

Σ→ e∗
∗-r2 ∆,Σ→ e∗

...

Γ,Π→ f

...

Γ, e, e∗,Π→ f
∗-l

Γ, e∗,Π→ f
cut

Γ,∆,Σ,Π→ f

7→
...

∆→ e

...

Σ→ e∗

...

Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f
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v[ ~M, ~N, ~O, ~P ]
 cute∗ v1[ ~M, v0[ ~N, ~O], ~P ]
 v1[ ~M, v00[ ~N ] :: v01[ ~O], ~P ]
 n v1[ ~M,N ′ :: v01[ ~O], ~P ]
 o v1[ ~M,N ′ :: O′, ~P ]
 v11[ ~M,N ′, O′, ~P ]

v[ ~M, ~N, ~O, ~P ]
 cute

v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 cute∗ v11[ ~M,N ′, v10[ ~O], ~P ]
 o v11[ ~M,N ′, O′, ~P ]

The head is reduced by one step; the cut is replaced by two cuts occurring closer to the
end of the head.
Meet:

...

∆→ e0

...

∆→ e1
∩-r

∆→ e0 ∩ e1

...

Γ, ei,Σ→ f
∩-li Γ, e0 ∩ e1,Σ→ f

cut
Γ,∆,Σ→ f

7→

...

∆→ ei

...

Γ, ei,Σ→ f
cut

Γ,∆,Σ→ f

v[ ~M, ~N, ~O]
 cute0∩e1

v1[ ~M, v0[ ~N ], ~O]
 v1[ ~M, 〈〈v00[ ~N ], v01[ ~N ]〉〉, ~O]
 v10[ ~M, v0i[ ~N ], ~O]

v[ ~M, ~N, ~O]
 cutei

v1[ ~M, v0[ ~N ], ~O]

The head is reduced by two steps; the cut is replaced by a cut occurring closer to the
end.
Left residual:

...

e,Σ→ f
\-r

Σ→ e\f

...

∆→ e

...

Γ, f,Π→ g
\-l

Γ,∆, e\f,Π→ g
cut

Γ,∆,Σ,Π→ g

7→
...

∆→ e

...

e,Σ→ f

...

Γ, f,Π→ g
cut

Γ, e,Σ,Π→ g
cut

Γ,∆,Σ,Π→ g

v[ ~M, ~N, ~O, ~P ]
 cute\f

v1[ ~M, ~N, v0[ ~O], ~P ]
 v1[ ~M, ~N, λx.v00[x, ~O], ~P ]
 v11[ ~M, v00[v10[ ~N ], ~O], ~P ]
 n v11[ ~M, v00[N ′, ~O], ~P ]

v[ ~M, ~N, ~O, ~P ]
 cute v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 cutf

v11[ ~M, v10[N ′, ~O], ~P ]

The head is reduced by one; the cut is replaced by two cuts occurring closer to the end.
When working on the last cut visited by the head of π, the n reductions leading to N ′ do
not visit any cut so that the weight decreases even though those reductions are moved
one step away from the end of the head.
Right residual: symmetrical to the left residual

D.2 Commutative cases
We now give the commutative cases for cut-elimination, when at least one of the cut formulae
is not principal for a logical step. We give the relevant reductions of the head as before;
when the logical step is a left-rule we only display the case where the program provided
in the corresponding principal position enables the corresponding (program) reduction rule:
otherwise the head of the reduced proof is blocked early, and the Lem. 30 is trivially satisfied.
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Left ·-l:
...

∆, e, f,Σ→ g
·-l

∆, ef,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, ef,Σ,Π→ h

7→

...

∆, e, f,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, e, f,Σ,Π→ h
·-l

Γ,∆, ef,Σ,Π→ h

v[ ~M, ~N, 〈O,U〉, ~P , ~Q]
 cut v1[ ~M, v0[ ~N, 〈O,U〉, ~P ], ~Q]
 v1[ ~M, v00[ ~N,O,U, ~P ], ~Q]

v[ ~M, ~N, 〈O,U〉, ~P , ~Q]
 v[ ~M, ~N,O,U, ~P , ~Q]
 cut v01[ ~M, v00[ ~N,O,U, ~P ], ~Q]

The length of the head is conserved; the cut is moved one step towards the end.
Right ·-l:

...

