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Abstract— In this paper, we tackle the problem of dynamic
facial expression recognition. An affine-invariant facial shape
representation based on barycentric coordinates is proposed
and related to the Grassmannian representation. Unlike the
latter, the barycentric representation allows us to work directly
on Euclidean space and apply a metric learning algorithm
to find a suitable metric that is discriminative enough to
compare facial shapes under different expressions. Finally,
we exploit the learned metric in a machinery combining a
Dynamic Time Warping (DTW) phase and a pairwise proximity
function SVM classifier for a rate-invariant classification of the
facial sequences. Experiments on the AFEW dataset show the
effectiveness of our approach while exploiting only geometric
features.

I. INTRODUCTION

In recent years, facial expression recognition has become
a popular research field due to its wide applications in many
areas such as biometrics, psychological analysis, human-
computer interaction, and so on. Facial expressions involve
the movements of some facial muscles but occur along with
head motions and pose variations. Therefore, it is necessary
for facial expression analysis to be invariant with respect to
head pose changes. This is a challenging task especially due
to large variations in the appearance of facial expressions
from different views. Recent advances in face landmark
tracking [3], [20], opened a gate to landmark-based facial
expression analysis even in uncontrolled conditions [23].
However, these landmarks may be distorted by undesir-
able projective transformations accentuated by head pose
changes. These projective transformations can be approxi-
mated by affine transformations, especially when the face
is far from the camera [29]. Hence, filtering out the affine
transformations is a convenient way to handle head pose
changes. Accordingly, some works encoded the landmarks
in the Grassmannian, guaranteeing the affine invariance [5],
[29], [21]. However, this representation leads to the usual
difficulties in the handling of nonlinear data. To overcome
this issue, many sophisticated learning methods [19], [29],
[30], [31], [18], [1], [21] have been devised to linearize
the data while respecting the geometry of the Grassmann
manifold. These methods map the points on the manifold to
a tangent space or to Hilbert space where traditional learning
techniques can be used for classification. Mapping data to
a tangent space only yields a first-order approximation of
the data that can be distorted, especially in regions far from
the origin of the tangent space. Some authors propose to

embed a manifold in a high dimensional Reproducing Kernel
Hilbert Space (RKHS), by exploiting a positive definite
kernel function to embed the manifold into a reproducing
kernel Hilbert space [19]. In another context, a projection
metric learning method on the Grassmannian was proposed
in [17]. More recently, a deep architecture that performs
deep learning over Grassmann manifolds has been proposed
in [18].

A more naive approach is to question the notion of non-
linear data. Manifolds of dimension n are after all nothing
but Rn with lower-dimensional pieces or cells glued in. If
the data falls outside of lower dimensional pieces, we may
in principle consider the data as linear. In the case at hand,
the points on the Grassmannian corresponding to the facial
landmarks are naturally contained in one of the standard
charts. It turns out that passing to this chart is nothing more
than taking barycentric coordinates with respect to a specific
triplet of landmark points.

In summary, the main contributions of this paper are:
• A novel affine-invariant shape representation of the

facial shapes through their barycentric coordinates, re-
sulting in vectors lying in Euclidean space. We show
how this representation is related to the conventional
Grassmann representation;

• A metric learning algorithm is applied to find a suitable
metric for a more discriminative comparison of facial
shapes;

• A rate-invariant similarity based learning process com-
bining a Dynamic Time Warping equipped with the
learned metric, and a pairwise proximity function SVM
(ppfSVM) classifier for expression recognition.

Fig. 1 shows an overview of the proposed approach. The
rest of the paper is organized as following. In section II,
we propose a new barycentric representation of facial shape.
The barycentric representation allows us to work directly
on Euclidean space and apply a metric learning algorithm
to find a suitable metric that is discriminative enough to
compare facial shapes under different expressions. Section III
states the classification approach. Experimental results and
discussions are reported in section IV. In section V, we
conclude and draw some perspectives of the work.

II. FACIAL SHAPE REPRESENTATION
A basic mathematical problem that arises in facial shape

analysis is to study the motion of an ordered list of land-
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Fig. 1. Overview of the proposed approach – After automatic landmark detection for each frame of the video, we represent the resulting shapes through
their barycentric coordinates. While being closely related to the affine-invariant Grassmann representation, this representation allows us to work directly
on Euclidean space where a metric learning algorithm is applied. Dynamic Time Warping (DTW) using the learned metric is then performed to align the
facial sequences. Finally, the ppfSVM exploiting the DTW similarity measure is used as expression classifier.

marks, Z1(t) = (x1(t), y1(t)), . . . , Zn(t) = (xn(t), yn(t)),
in the plane up to the action of an arbitrary affine transfor-
mation. A standard technique is to consider the span of the
columns of the n× 3 time-dependent matrix

M(t) :=

 x1(t) y1(t) 1
...

