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Abstract

Profiting from previous works done with the INDRA multidetector [1] on the
description of the light response L of the CsI(Tl) crystals to different impinging
nuclei [2, 3], we propose an improved ∆E − L identification-calibration proce-
dure for Silicon-Cesium Iodide (Si-CsI) telescopes, namely an Advanced Mass
Estimate (AME ) method. AME is compared to the usual, simple visual analy-
sis of the corresponding two-dimensional map of ∆E−E type, by using INDRA

experimental data from nuclear reactions induced by heavy ions in the Fermi
energy regime. We show that the capability of such telescopes to identify both
the atomic Z and the mass A numbers of light and heavy reaction products, can
be quantitatively improved thanks to the proposed approach. This conclusion
opens new possibilities to use INDRA for studying these reactions especially
with radioactive beams. Indeed, the determination of the mass for charged re-
action products becomes of paramount importance to shed light on the role of
the isospin degree of freedom in the nuclear equation of state [4, 5] .
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1. Introduction

One of the present motivations for investigating heavy-ion collisions at in-
termediate energies consists of improving our understanding of the equation
of state for nuclear matter with the isospin degree of freedom. The advent of
new accelerators, providing high intensity radioactive beams will cover a broad
range of isospin (N/Z) ratios. Jointly, new detection arrays like FAZIA [6, 7],
which fully exploit pulse shape analysis from silicon detectors, are under con-
struction to benefit from these future possibilities. Information on the isospin
dependence of the nuclear EOS can then be obtained by properly choosing
projectile-target colliding systems. To improve the present experimental capa-
bilities in this framework, we present a new Advanced Mass Estimate (AME )
approach, based upon the telescope technique for INDRA Silicon-CsI telescopes
[1]. This approach will extend the isotopic identification to nuclear reaction
products heavier than those commonly identified with standard ∆E − L two-
dimensional correlations. Here, ∆E indicates the energy lost in the 1st Silicon
stage (Si) of the telescope and L the scintillation light produced in the 2nd

stage, made by a CsI(Tl) scintillator crystal read by a photomultiplier and cor-
responds to the residual energy E = E0 deposited by energetic charged reaction
products. The main difficulties for identifying the mass number over a broad
range of elements are related to the non-linear energy response of each of the
two stages and, in particular, of the scintillator. Actually, the light response of
the scintillator strongly depends on the reaction product identity (charge and
mass), which makes difficult even the determination of the deposited energy. At
present time, the isotopic identification is visually achieved only for light nuclei
from hydrogen up to (roughly) carbon isotopes for most of the INDRA Si-CsI
telescopes. For some specific telescopes with smaller thickness - 150 µm instead
of 300 µm -, an increased gain has been used in order to improve the energy
resolution and hence the isotopic separation during the 5th INDRA campaign
performed at GANIL a few years ago. In doing so, the isotopic identification
for these specific telescopes has been slightly augmented up to oxygen isotopes
for the best cases.

To improve and optimize information coming from INDRA Si-CsI telescopes
as far as the mass number is concerned, we started from the pionneering works
of Pârlog et al. [2, 3] which provide an accurate physical description of the
light response produced by the CsI(Tl) crystals. In these articles, two formulas
have been derived concerning the relation between the light signal L, the atomic
number Z, the mass number A and the incident energy E0 of a reaction product
detected by a CsI scintillator. The proposed method was then used and tested
on data recorded with INDRA during the fifth campaign, with telescopes having
as first stage 300 µm or 150 µm-thick Silicon detectors. These experimental data
were obtained by bombarding 112,124Sn targets with 124,136Xe beams at 32A
MeV and 45A MeV.
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The paper is organized as follows. In section (II), we recall the main results
of references [2, 3] concerning the role of quenching and knock-on electrons in
scintillation light from the CsI(Tl) crystals and show the quality of the analyt-
ical description. Section (III) describes the Advanced Mass Estimate (AME )
method and the comparisons with standard INDRA isotopic identification. In
section (IV) determination and uncertainty on A are discussed. In Section (V)
we present a summary of this work.