Σ→ g

...

Γ, e, f,∆, g,Π→ h
·-l

Γ, ef,∆, g,Π→ h
cut

Γ, ef,∆,Σ,Π

7→

...

Σ→ g

...

Γ, e, f,∆, g,Π→ h
cut

Γ, e, f,∆,Σ,Π→ h
·-l

Γ, ef,∆,Σ,Π→ h

v[ ~M, 〈O,U〉, ~N, ~P , ~Q]
 cut v1[ ~M, 〈O,U〉, ~N, v0[ ~P ], ~Q]
 p v1[ ~M, 〈O,U〉, ~N, P ′, ~Q]
 v10[ ~M,O,U, ~N, P ′, ~Q]

v[ ~M, 〈O,U〉, ~N, ~P , ~Q]
 v1[ ~M,O,U, ~N, ~P , ~Q]
 cut v10[ ~M,O,U, ~N, v10[ ~P ], ~Q]
 p v10[ ~M,O,U, ~N, P ′, ~Q]

The length of the head is conserved; the cut is moved one step towards the end. (Anal-
ogous case if the cut formula appears on the other side of ef .)
Right ·-r:

...

∆→ e

...

Γ, e,Σ→ f

...

Π→ g
·-r

Γ, e,Σ,Π→ fg
cut

Γ,∆,Σ,Π→ fg

7→

...

∆→ e

...

Γ, e,Σ→ f
cut

Γ,∆,Σ→ f

...

Π→ g
·-r

Γ,∆,Σ,Π→ fg

v[ ~M, ~N, ~O, ~P ]
 cut v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 〈v10[ ~M,N ′, ~O], v11[ ~P ]〉

v[ ~M, ~N, ~O, ~P ]
 〈v0[ ~M, ~N, ~O], v1[ ~P ]〉
 cut 〈v01[ ~M, v00[ ~N ], ~O], v1[ ~P ]〉
 n 〈v01[ ~M,N ′, ~O], v1[ ~P ]〉

The length of the head is conserved; the cut is moved one step towards the end.
Other right ·-r:

...

Σ→ e

...

Γ→ f

...

∆, e,Π→ fg
·-r

Γ,∆, e,Π→ g
cut

Γ,∆,Σ,Π→ g

7→
...

Γ→ f

...

Σ→ e

...

∆, e,Π→ fg
cut

∆,Σ,Π→ g
·-r

Γ,∆,Σ,Π→ g

v[ ~M, ~N, ~O, ~P ]
 cut v1[ ~M, ~N, v0[ ~O], ~P ]
 o v1[ ~M,N ′, O′, ~P ]
 〈v10[ ~M ], v11[N ′, O′, ~P ]〉
 m 〈M ′, v11[N ′, O′, ~P ]〉

v[ ~M, ~N, ~O, ~P ]
 〈v0[ ~M ], v1[ ~N, ~O, ~P ]〉
 m 〈M ′, v1[ ~N, ~O, ~P ]〉
 cut 〈M ′, v11[ ~N, v10[ ~O], ~P ]〉
 o 〈M ′, v11[ ~N,O′, ~P ]〉
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The length of the head is conserved and the cut is moved m+ 1 steps towards the end.
Note that the o steps leading to O′ and the m steps leading to M ′ are swapped by this
cut-reduction. This is why it is important for the third point of Lem. 30 that we consider
the last cut of the head: under this assumption, the m steps leading to M ′ do not visit
any cut (whose distance to the end of the head would increase).
Left 1-l:

...

∆,Σ→ g
1-l

∆, 1,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, 1,Σ,Π→ h

7→

...

∆,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆,Σ,Π→ h
1-l

Γ,∆, 1,Σ,Π→ h

v[ ~M, ~N, ?, ~P , ~Q]
 cut v1[ ~M, v0[ ~N, ?, ~P ], ~Q]
 v1[ ~M, v00[ ~N, ~P ], ~Q]

v[ ~M, ~N, ?, ~P , ~Q]
 v[ ~M, ~N, ~P , ~Q]
 cut v01[ ~M, v00[ ~N, ~P ], ~Q]

The length of the head is conserved; the cut is moved one step towards the end.
Right 1-l:

...