...
...

xn(t) yn(t) 1

 .

If for every time t there exists some triplet of landmarks
forming a non-degenerate triangle the rank of the matrix
M(t) is constantly equal to 3 and the span of its columns is a
curve of three-dimensional subspaces in Rn. In other words,
a curve in the Grassmannian G3(Rn), which is well known
[5], [29], [21] to be an affine invariant of the motion. This
convenient way of filtering out the affine transformations
opens the way to the use of metric and differential-geometric
techniques in the study and classification of moving land-
marks [30], [6], [10], [21], [2].

Another convenient and more classic way to filter out
affine transformations is through the use of barycentric
coordinates. This method can be applied provided three of
the landmarks form a non-degenerate triangle throughout all
their motion. Indeed, assume, without loss of generality, that
Z1(t), Z2(t), and Z3(t) are the vertices of a non-degenerate
triangle for every value of t. For every number i = 4, . . . , n
and every time t we can write

Zi(t) = λi1(t)Z1(t) + λi2(t)Z2(t) + λi3(t)Z3(t) ,

where the numbers λi1(t), λi2(t), and λi3(t) satisfy

λi1(t) + λi2(t) + λi3(t) = 1.

This last condition renders the triplet of barycentric coordi-

nates (λi1(t), λi2(t), λi3(t)) unique. In fact, it is equal to

(xi(t), yi(t), 1)

 x1(t) y1(t) 1
x2(t) y2(t) 1
x3(t) y3(t) 1

−1

.

If T is an affine transformation of the plane, the barycentric
representation of TZi(t) in terms of the frame given by
TZ1(t), TZ2(t), and TZ3(t) is still (λi1(t), λi2(t), λi3(t)).
This allows us to propose the (n− 3)× 3 matrix

Λ(t) :=

 λ41(t) λ42(t) λ43(t)
...

...
...

λn1(t) λn2(t) λn3(t)

 .

as the affine shape representation of the moving landmarks.

A. Barycentric Representation and Grassman Representa-
tion

In order to expose the basic relationship between the
Grassmannian representation and the barycentric represen-
tation, let us recall, in a particular case, the usual way to
construct charts in the Grassmannian. If ζ ∈ G3(Rn) is a
subspace that intersects the (n− 3)-dimensional subspace

W = {(0, 0, 0, x4, . . . , xn) : xi ∈ Rn for i between 4 and n}

only at the origin, and x = (x1, . . . , xn), y = (y1, . . . , yn),
and z = (z1, . . . , zn) is a basis for ζ, then the 3× 3 matrix x1 y1 z1

x2 y2 z2
x3 y3 z3


is invertible and the (n− 3)× 3 matrix x4 y4 z4

...
...

...
xn yn zn


 x1 y1 z1

x2 y2 z2
x3 y3 z3

−1



is independent of the chosen basis. In this way, the open and
dense set of 3-dimensional subspaces transverse to W are
put in a bijective correspondence with R(n−3)×3.

If we consider the curve in G3(Rn) given by the span of
the columns of the matrix

M(t) :=

 x1(t) y1(t) 1
...

...
...

xn(t) yn(t) 1


and if the landmarks Z1(t) = (x1(t), y1(t)), Z2(t) =
(x2(t), y2(t)), and Z3(t) = (x3(t), y3(t)) form a non-
degenerate triangle throughout all their motion, then com-
posing this curve with chart in the Grassmannian yields the
curve of matrices x4(t) y4(t) 1

...
...

...
xn(t) yn(t) 1


 x1(t) y1(t) 1

x2(t) y2(t) 1
x3(t) y3(t) 1

−1

,

which is just the curve Λ(t) encoding the barycentric repre-
sentation of the landmarks. For more details about the affine-
invariance with barycentric coordinates, please refer to the
page 81 of the book [7]. In what follows, we will consider
the introduced affine-invariant vector Λ, with dimension m =
(n− 3)× 3, to represent a static facial shape and the curve
Λ(t) to denote a facial shape sequence.