2. Quenching and knock-on electrons (δ-rays) in scintillation light of
CsI(Tl) crystals

Cesium iodide scintillators, CsI(Tl), doped with thallium at a level of 0, 02−
0, 2% molar concentration, are inorganic crystals where the scintillation light is
produced by the activation (excitation) of the thallium atoms encountered by
the carriers (electrons and holes) produced during the motion of the incoming
charged product. The activation results in an emission of light by the excited
thallium atoms in the green band at 550 nm. The differential scintillation light
output dL

dE
as a function of energy E is often described by means of the Birks

formula [8]:

dL

dE
= S

1

1 +KB
(

dE
dx

) , (1)

S being the scintillation efficiency and KB the quenching coefficient. The differ-
ential light decreases as the stopping power

(

dE
dx

)

increases; this is the so-called
quenching effect, more pronounced for the heavier ions leading to high carrier
concentrations. Under the approximation

(

dE
dx

)

∝ AZ2/E, the integral over the
variable E of the above equation provides a simple formula for the total light
response L [9] as a function of the initial energy E0 of the detected ion:

L(E0) =

∫ E0

0

L(E)dE = a1E0

[

1− a2
AZ2

E0

ln
(

1 +
1

a2AZ2/E0

)

]

, (2)

The gain coefficient a1 includes both the scintillation efficiency and the elec-
tronic chain contribution to the signal amplification. The quenching coefficient
a2 is mainly related to the prompt direct recombination of part of the electrons
and holes, which thus are not participating to the excitation of the activator
atoms.

The expressions (1) and (2) were used, with reasonable results [8, 9, 10]
in the case of light charged particles or Intermediate Mass Fragments (IMFs)
of rather low energy per nucleon E/A, i.e. as long as the contribution to the
light response of the knock-on electrons or δ-rays, escaping the fiducial volume
of very high carrier concentration close to the trajectory of the particle/ion,
remains unsignificant. Actually, above a certain energy per nucleon threshold
eδ = Eδ/A, the incident particle/ion starts to generate these rapid electrons,
which are characterized by a small stopping power. Consequently, the fraction
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F(E) - firstly introduced by Meyer and Murray [11] -, of the energy dE deposited
into a slice dx and carried off by the knock-on electrons is practically not af-
fected by quenching. The δ-rays increase thus the light output and this should
be necessarily taken into account at energies higher than a few MeV/nucleon,
especially for heavier ions.

As it penetrates into a CsI crystal, an energetic charged particle/ion is grad-
ually loosing its energy (from E0 to 0) mainly by ionization - the electronic
stopping power -, leading to the scintillation, but also, in a smaller extent, by
interacting with the host lattice nuclei - the nuclear stopping power -, lost for
the radiative transitions. Both stopping powers can be quantitatively predicted,
e.g. by using Ziegler tables [12] appealing to the work of Lindhard et al. [13].
Within the INDRA collaboration, we use stopping power tables for heavy ions
in solids from Northcliffe and Schilling at low energies [14] and from Hubert and
Bimbot at high energies [15], both matched at 2.5 MeV/nucleon. They provide
quite accurate results in the low and intermediate energy range, i.e. from few
hundreds of keV/nucleon up to 100 MeV/nucleon, of interest here. More than
a decade ago, Pârlog et al. [2, 3] put in evidence the role of the two types of
energy loss to the quenching and also found the dependence of the fraction F(E)
on the instantaneous velocity (or energy per nucleon E/A). They disentangled
the contributions of the carriers produced in the main particle track and of the
δ-rays to the scintillation too. The authors quantified these processes in a simple
Recombination and Nuclear Quenching Model (RNQM) connecting the exact
value of the total emitted light L to both the electronic and nuclear infinitesi-
mal stopping powers along the incident particle track via numerical integration
[2]. The model contains Eq. (1) as a particular case. Under well argued ap-
proximations, they derived a more friendly analytical formula relating L to the
quantities Z,A and E0 [3]:

L(E0) = a1E0

[

1− a2
AZ2

E0

ln
(

1 +
1

a2AZ2/E0

)

+ a2a4
AZ2

E0

ln
( E0 + a2AZ

2

a3A+ a2AZ2

)

]

,

(3)
for an incident energy E0 in the CsI(Tl) higher than the threshold Eδ at which
the δ-rays start to be generated. Besides the coefficients a1, a2, with the same
physical signification as above in Eq. (2), two others appear: the energy per
nucleon a3 = eδ, (a few MeV/nucleon) and a4 = F - the fraction (a few tenths
of percents) of energy - they are carrying off, taken as a constant irrespective
of current energy E along the particle path above Eδ. At low energy (E ≤ Eδ),
F = 0 and only the first term is present, then Eq. (3) is reduced to Eq. (2).
These four parameters have then to be evaluated by using a number of suitable
calibration points by a fit procedure.