Σ→ g

...

Γ,∆, g,Π→ h
1-l

Γ, 1,∆, g,Π→ h
cut

Γ, 1,∆,Σ,Π→ h

7→

...

Σ→ g

...

Γ,∆, g,Π→ h
cut

Γ,∆,Σ,Π→ h
1-l

Γ, 1,∆,Σ,Π→ h

v[ ~M, ?, ~O, ~P , ~Q]
 cut v1[ ~M, ?, ~O, v0[ ~P ], ~Q]
 p v1[ ~M, ?, ~O, P ′, ~Q]
 v10[ ~M, ~O, P ′, ~Q]

v[ ~M, ?, ~O, ~P , ~Q]
 v1[ ~M, ~O, ~P , ~Q]
 cut v10[ ~M, ~O, v10[ ~P ], ~Q]
 p v10[ ~M, ~O, P ′, ~Q]

The length of the head is conserved; the cut is moved one step towards the end. (Anal-
ogous case if the cut formula appears on the other side of 1.)
Rule 1-r cannot appear on the right of a cut.
Left +-l:

...

∆, e0,Σ→ g

...

∆, e1,Σ→ g
+-l

∆, e0 + e1,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, e0 + e1,Σ,Π→ h

7→

...

∆, e0,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, e0,Σ,Π→ h

...

∆, e1,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆, e1,Σ,Π→ h
+-l

Γ,∆, e0 + e1,Σ,Π→ h

v[ ~M, ~N, iniO, ~P , ~Q]
 cut v1[ ~M, v0[ ~N, iniO, ~P ], ~Q]
 v1[ ~M, v0i[ ~N,O, ~P ], ~Q]

v[ ~M, ~N, iniO, ~P , ~Q]
 vi[ ~M, ~N,O, ~P , ~Q]
 cut vi1[ ~M, vi0[ ~N,O, ~P ], ~Q]

The length of the head is conserved; the cut is moved one step towards the end.
Right +-l:

...

Σ→ g

...

Γ, e0,∆, g,Π→ h

...

Γ, e1,∆, g,Π→ h
+-l

Γ, e0 + e1,∆, g,Π→ h
cut

Γ, e0 + e1,∆,Σ,Π→ h

7→

...

Σ→ g

...

Γ, e0,∆, g,Π→ h
cut

Γ, e0,Σ,Π→ h

...

Σ→ g

...

Γ, e1,∆, g,Π→ h
cut

Γ, e1,Σ,Π→ h
+-l

Γ, e0 + e1,∆,Σ,Π→ h
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v[ ~M, iniN, ~O, ~P , ~Q]
 cut v1[ ~M, iniN, ~O, v0[ ~P ], ~Q]
 p v1[ ~M, iniN, ~O, P

′, ~Q]
 v1i[ ~M,N, ~O, P ′, ~Q]

v[ ~M, iniN, ~O, ~P , ~Q]
 vi[ ~M,N, ~O, ~P , ~Q]
 cut vi1[ ~M,N, ~O, vi0[ ~P ], ~Q]
 p vi1[ ~M,N, ~O, P ′, ~Q]

The length of the head is conserved; the cut is moved one step towards the end.
(Analogous case if the cut formula appears on the other side of the sum.)
Right +-ri:

...

∆→ g

...

Γ, g,Σ→ ei
+-ri Γ, g,Σ→ e0 + e1

cut
Γ,∆,Σ, e0 + e1

7→

...

∆→ g

...

Γ, g,Σ→ ei
cut

Γ,∆,Σ→ ei
+-ri Γ,∆,Σ→ e0 + e1

v[ ~M, ~N, ~O]
 cut v1[ ~M, v0[ ~N ], ~O]
 n v1[ ~M,N ′, ~O]
 ini v11[ ~M,N ′, ~O]

v[ ~M, ~N, ~O]
 ini v1[ ~M, ~N, ~O]
 cut ini v11[ ~M, v10[ ~N ], ~O]
 n ini v11[ ~M,N ′, ~O]

The length of the head is conserved; the cut is moved one step towards the end.
Left and right 0-l are easy: they just produce a new 0-l axiom; the length of the head is
reduced (to one), the cut disappears.
Left ∗-l:

...