B. Metric learning of Affine Shape Representation

Given the facial shape represented by the affine-invariant
vector Λ, with dimension m = (n−3)×3, we seek a suitable
metric that is discriminative enough in terms of expression
to compare them. The Euclidean distance, defined as the
squared l2-norm of the difference of the vectors, could be a
reasonable choice since the defined shapes lie in Euclidean
space. However, such distance disregards the specific nature
of the considered facial shapes. To overcome this issue, we
propose to learn a Mahalanobis distance instead of using the
standard Euclidean distance [24]. Given two facial shapes
represented by the affine-invariant vectors Λi and Λj in Rm,
the Mahalanobis distance is defined by

(1)d2lij (Λi,Λj) = (Λi − Λj)
TA(Λi − Λj) ,

where A is a positive semidefinte (p.s.d) matrix of size
m × m. The problem of metric learning is then to find
the best p.s.d matrix A that best discriminates the facial
expressions, i.e., results in small distances when the facial
shapes represent similar expressions and large distances
when they represent different expressions.

Let D = {(Λ1, c1), . . . , (ΛN , cN )} represent a set of
affine-invariant shapes in Rm annotated with the corre-
sponding expressions (e.g., c =’happy’, ’angry’, etc.). Let
{Λi,Λj ,Λk} be a triplet of affine-invariant shapes from
D such that (Λi,Λj) have the same label (ci = cj), and
(Λi,Λk) with different labels (ci 6= ck). We aim to find an
optimal p.s.d matrix A such that d2lij (Λi,Λj) < d2lik(Λi,Λk).
That is, we wish to find a p.s.d matrix A that minimizes
d2lij−d

2
lik

= (Λi−Λj)
TA(Λi−Λj)−(Λi−Λk)TA(Λi−Λk).

In order to solve this optimization problem, we follow the
convenient method described by Shen et al. [28], where a
boosting is used.

III. FACIAL SEQUENCE CLASSIFICATION

The learned distance does, indeed, assign small distances
to similar static facial shapes and large distances to dissimilar
shapes. However, as conveying an expression is a temporal
process, we are more interested in comparing facial shape
sequences. Accordingly, we exploit the learned distance to
build a rate-invariant similarity measure between facial shape
sequences. Specifically, the Dynamic Time Warping (DTW)
algorithm [8], employing the learned distance instead of the
standard Euclidean distance, is used to compare two facial
sequences.

Following [4], [21], we adopt the pairwise proximity
function SVM (ppfSVM) [14], [15] to classify the facial
sequences. PpfSVM requires the definition of a similarity
measure to compare samples. In our case, it is natural to
consider the similarity measure given by our version of DTW
for such a comparison. This strategy involves the construc-
tion of inputs such that each sequence is represented by its
similarity to all the sequences in the dataset, with respect to
the DTW similarity measure, and then apply a conventional
SVM to this transformed data [15]. The ppfSVM is related to
the arbitrary kernel-SVM without restrictions on the kernel
function [14]. Further details on ppfSVM can be found in
[4], [14], [15].

IV. EXPERIMENTAL RESULTS

A. Experimental settings

In order to learn the metric, we use only peak frames
from each facial sequence, where the expression reaches its
peak. Since peak frames are difficult to detect in spontaneous
facial expressions, we performed the metric learning using
extracted landmarks from CK+ dataset [26] which is captured
in strict controlled conditions. In this dataset, 309 facial
sequences of 118 subjects are annotated with the six labels
(the six basic emotions). In all the sequences, the actors
start by being neutral then perform the expression until
reaching a peak. In our experiments, we only used the five
last frames and the first frame from all the sequences. The
labels of the five last frames are assigned according to the
label of the sequence, while the label of the first frame is
always considered as ’neutral’. A total number of 16686
facial shapes are used for the training phase to learn the
Mahalanobis distance.

To evaluate the proposed approach, we conducted ex-
periments on the well-known AFEW dataset [12]. This
dataset contains 1106 facial sequences collected from movies
showing close-to-real-world conditions, which depicts or
simulates the spontaneous expressions in uncontrolled en-
vironment. According to the protocol defined in [11], the
database is divided into three sets: training, validation, and
test. The task is to classify each video clip into one of the
seven expression categories (the six basic emotions plus the
’neutral’). Here we only report our results on the validation



set for comparison with [11], [13], [25], [16]. Note that our
experiments are made once the facial landmarks are extracted
using the method proposed in [3]. The three points used
to form the non-degenerate triangle, essential to build the
affine-invariant shapes from the landmarks, are the points
positioned at the left and right corners of the eye and the
nose tip.