The relation (3) is purely analytical and can then be easily implemented for
calibration purpose. It is less accurate than the exact treatement provided in
RNQM [2] especially at low energy. One drawback is also the step function
used for F(E), which jumps from 0 to a4 at E = Eδ in order to allow the ana-
lytical integration over E. This introduces a discontinuity in the function L(E)
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at this connection point, especially for very heavy fragments [3]. Nevertheless,
it may be ad hoc improved by slightly improving the continuity of the fraction
F(E) around Eδ. In this work, we consider that the use of the analytical ex-
pression will only marginally affect the results, taking into account the intrinsic
quality of the Silicon wafers and of the CsI crystals of the INDRA telescopes,
which does not secure the precision required to appreciate such discrepancies.
Moreover, the total light L emitted by the CsI(Tl) scintillators is not directly
measured, but reconstructed, through the procedure described by Pârlog et al.

[3], starting from two components of the scintillation light measured by inte-
grating the signal in the fast and slow time gates [3]. Nevertheless, for a more
rigorous and accurate treatment, the use of the exact formulation of RNQM
[2] is preferable when possible, for example with high-quality detectors such as
FAZIA Si-CsI telescopes. This will be the subject of a forthcoming paper.

As an example of the quality attained with our analytical description for the
scintillation light in CsI(Tl) crystal, Fig. 1 displays the energy-light correlation
E0 − L using Eq. (3) superimposed on INDRA data concerning the system
136Xe+124 Sn at 32A MeV, for a specific Si-CsI telescope.

Figure 1: Energy (E0) - Light (L) correlation in a CsI(Tl) scintillator, for even-Z fragments.
The points correspond to data from the telescope 2 of the ring 6 (14◦≤ θ ≤ 20◦) of the INDRA
4π array for the system 136Xe +124 Sn at 32A MeV. The atomic number of the heaviest
fragments emitted in this angular domain is Z = 16. The full/coloured lines illustrate the
Eq. (3) predictions. The mass number for each element is likely corresponding to the most
probable isotope, here A = 2Z + 1. See text for explanation.

Each full/coloured line in Fig. 1 corresponds to a given nucleus with an
atomic number Z and a mass number A. We have chosen here to display
isotopic lines with A = 2Z + 1 for even-Z nuclei. We will see in the following
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that this mass assumption is quite reasonable for IMFs when considering the
neutron (n)-rich system 136Xe+124 Sn. For a given energy E0 - determined as
shown in the next section -, the heavier the nucleus, the smaller the light value
L is; this is a direct consequence of the ratio nuclear/electronic stopping powers,
and also of the quenching effect. Both quantities increase with the charge and
the mass of the fragment and decrease when E0 increases. Additionaly, above
a certain velocity, δ-electrons are generated, very efficient for light production.
These are the reasons why the curvature of the different isotopic curves shown
in Fig. 1 evolves toward a linear behavior at higher light/energy, here L > 600.
It is worthwhile to mention that the δ-rays contribution to the light is quite
large, reaching 20 − 50% for Z > 20, as pointed out in Ref. [3] and must
be definitely included in order to reproduce the experimental data. To obtain
the results displayed in Fig. 1, we have used calibration points coming from
secondary light beams stopped in CsI detectors from Z = 1 up to Z = 5
together with punched through events in the Silicon layer when possible. In a
two dimensional ∆E−L plot, these points are close to the ordinate ∆E axis, i.e.

to fragment energies slightly higher than that necessary to traverse the Silicon
stage of the telescope and to reach the CsI(Tl) one with a quite small residual
energy, sufficient however to be seen in the scintillator stage.
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Figure 2: Energy (E0) - Light (L) correlation in the CsI(Tl) scintillator of telescope 1 of the
ring 4 (7◦≤ θ ≤ 10◦), shown here for the two systems 124Xe +112 Sn and 136Xe +124 Sn
at 32A MeV, and for some selected elements: carbon, fluorine, magnesium and sulphur. The
large/green symbols correspond to the (n)-poor system (124Xe +112 Sn) and the small/blue
ones to the (n)-rich system (136Xe+124 Sn).