∆,Σ→ f

...

∆, e, e∗,Σ→ f
∗-l

∆, e∗,Σ→ f

...

Γ, f,Π→ g
cut

Γ,∆, e∗,Σ,Π→ g

7→

...

∆,Σ→ f

...

Γ, f,Π→ g
cut

Γ,∆,Σ,Π→ g

...

∆, e, e∗,Σ→ f

...

Γ, f,Π→ g
cut

Γ,∆, e, e∗,Σ,Π→ g
∗-l

Γ,∆, e∗,Σ,Π→ g

There are two cases depending on the value for e∗:
[] (similar to left 1-l):

v[ ~M, ~N, [], ~P , ~Q]
 cut v1[ ~M, v0[ ~N, [], ~P ], ~Q]
 v1[ ~M, v00[ ~N, ~P ], ~Q]

v[ ~M, ~N, [], ~P , ~Q]
 v0[ ~M, ~N, ~P , ~Q]
 cut v01[ ~M, v00[ ~N, ~P ], ~Q]

O :: U (similar to left ·-l):

v[ ~M, ~N,O :: U, ~P , ~Q]
 cut v1[ ~M, v0[ ~N,O :: U, ~P ], ~Q]
 v1[ ~M, v01[ ~N,O,U ~P ], ~Q]

v[ ~M, ~N,O :: U, ~P , ~Q]
 v1[ ~M, ~N,O,U ~P , ~Q]
 cut v11[ ~M, v10[ ~N,O,U, ~P ], ~Q]

In both cases the length of the head is conserved and the cut is moved one step towards
the end.
Right ∗-l:

...

∆→ f

...

Γ, f,Σ,Π→ g

...

Γ, f,Σ, e, e∗,Π→ g
∗-l

Γ, f,Σ, e∗,Π→ g
cut

Γ,∆,Σ, e∗,Π→ g

7→

...

∆→ f

...

Γ, f,Σ,Π→ g
cut

Γ,∆,Σ,Π→ g

...

∆→ f

...

Γ, f,Σ,Π, e, e∗ → g
cut

Γ,∆,Σ, e, e∗,Π→ g
∗-l

Γ,∆,Σ, e∗,Π→ g

Like previously, there are two cases depending on the value for e∗:
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[] (similar to right 1-l):

v[ ~M, ~N, ~P , [], ~Q]
 cut v1[ ~M, v0[ ~N ], ~P , [], ~Q]
 n v1[ ~M,N ′, ~P , [], ~Q]
 v10[ ~M,N ′, ~P , ~Q]

v[ ~M, ~N, ~P , [], ~Q]
 v0[ ~M, ~N, ~P , ~Q]
 cut v01[ ~M, v00[ ~N ], ~P , ~Q]
 n v01[ ~M,N ′, ~P , ~Q]

O :: U (similar to right ·-l):

v[ ~M, ~N, ~P ,O :: U, ~Q]
 cut v1[ ~M, v0[ ~N ], ~P ,O :: U, ~Q]
 n v1[ ~M,N ′, ~P ,O :: U, ~Q]
 v11[ ~M,N ′, ~P ,O, U ~Q]

v[ ~M, ~N, ~P ,O :: U, ~Q]
 v1[ ~M, ~N, ~P ,O,U, ~Q]
 cut v11[ ~M, v10[ ~N ], ~P ,O, U, ~Q]
 n v11[ ~M,N ′, ~P ,O, U, ~Q]

In both cases the length of the head is conserved and the cut is moved one step towards
the end.
Rule ∗-r1 cannot appear on the right of a cut.
Right ∗-r2 (similar to right ·-r):

...

∆→ e

...

Γ, e,Σ→ f

...

Π→ f∗
∗-r2 Γ, e,Σ,Π→ f∗

cut
Γ,∆,Σ,Π→ f∗

7→

...