All our programs were implemented in Matlab and run on
a 2.8 GHZ CPU. We used the multi-class SVM implementa-
tion of the LibSVM library [9], and the codes given by [28]
for the metric learning.

B. Results and discussions
Following the experimental settings mentioned in the

previous section, we report an accuracy of 38.38%. From
the corresponding confusion matrix shown in Fig. 2, we
can observe that the highest performances are obtained
for ’Anger’ (51.6%), ’Happiness’ (58.7%), and ’Neutral’
(55.6%). Since AFEW is a very challenging dataset, the
obtained results are competitive with state-of-art approaches
as shown in Table I. We recorded better performance than
many appearance based approaches such as SPDNet [16] and
STM-ExpLet [25]. However, our results are outperformed
by [21] where Gram matrices are used to represent facial
shapes and compared with a defined Riemannian metric.
The execution time of comparing two arbitrary sequences on
AFEW dataset is 0.064 seconds with the proposed approach
against 0.84 seconds with the approach proposed in [21]. In
Table I, we can observe that our results compared to [21]
are outperformed by only 1% while being 10 times faster.
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Fig. 2. Confusion matrix on AFEW dataset

TABLE I
OVERALL ACCURACY AFEW DATASET

Method Accuracy (%)
(A) HOG 3D [22] 26.90
(A) HOE [32] 19.54
(A) 3D SIFT [27] 24.87
(A) LBP-TOP [33] 25.13
(A) EmotiW [11] 27.27
(A) STM [25] 29.19
(A) STM-ExpLet [25] 31.73
(A) SPDNet [16] 34.23
(G) Gram Trajectories [21] 39.94
(G) Ours 38.38

To evaluate the different steps of the proposed pipeline,
we performed baseline experiments. Firstly, we conducted

the same experiments while using alternative representations
and metrics. We compared our results with a conventional
Grassmann affine-invariant representation coupled with a
Riemannian metric given by the subspace angles [5], [29],
[21]. The achieved accuracy is around 2.5% lower than ours.
We also replaced the learned Mahalanobis distance with
a standard Euclidean distance. Here also, the performance
decreases by about 3%. In Table II, we show the achieved
accuracies by the described alternative representations and
metrics and the necessary execution time to compare two
arbitrary facial shapes. One can observe that the proposed
representation achieves better performance than the Grass-
mannian while being less time consuming. These results
show the effectiveness of the proposed representation and
the importance of the metric learning step in our pipeline.
As mentioned in the previous section, we used the five last
(peak) frames from the sequences of CK+ dataset to learn the
Mahalanobis distance. In Table II, we provide the obtained
accuracies when using one, two, five and seven last peak
frames from each sequence. The highest accuracy is obtained
with the last five frames. Besides, we report in Table II
the average accuracy when DTW is used or not in our
pipeline. It is clear from these experiments that a temporal
alignment is an important step as an improvement of around
7% is obtained . In the last table, we compare the results
of ppfSVM to a K-NN classifier coupled with the DTW
similarity measure. The number of nearest neighbors K is
chosen by cross-validation. We obtained an average accuracy
of 31.33% for K = 5. These results are outperformed by
ppfSVM classifier.

TABLE II
BASELINE EXPERIMENTS

Distance Accuracy (%) Time (µs)
Subspace angles in G3(Rn) 36.81 2967
Euclidean distance 36.55 530
Mahalanobis distance dl 38.38 568

Number of peak frames Accuracy (%)
1 peak frame 37.07
2 peak frames 37.59
5 peak frames 38.38
7 peak frames 36.29

Temporal alignment Accuracy (%) Time (s)
without DTW 30.8 0.008
with DTW 38.38 0.064

Classifier Accuracy (%)
K-NN 31.33

ppf-SVM 38.38

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed an affine-invariant facial shape

through encoding the corresponding landmark points by
their barycentric coordinates. Such representation results in
vectors lying in an Euclidean space where a multitude of
Euclidean metrics is applicable. A Finally, a learned metric is
incorporated in the DTW similarity measure. The first exper-
imental results on AFEW dataset showing the effectiveness
of the affine-shape representation, encourage us to improve
the metric learning and the classification pipeline.
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