In order to better appreciate the performances concerning the isotopic iden-
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tification in INDRA CsI telescopes, we display in Fig. 2 the correlation between
the energy and the CsI light signal (same as for Fig. 1) for 4 selected elements
(carbon, fluorine, magnesium and sulphur), and for systems with different neu-
tron content: 124Xe+112 Sn and 136Xe+124 Sn at 32A MeV. We can observe a
significative difference between the two systems concerning the neutron richness
of the produced fragments (higher masses for the (n)-rich system in blue) as
one could expect from simple physical arguments. It is worthwhile to mention
that this result requires indeed a very good stability for the CsI light response.
This is done in INDRA by monitoring a laser pulse all along the data taking
[3]. Thus, Fig. 2 suggests that the CsI light signal can help to discriminate
the different isotopes, here at least up to Z = 16 (sulphur). In the following,
we will use this additional valuable information to improve the usual ∆E − L
identification method for heavier elements than typically done up to carbon or
nitrogen.

Figure 3: ∆E − L correlation for INDRA data obtained with a module placed at a forward
angle for the 124,136Xe +124 Sn systems at 32A MeV and 45A MeV bombarding energies,
illustrating its sensitivity to the detected fragment mass. The Silicon stage is 300 µm thick.
See text for explanation.

To illustrate the overall sensitivity of the Si-CsI(Tl) telescopes to the mass
number, Fig. 3 displays the ∆E − L correlation bidimensional matrix of the
2nd module (including a 300 µm-thick Si) for the 1st ring (2◦≤ θ ≤ 3◦) of
INDRA, and for 124Xe and 136Xe projectiles on 124Sn at 32A MeV and 45A
MeV bombarding energies. The bright/yellow spots, indicated by arrows on the
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borders of the geometrical loci for Z = 54 (two in the region of the 32A MeV
incident energy and other two in that of 45A MeV one) correspond in both cases
to the (n)-poor or (n)-rich projectiles, respectively. These findings indeed show
the good sensitivity of the response of INDRA telescopes to the mass of the
detected ejectile, thus calling for a deeper analysis of the experimental data as
presented hereafter.

3. Advanced Mass Estimate (AME) in INDRA Si-CsI telescopes

In this section, we are going to present the new AME identification method
in details. We use information given by the energy lost in the Silicon detector,
∆E, and the atomic number Z taken from the usual ∆E − L identification
method in a Si-CsI map (see Fig. 3 for example). Doing so, we benefit from the
previous identification works done for INDRA data : Z identification in Si-CsI
matrices by semi-automatic [16] or handmade grids and the careful calibration
of the Silicon detector, by means of α particle source and secondary beams
stopped in this layer [17]. For heavy ions (Z > 15), the Pulse Height Defect
(PHD) in this detector can be large [17] and has to be carefully evaluated. For
INDRA, we use the elastic scattering of low-energy heavy ion beams (Ni and Ta
at 6 AMeV) which are stopped in Silicon detectors. Traditionally, we quantify
the PHD as a function of the atomic number, the energy of the particle and the
quality of the detector, according to Moulton formula [18].

For a given element characterized by its atomic number Z, the measured
energy ∆E deposited in the first layer of the Si-CsI(Tl) telescope depends on
the velocity, or the initial energy and the mass of the incident particle and,
in principle, it can not provide by itself the two quantities without ambiguity.
To perform consistently the isotopic identification in Si-CsI matrices, we then
assume a starting value A0 for the mass number concerning one detected nucleus
with its atomic number Z and, by constraining the energy loss ∆E in the Silicon
stage at the measured value, we compute both the total energy at the entrance of
the Silicon stage and the residual energy E0 deposited in the CsI(Tl) by using the
above-mentioned range and energy loss tables [14, 15]. This procedure imposes
also to accurately evaluate the thickness of the ∆E Silicon detector. The value
of the scintillation light L given by Eq. (3) for the residual energy value E0

associated to this starting value of A is then compared to the experimental
light output Lexp from the CsI(Tl). In order to determine the best ’theoretical’
value L(E0), we iterate on mass number A (and consequently on the value of E0)
until we find the best agreement between the theoretical and experimental values
of the light, always compatible with the energy lost in the Silicon stage. It is
worthwhile to mention that the mass number is an integer and, as such, is varied
by increment of one mass unit. At the end of the iteration, we get an integer mass
number, giving the best agreement for the experimentally determined quantities
∆E and Lexp as displayed in Fig. 3. This is the basis of the Advanced Mass
Estimate (AME ) method, which, by making use in a consistent way of the
experimental quantities ∆E and Lexp, brings a more accurate information on
both the mass and the residual energy (and consequently the total energy too).
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As one may guess from Fig. 3, the calibration for the Silicon detector should
be as accurate as possible to perform the best isotopic identification. The for-
mula given by [18] used to calculate the PHD does not depend on the ion mass.
This is certainly an advantage as it simplifies our approach, but it may become
a drawback too. Even if the calibration of the Silicon stage can be considered
to be rather accurate, we estimate that it represents at present time one of the
known limitations for the extension of the identification method toward heavier
nuclei (Z > 30). Nevertheless, we will see in the following that it does not
hamper very much the isotopic identification for such heavy products.