∆→ e

...

Γ, e,Σ→ f
cut

Γ,∆,Σ→ f

...

Π→ f∗
∗-r2 Γ,∆,Σ,Π→ f∗

v[ ~M, ~N, ~O, ~P ]
 cut v1[ ~M, v0[ ~N ], ~O, ~P ]
 n v1[ ~M,N ′, ~O, ~P ]
 v10[ ~M,N ′, ~O] :: v11[ ~P ]

v[ ~M, ~N, ~O, ~P ]
 v0[ ~M, ~N, ~O] :: v1[ ~P ]
 cut v01[ ~M, v00[ ~N ], ~O] :: v1[ ~P ]
 n v01[ ~M,N ′, ~O] :: v1[ ~P ]

The length of the head is conserved and the cut is moved one step towards the end.
Other right ∗-r2 (similar to other right ·-r):

...

Σ→ e

...

Γ→ f

...

∆, e,Π→ f∗
∗-r2 Γ,∆, e,Π→ f∗

cut
Γ,∆,Σ,Π→ f∗

7→
...

Γ→ f

...

Σ→ e

...

∆, e,Π→ f∗
cut

∆,Σ,Π→ f∗
∗-r2 Γ,∆,Σ,Π→ f∗

v[ ~M, ~N, ~O, ~P ]
 cut v1[ ~M, ~N, v0[ ~O], ~P ]
 o v1[ ~M,N ′, O′, ~P ]
 v10[ ~M ] :: v11[N ′, O′, ~P ]
 m M ′ :: v11[N ′, O′, ~P ]

v[ ~M, ~N, ~O, ~P ]
 v0[ ~M ] :: v1[ ~N, ~O, ~P ]
 m M ′ :: v1[ ~N, ~O, ~P ]
 cut M ′ :: v11[ ~N, v10[ ~O], ~P ]
 o M ′ :: v11[ ~N,O′, ~P ]

The length of the head is conserved and the cut is moved m+ 1 steps towards the end.
Like in the other right ·-r case, the o steps leading to O′ and the m steps leading to
M ′ are swapped by this cut-reduction, which is fine when working on the last cut of the
head.
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Left ∩-li:

...

∆, ei,Σ→ f
∩-li ∆, e0 ∩ e1,Σ→ f

...

Γ, f,Π→ g
cut

Γ,∆, e0 ∩ e1,Σ,Π→ g

7→

...

∆, ei,Σ→ f

...

Γ, f,Π→ g
cut

Γ,∆, ei,Σ,Π→ g
∩-li Γ,∆, e0 ∩ e1,Σ,Π→ g

v[ ~M, ~N, 〈〈O0, O1〉〉, ~P , ~Q]
 cut v1[ ~M, v0[ ~N, 〈〈O0, O1〉〉, ~P ], ~Q]
 v10[ ~M, v0[ ~N,Oi, ~P ], ~Q]
 o v10[ ~M, v0[ ~N,O′i, ~P ], ~Q]

v[ ~M, ~N, 〈〈O0, O1〉〉, ~P , ~Q]
 v0[ ~M, ~N,Oi, ~P , ~Q]
 o v0[ ~M, ~N,O′i,

~P , ~Q]
 cut v01[ ~M, v00[ ~N,O′i, ~P ], ~Q]

Note that while the programs ~M, ~N, ~P , ~Q are assumed to be irreducible thanks to the
innermost reduction strategy, O0 and O1 are not, whence the reduction from Oi to O′i.
The length of the head is conserved and the cut is moved o + 1 steps towards the end.
If this cut was the last one visited in the head of π then no cuts are visited during the
reduction of Oi, so that the overall weight indeed decreases.
Right ∩-li:

...

∆→ f

...

Γ, f,Σ, ei,Π→ g
∩-li Γ, f,Σ, e0 ∩ e1,Π→ g

cut
Γ,∆,Σ, e0 ∩ e1,Π→ g

7→

...

∆→ f

...