In the next sections, we will estimate the performances of this new identifi-
cation procedure. As a first step, we will benchmark the new method for light
nuclei where isotopic identification is already achieved (1 ≤ Z ≤ 6 − 8) with
traditional methods. In a second step, we will then get some quantitative values
concerning the improvement for the isotopic identification of heavier nuclei, up
to xenon isotopes in our case.

3.1. Benchmark with the standard ∆E − L method

Using the AME method, we obtained isotopic distributions of light nuclei
that have been compared to the ones obtained with the standard method (mak-
ing use of semi-automatic [16] or handmade grids) for INDRA Si-CsI telescopes.
Fig. 4 displays the isotopic distributions obtained by the new AME method
(filled histograms) and the standard ∆E − L one, using standard grids (empty
histograms), from lithium (Z = 3) up to oxygen (Z = 8) isotopes. The numbers
indicate the isotope masses. For the meaning of the colours of these numbers
: black or gray/red, see section (IV). The Particle IDentifier (PID) defined as
PID = 8Z +A, and allowing to separately observe the neighbouring elements,
was chosen as abscissa for this representation. The modules incorporating sil-
icon detectors of only 300 µm thickness were kept for this representation. We
observe an overall good agreement for the most probable isotopes, found as
having the mass number A = 2Z + 1 as already discussed for Fig. 1.

We also notice that the new method can still provide isotopic identification
for less abundant species ((n)-rich and (n)-poor carbon to oxygen isotopes for
example) since it does not use any visual recognition to build the grids for
which a sufficiently large production cross-section is needed. This is clearly an
improvement compared to the standard methods since it allows to recover the
overall isotopic distributions for a given element Z, at least in this range of
atomic numbers Z = 3 − 8. This new feature is welcome for studying isospin
effects as for example isotopic yields or isoscaling [4, 19].

To complete the benchmark on light nuclei, we also present in Fig. 5 the
isotopic distributions obtained for the specific 150 µm-thick Silicon detectors
with a high gain, but for lower statistics. These ones allow to better discriminate
the isotopes for light IMFs (up to Z ≈ 8) and constitute a more stringent test for
the comparison. Actually, the mass distribution for the carbon isotopes given by
the standard method becomes now significantly larger, closer to that provided
by the AME method, which recovers more exotic species. We also notice that
even the yield for the most probable isotopes given by the two methods are
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Figure 4: Isotopic distributions from lithium (left) to oxygen (right). The isotopes are indi-
cated by their mass numbers. The black and grey/red labels are explained in the text. Data
concern the rings 6 to 9 for the system 136Xe +124 Sn system at 32A MeV recorded with
INDRA and correspond to forward angles between 14◦and 45◦in laboratory frame. Empty
histograms are the results obtained with the standard ∆E −L method and filled histograms
those from the AME method for the same sample of events. The Silicon stage is 300 µm
thick.

sometimes not the same, due to the absence of grids for some telescopes where
the visual inspection does not permit to define properly the isotopes curves and
boundaries. This is particularly true for Z = 7− 8. In Figs. 4 and 5, the black
numbers indicate the masses estimated with an uncertainty lower than one mass
unit, while the grey/red ones, those affected by higher uncertainty. This specific
point is developed in section (IV).

3.2. Comparison with different isospin systems

To extend and confirm the previous results, we checked the isotopic identi-
fication by means of the AME method for two systems with different isospins :
124Xe+112Sn and 136Xe+124Sn at the same incident energy per nucleon of 45
AMeV without any event selection except here a common trigger multiplicity
M = 1. These latter are also part of the data extracted from the 5th INDRA

campaign performed at GANIL. We could reasonably expect an overproduction
of (n)-rich isotopes in the case of the (n)-rich 136Xe +124 Sn system, for light
nuclear fragments. In the following, we compared the isotopic distributions
obtained for both systems, in order to see whether we observe any difference
reflecting the possible different production yields for a given element Z.

Fig. 6 shows the isotopic distributions from lithium to phosphorus isotopes,
provided by Silicon-CsI telescopes. We display here only the results for the
300 µm-thick Silicon ones. We can observe a global shift of the isotopic distri-
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Figure 5: Isotopic distributions from lithium (left) to oxygen (right). The isotopes are indi-
cated by their mass numbers. The black and grey/red labels are explained in the text. Data
concern the specific telescopes with a high gain 150 µm Silicon from rings 6 to 9 for the system
136Xe+124 Sn system at 32A MeV recorded with INDRA and correspond to forward angles
between 14◦and 45◦in the laboratory frame. Empty histograms are the results obtained with
the standard ∆E−L method and filled histograms those from the AME method for the same
sample of events.

bution toward more (n)-rich species for the (n)-rich system (136Xe+124 Sn) as
compared to the (n)-poor one (124Xe +112 Sn). If we consider the most abun-
dant isotope per element, it is 7Li instead of 6Li and 17O instead of 16O for
example, together with the enhancement of very (n)-rich isotopes production
for the (n)-rich system (136Xe+124Sn) as one could expect. This illustrates the
fact that the isotopic distributions determined with AME are not an artifact of
the method but they truly could be associated to the genuine (physical) isotopic
distributions.

4. Qualifying the isotopic identification

The isotopic identification can be further qualified by some specific opera-
tions. More precisely, we can provide a quite accurate estimate for the mass
number A even if the full isotopic resolution is not achieved. We remind that,
knowing the thickness of the Silicon detector (300 µm all along this section),
the atomic number Z value of a detected fragment and the well determined ∆E,
corrected for the PHD [17, 18], we can start by proposing an atomic mass Ai

number and compute the corresponding residual energy E0i in the CsI stage
using the energy loss tables. They are connected to the calculated scintillation
light Li = L(E0i, Ai) via the Eq.(3). Then, the integer mass number is varied,
by steps of one unit, in order to minimize the quantity |Li−Lexp|/Lexp, in such
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Figure 6: Isotopic distributions (PID as 8Z + A) from lithium (left) to phosphorus isotopes
(right), provided by AME with ordinary telescopes (300 µm-thick Si). The filled histograms
correspond to the 124Xe +112 Sn system and the empty histograms to the 136Xe +124 Sn
system at the same incident energy per nucleon E/A = 45 MeV (INDRA data). The most
abundant isotope in each case is indicated too.

a way that the measured ∆E value be reproduced too. After a few iterations,
the best integer value A∗ of Ai and the related value of E0i are found, charac-
terized by the shortest normalized distance di = |Li − Lexp|/Lexp between the
calculated Li and experimental Lexp light. Finally, to get a representative value
Aest for the estimated mass number in a single event (one experimental point
in the ∆E−L plot) at a given ∆E, we simply weight the different Ai values by
the inverse of d2i as:

Aest =
1

Σi
1

d2

i

Σi

Ai

d2i
(4)

We shall exploit thus not only the mass number as an integer but directly
the PID, defined above as: PID = 8Z +Aest, by letting now the mass number
Aest to be a real number. Of course, for an experimental light Lexp, the main
contributions to Aest are coming from the shortest distances di. Doing so, we
can obtain an estimation concerning the uncertainty ∆A by taking the absolute
difference between the optimum value A∗, corresponding to the smallest distance
di and the weighted value Aest obtained with the Eq. (4):

∆A = |A∗ −Aest| (5)

If the two values Aest and A∗ are close enough (∆A < 0.5, so comprised in
one unit range), we assume a full isotopic identification, whereas if ∆A ≥ 0.5,
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we have only a limited isotopic identification. This procedure can be therefore
considered as a simple and easy way to qualify the isotopic identification. This
is illustrated by the black and grey/red numbers on Figs. 4 and 5. The black
numbers refer to ∆ < 0.5 whereas the grey/red ones to ∆A ≥ 0.5.

In order to further evaluate the validity of the method, we have also used
INDRA results for the four different systems: 124,136Xe+112,124Sn at 32 AMeV.
Several tests are then proposed in the following. First, we have looked to data
at the most forward angles, from rings 1− 5, i.e. 2◦≤ θ ≤ 15◦. These ones are
obtained from the system 136Xe +112 Sn at 32 AMeV, by requiring a trigger
multiplicity (fired telescopes) M ≥ 1, in order to select mostly quasi-elastic
events. From Fig. 3, we could indeed notice that we recover as main contribution
the quasi-projectile (Z ≈ 54) in the most forward rings. For such high Z values,
the isotopes are not visually separated in the ∆E−L matrix; in the framework
of the standard method, a hypothesis on the mass has to be made for finding
their velocities starting from the measured energies deposited in the 1st stage of
a telescope. Fig. 7 displays the correlation between the mass and the velocity
parallel to the beam, for different ejectiles and for different mass estimates. The
yellow stars indicate the maximum number of entries.