Γ, f,Σ, ei,Π→ g
cut

Γ,∆,Σ, ei,Π→ g
∩-li Γ,∆,Σ, e0 ∩ e1,Π→ g

v[ ~M, ~N, ~O, 〈〈P0, P1〉〉, ~Q]
 cut v1[ ~M, v0[ ~N ], ~O, 〈〈P0, P1〉〉, ~Q]
 n v1[ ~M,N ′, ~O, 〈〈P0, P1〉〉, ~Q]
 v11[ ~M,N ′, ~O, Pi, ~Q]
 p v11[ ~M,N ′, ~O, P ′i ,

~Q]

v[ ~M, ~N, ~O, 〈〈P0, P1〉〉, ~Q]
 v1[ ~M, ~N, ~O, Pi, ~Q]
 p v1[ ~M, ~N, ~O, P ′i ,

~Q]
 cut v11[ ~M, v10[ ~N ], ~O, P ′i , ~Q]
 n v11[ ~M,N ′, ~O, P ′i ,

~Q]

The length of the head is preserved and the cut is moved p + 1 steps towards the end.
Reductions yielding P ′i and and N ′ are swapped so that it is again crucial to operate on
the last cut to decrease the weight.
(Analogous case if the cut formula appears on the other side of the meet.)
Right ∩-r:

...

∆→ f

...

Γ, f,Σ→ e0

...

Γ, f,Σ→ e1
∩-r

Γ, f,Σ→ e0 ∩ e1
cut

Γ,∆,Σ→ e0 ∩ e1

7→

...

∆→ f

...

Γ, f,Σ→ e0
cut

Γ,∆,Σ→ e0

...

∆→ f

...

Γ, f,Σ→ e1
cut

Γ,∆,Σ→ e0
∩-r

Γ,∆,Σ→ e0 ∩ e1

v[ ~M, ~N, ~O]
 cut v1[ ~M, v0[ ~N ], ~O]
 n v1[ ~M,N ′, ~O]
 〈〈v10[ ~M,N ′, ~O], v11[ ~M,N ′, ~O]〉〉

v[ ~M, ~N, ~O]
 〈〈v0[ ~M, ~N, ~O], v1[ ~M, ~N, ~O]〉〉

As explained in the main text, either the head of π does not touch the produced pair, in
which case the length of the head is decreased by n + 1 and the cut has been removed;
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or it destructs the pair using a ∩-li program reduction, at which point the head of π′
catches up with 1 + n steps (the blocked cut followed by the reductions yielding N ′).
In the latter case, the length of the run is preserved and the cut is moved many steps
towards the end; when operating on the last cut of the head, the other cuts did not move.
Left \-l:

...

∆2 → e

...

∆1, f,Σ→ g
\-l

∆1,∆2, e\f,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆1,∆2, e\f,Σ,Π→ h

7→
...

∆2 → e

...

∆1, f,Σ→ g

...

Γ, g,Π→ h
cut

Γ,∆1, f,Σ,Π→ h
\-l

Γ,∆1,∆2, e\f,Σ,Π→ h

v[ ~M, ~N, ~O, λx.F, ~P , ~Q]
 cut v1[ ~M, v0[ ~N, ~O, λx.F, ~P ], ~Q]
 v1[ ~M, v01[ ~N, F{v00[ ~O]/x}, ~P ], ~Q]
 r v1[ ~M, v01[ ~N,R, ~P ], ~Q]

v[ ~M, ~N, ~O, λx.F, ~P , ~Q]
 v1[ ~M, ~N, F{v0[ ~O]/x}, ~P , ~Q]
 r v1[ ~M, ~N,R, ~P , ~Q]
 cut v11[ ~M, v10[ ~N,R, ~P ], ~Q]

The length of the run is preserved and the cut is moved r + 1 steps towards the end;
when operating on the last cut of the head, the other cuts did not move.
Right \-l:

...

Σ→ g

...

∆1, g,∆2 → e

...

Γ, f,Π→ h
\-l

Γ,∆1, g,∆2, e\f,Π→ h
cut

Γ,∆1,Σ,∆2, e\f,Π→ h

7→

...

Σ→ g

...

∆1, g,∆2 → e
cut

∆1,Σ,∆2 → e

...