The two upper panels of Fig. 7 display the A−Vz correlation for the standard
case (usual ∆E − E method), where only the atomic number Z is determined
from the ∆E − L plot. In the upper panel, for Z = 54 we took as mass
hypothesis the prediction A = 120 for the evaporation attractor line (EAL) [20]
(see below). It leads to value Vz ≈ 8.5 cm/ns of velocity parallel to the beam
direction. In the middle panel, the β-stability hypothesis is used , and the mass
for xenon is set to A = 129, richer in neutron, and Vz ≈ 8.2 cm/ns. In both
cases, the values of the atomic mass A and the parallel velocity are peaked
quite far from the expected elastic contribution, in the present case: A = 136
and Vz = 7.9 cm/ns represented by the filled circles on Fig. 7. This is due to
the incorrect values of the mass number A, simply calculated from the atomic
numbers Z via different hypotheses. Consequently, the corresponding parallel
velocities Vz are also incorrect since they were computed by means of these
hypothetical A values. At variance, we can notice that applying the iterative
AME method - lower panel of Fig. 7 -, the plotted distribution presents at
A ≈ 133 and Vz ≈ 8.0 cm/ns a maximum located much closer to the elastic
contribution. We could therefore infer that the obtained results with AME are
more valid for the (n)-rich projectiles even for these very heavy ions detected
in the region of quasi-elastic events. We also found the same conclusion for the
proton (p)-rich system 124Xe+112 Sn at 32A MeV.

Now, if we look at the PID distributions in Fig. 8, we may stress also
the differences. In the upper panel, when we are not using the scintillation
light to determine the mass number (usual method), we can get some isotopic
identification up to Z = 6 − 8. By contrast, as shown in the lower panel,
thanks to the new AME method, we are now able to distinguish a fair isotopic
identification up to at least Z ≈ 12−13 for which we have ∆A ≤ 0.5 as obtained
from Eq. (5) for the most abundant isotopes. The corresponding improvement
concerning the isotopic resolution is indeed obtained by taking into account the
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Figure 7: INDRA data. Correlation between the velocity Vz in cm/ns, parallel to the beam
direction, and the atomic mass A for 136Xe+112 Sn at 32A MeV obtained in the very forward
rings (1-5) for a trigger multiplicity M ≥ 1. The upper panel displays the traditional ∆E−L

identification method with no mass determination and the EAL hypothesis for the masses of
the fragments. The same for the middle panel, but with the β-stability valley hypothesis for
the masses of the fragments. In the lower panel are plotted the results obtained with the new
AME method. The circles indicate the projectile mass (A = 136) and the parallel projectile
velocity (Vz = 7.9 cm/ns), while the stars correspond to the peak of each two-dimensional
distribution.
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additional information from the CsI crystal.

Figure 8: INDRA data. Particle IDentification PID = 8Z +A for the 136Xe+112 Sn at 32A
MeV obtained in the forward rings (1-5) for a trigger multiplicity M ≥ 1. The upper panel
refers to the standard method: above Z = 8, there is no isotopic identification and a mass
hypothesis (here EAL [20]) is necessary. The lower panel illustrates the new AME method,
leading - for each element - to their distribution of isotopes, the most abundant ones being
indicated by their mass numbers. The grey numbers correspond to elements where ∆A > 0.5
(see text for details).

We could also qualify the accuracy of the isotopic identification for Z much
higher than 12 by taking advantage once again of the elastic channel for both
reactions. For a trigger multiplicity M = 1, an angular range between 2◦ and
7◦ (rings 1-3), and by selecting only the xenon nuclei (Z = 54), we obtain the
isotopic distributions displayed in Fig. 9. These latters are centered around
A ≈ 124 for 124Xe (the mass of the projectile) and A ≈ 133 for 136Xe (three
mass units smaller than the projectile). For the 136Xe data, due to its neutron
richness, one could expect a loss of few neutrons for the projectile even in very
peripheral collisions, transforming thus the elastic contribution into a quasi-
elastic one. The results are therefore compatible with physical arguments and
with those shown in the lower panel of Fig. 7 (mass - velocity correlation).
The width of these isotopic distributions reflect indeed the convolution of the
physical isotopic distribution as well as the uncertainty on the determined mass.
We can therefore reasonably deduce that the uncertainty ∆A = 3 found in Fig.
9 could represent an upper limit for the mass uncertainty.

Finally, we display in Fig. 10 the N − Z charts for the reaction products
in the above-mentioned reactions, their masses being determined via the AME
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Figure 9: INDRA data. Isotopic distribution of xenon isotopes (Z = 54) for the 124Xe+112Sn
(filled histogram) and 136Xe+112 Sn (empty histogram) at 45A MeV provided by the AME
method, in the most forward rings (1-3) for a trigger multiplicity M = 1.

procedure. We have selected the trigger condition M ≥ 4, thus removing the
major part of the quasi-elastic contribution presented in the previous Figs. 7-8.
The grey/coloured curves represent the evaporation attractor lines [20], predict-
ing the number of neutrons N as an integer function of Z: the steeper/pink line,
with N = 1.072Z+2.032×10−3Z2 recommended for Z < 50 and the more gentle
slope/green line, with N = 1.045Z + 3.57× 10−3Z2 recommended for Z ≥ 50.
The black curve indicates a 3rd degree polynomial fit of the β-stability valley
as the integer of N = 1.2875 + 0.7622Z + 1.3879× 10−2Z2 − 5.4875× 10−5Z3,
with i.e. nuclei more (n)-rich than for the EAL lines.

The Z −N charts in Fig. 10 concern the forward detection angles: 2◦≤ θ ≤
45◦(rings 1− 9 of INDRA). These data seem to reflect mainly the ratio N/Z of
the projectile and none of these hypotheses on the number N of neutrons, and
consequently on A, is able to reproduce in average the results, especially for the
(n)-rich 136Xe projectiles (lower panels). This overall view pleads in favour of
the AME procedure compared to a simple mass hypothesis. With the present
method we can obtain a better calibration of very thick CsI(Tl) scintillators
allowing at the same time the full detection of very energetic charged reaction
products and their mass determination with the best resolution. AME upgrades
thus the 4π INDRA array, designed to measure only the atomic number Z of
the heavy nuclear fragments stemming from multifragmentation reactions, to a
device able to estimate their mass A too, up to Z ≈ 12 − 13 for an isotopic
resolution ∆A ≤ 0.5 and Z ≈ 54 for ∆A ≤ 3, and this in a very compact
geometry.
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Figure 10: Z − N charts of the detected nuclei in the forward rings (1-9) of INDRA for a
trigger multiplicity M ≥ 4 from the four reactions 136,124Xe +112,124 Sn at 32A MeV. Data
correspond to the AME method. The different grey/coloured curves correspond to the EAL
hypotheses on the neutron number N and the black line to the β-stability valley one. See text
for explanation.

5. Conclusion

We have presented a method called Advanced Mass Estimate (AME ), a
new approach for isotopic identification in Si-CsI telescopes using the analytical
formulation for the CsI(Tl) light response provided in [3]. It includes explicitely
the light quenching and the δ-rays contribution to the scintillation of the CsI(Tl)
crystals. In this framework, we have shown that it is possible to use an iterative
procedure to accurately calibrate the CsI detectors and, at the same time, to
estimate the mass number A of the charged reaction products, besides the charge
Z one, with a resolution better than the one previously achieved by standard
techniques. This method allows to recover not only the isotopic distributions
obtained by the usual visual techniques for Z = 1 − 8, but it can also be
extended to heavier nuclei up to Z ≈ 12 − 13, with an uncertainty of one
atomic mass unit for the telescopes of the INDRA array. In addition, from the
comparison with experimental data, we have shown that it is reasonably possible
to estimate the atomic mass within 2−3 mass units up to xenon isotopes, if one
is able to carefully evaluate the thickness and the pulse height defect in the ∆E
silicon layer. We then consider that the quality of INDRA Si-CsI experimental
results can be dramatically improved by using the new AME method, and
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that is particularly well adapted to undergo analyses with radioactive beams
exploring a large N/Z domain. The AME method is not only suited for INDRA

Si-CsI(Tl) telescopes but can be also successfully exploited with any charged
particle array using the same kind of telescopes. Further studies concerning
the implementation of the Recombination and Nuclear Quenching Model with
the exact treatement mentioned in the first section are currently in progress,
by using high-quality data from FAZIA telescopes, and will be the subject of a
forthcoming paper.
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