Γ, f,Π→ h
\-l

Γ,∆1,Σ,∆2, e\f,Π→ h

v[ ~M, ~N, ~O, ~P , λx.F, ~Q]
 cut v1[ ~M, ~N, v0[ ~O], ~P , λx.F, ~Q]
 o v1[ ~M, ~N,O′, ~P , λx.F, ~Q]
 v11[ ~M,F{v10[ ~N,O′, ~P ]/x}, ~Q]
 f v11[ ~M,F ′{v10[ ~N,O′, ~P ]/x}, ~Q]

v[ ~M, ~N, ~O, ~P , λx.F, ~Q]
 v1[ ~M,F{v0[ ~N, ~O, ~P ]/x}, ~Q]
 f v1[ ~M,F ′{v0[ ~N, ~O, ~P ]/x}, ~Q]
 cut v1[ ~M,F ′{v01[ ~N, v00[ ~O], ~P ]/x}, ~Q]
 o v1[ ~M,F ′{v01[ ~N,O′, ~P ]/x}, ~Q]

In the above reductions, we assumed that F brings x to evaluation position after f steps.
If so, then the length of the head is preserved, the cut is moved f + 1 steps forward,
and the weight decreases when working on the last visited cut. Otherwise, either the
head of π′ stops earlier, not visiting the cut anymore, or the surrounding computation
eventually brings x to evaluation position in which case the head of π′ catches up, as
in the displayed reductions (the length is preserved, the cut is moved forward by many
steps, and weight decreases when working on the last visited cut).
Note that linearity of λx.F is crucial here: if it were to duplicate x (outside of additive
pairs), the head of π′ would need to perform the sequence of o reductions several times.
Other right \-l:

...

∆→ g

...

Σ2 → e

...

Γ, g,Σ1, f,Π→ h
\-l

Γ, g,Σ1,Σ2, e\f,Π→ h
cut

Γ,∆,Σ1,Σ2, e\f,Π→ h

7→
...

Σ2 → e

...

∆→ g

...

Γ, g,Σ1, f,Π→ h
cut

Γ,∆,Σ1, f,Π→ h
\-l

Γ,∆,Σ1,Σ2, e\f,Π→ h
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v[ ~M, ~N, ~O, ~P , λx.F, ~Q]
 cut v1[ ~M, v0[ ~N ], ~O, ~P , λx.F, ~Q]
 n v1[ ~M,N ′, ~O, ~P , λx.F, ~Q]
 v11[ ~M,N ′, ~O, F{v10[ ~P ]/x}, ~Q]
 r v11[ ~M,N ′, ~O,R, ~Q]

v[ ~M, ~N, ~O, ~P , λx.F, ~Q]
 v1[ ~M, ~N, ~O, F{v0[ ~P ]/x}, ~Q]
 r v1[ ~M, ~N, ~O,R, ~Q]
 cut v11[ ~M, v10[ ~N ], ~O,R, ~Q]
 n v11[ ~M,N ′, ~O,R, ~Q]

The length is preserved, the cut is moved r+ 1 steps forward, the weight decreases when
working on the last visited cut.
(Last case of a right \-l is similar.)
Right \-r:

...

∆→ g

...

e,Γ, g,Σ→ f
\-r

Γ, g,Σ→ e\f
cut

Γ,∆,Σ→ e\f

7→

...

∆→ g

...

e,Γ, g,Σ→ f
cut

e,Γ,∆,Σ→ f
\-r

Γ,∆,Σ→ e\f

v[ ~M, ~N, ~O]
 cut v1[ ~M, v0[ ~N ], ~O]
 n v1[ ~M,N ′, ~O]
 λx.v11[x, ~M,N ′, ~O]

v[ ~M, ~N, ~O]
 λx.v1[x, ~M, ~N, ~O]

Like the right ∩-r case, we have two cases:
either the head of π does not subsequently apply the produced λ-abstraction, in which
case the length of the head decreases and the cut is no longer visited;
or it does, the head of π′ catches up at this point in 1+n steps, the length of the head
is preserved, the cut is moved many steps forward, and other the cuts do not move if
this was the last visited one.

Cases for right residuals are symmetrical to those for left residuals.


