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Abstract

We revisit the the large spin asymptotics of 15j symbols in terms of cosines of the 4d Euclidean Regge
action, as derived by Barrett and collaborators using a saddle point approximation. We bring it closer to
the perspective of area-angle Regge calculus and twisted geometries, and compute explicitly the Hessian
and phase offsets. We then extend it to more general SU(2) graph invariants associated to nj-symbols. We
find that saddle points still exist for special boundary configurations, and that these have a clear geometric
interpretation, but there is a novelty: Configurations with two distinct saddle points admit a conformal
shape-mismatch of the geometry, and the cosine asymptotic behaviour oscillates with a generalisation of
the Regge action. The allowed mismatch correspond to angle-matched twisted geometries, 3d polyhedral
tessellations with adjacent faces matching areas and 2d angles, but not their diagonals. We study these
geometries, identify the relevant subsets corresponding to 3d Regge data and 4d flat polytope data, and
discuss the corresponding Regge actions emerging in the asymptotics. Finally, we also provide the first
numerical confirmation of the large spin asymptotics of the 15j symbol. We show that the agreement is
accurate to the per cent level already at spins of order 10, and the next-to-leading order oscillates with
the same frequency and same global phase.
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1 Introduction

A famous result by Ponzano and Regge shows that the (homogeneous) large spin limit of the SU(2) 6j symbol
can be approximated with the cosine of the Regge action for an Euclidean tetrahedron (see e.g. [1, 2], and
[3] for a recent review). Barrett and collaborators [4] have obtained a 4-dimensional analogue, based on (a
linear combination of) SU(2) 15j symbols and the notion of coherent intertwiners introduced in [5]: in this
case the large spin limit is related to the cosine of the Regge action for a Euclidean 4-simplex. In this paper
we present two independent results: the first numerical confirmation of the asymptotic formula of [4] for
the 15j symbol, which in particular allows us to investigate properties of the higher order corrections; an
analytic asymptotic formula for graph invariants associated with larger nj symbols, by which we establish a
new relation between these invariants and 4d polytopes.1 Given the technical nature of the material, we give
a bird’s eye view of the results in the introduction, referring the reader to the various Sections for details
and explicit formulas.

Let us begin with our motivations. Asymptotics of graph invariants like the 6j symbol have many
applications, and have been studied with various methods. Extensions of the original Ponzano-Regge result
include e.g. the asymptotic analysis of 9j symbols [6], and of 6j symbols for non-compact groups like SU(1,1)
[7] and quantum groups like SUq(2) [8]. More specifically, the results of [4] were obtained following efforts
in the loop quantum gravity community to find dynamical transition amplitudes in the spin foam formalism
[9, 10, 11, 12], and are closely related to similar results by the same research group for SO(4) [13] or SL(2,C)
[14] (see also [15]) invariants associated with the graph of a 4-simplex. These invariants are motivated by the
EPRL spin foam model [10]. See also [16] for a version of the EPRL asymptotics with the quantum group
SLq(2,C), [17, 18, 19] for related asymptotic results with the previous Barrett-Crane spin foam model,
and [20] for studies of inhomogeneous scalings of SU(2) nj symbols. The relevance of these results for
quantum gravity is to provide a semiclassical bridge between spin foams and general relativity, albeit at the
preliminary level of a single 4-simplex. Most of the results are established via an integral representation of
the invariants, and a saddle point approximation in the homogeneous limit of large spins (or irreducible labels
in general). Our main goal was to provide a numerical confirmation of this approximation, and to investigate
the behaviour of quantum corrections, which would play a role in the quantum gravity interpretation of these
models. We present in this paper our numerical results for the SU(2) model, and in a companion paper [21]
those for the Lorentzian EPRL model. The relevance of our results for spin foam models of quantum gravity
will be discussed below in Section 6. For the rest of this Introduction, we focus on the results themselves,
and their interest from an intrinsic algebraic and geometrical point of view. After all, SU(2) graph invariants
have a wide range of applications, and thus potentially also our results on their large spin asymptotics.

At the root of Ponzano and Regge’s result, that is the natural relation of the 6j symbol to an Euclidean
tetrahedron: the 6j is an SU(2) graph invariant whose graph describes a tetrahedron, the spins are in 1-to-1
correspondence with the edges, and the geometry of an Euclidean tetrahedron is uniquely determined by its
edge lengths. The relation of the 15j symbol to an Euclidean 4-simplex is less straightforward. A 15j symbol
can indeed be associated with the graph of a 4-simplex, however its geometry is only determined by the 10
edge lengths, or equivalently the 10 triangle areas. The 15j symbol has thus 5 spins too many for a 1-to-1
correspondence. The key step is to take a linear combination of 15j symbols with the coherent intertwiners
introduced in [5]. This linear combination defines an amplitude Av(jab, ~nab) for ten spins and twenty unit

1The 15j and nj symbols associate an SU(2)-invariant number to a given graph. This number has nothing to do with
topological properties of the graph, so the naming ‘graph invariants’ should not be confused in that sense.
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vectors (here a = 1, ..5 labels the nodes, and the notation will be explained in detail below). When these
vectors satisfy the closure conditions

Ca =
∑
b 6=a

jab~nab = 0 (1)

at each node, the data describe a classical geometry: a collection of five tetrahedra, whose areas are given by
the spins, and whose dihedral angles and orientations are given by the unit vectors defining the normals to
the faces. By construction, every two tetrahedra share a face with area given by the spin linking the nodes,
but whose shape differs in general when determined from one tetrahedron or the adjacent one. The data
describe thus a class of geometries more general than Regge geometries, which were studied and dubbed
twisted geometries in [22]. Using saddle point techniques, it was shown in [4] that limλ 7→∞Av(λjab, ~nab) has
three different behaviours, depending on the data (jab, ~nab). For most general data, there are no saddles and
the amplitude decays exponentially in λ. If the data satisfy (1) and there exist five rotations Ra ∈ SO(3)
such that

Ra~nab = −Rb~nba, (2)

then the integrand admits a saddle point, and the large spin behaviour has a slower power-law decay λ−6.
The set of data is called a vector geometry [18]. Finally, if the data describe a Regge geometry, namely
all shapes of the faces match and thus define a unique Euclidean 4-simplex, then the integrand admits two
distinct saddle point. The power-law decay is still λ−6, and the interference between the two points gives an
oscillating behaviour with frequency determined by the Regge (boundary) action for the 4-simplex, which is
the most important feature of the whole analysis.

We will rederive these results in details in Section 2, using a slightly different procedure than [4]. Our
procedure relies less on the bivector reconstruction theorem used in [4], and keeps the construction closer
in spirit to the area-angle Regge calculus of [23]. This allows us to keep certain geometric aspects of the
saddle point analysis more manifest, and to highlight the explicit imposition of shape-matching conditions
for configurations with two distinct saddles. We also push the analysis a bit further, and explicitly evaluate
the Hessian at the saddle point, which was left only formally defined in [4]. In particular, we determine its
phase and found that the interference of the two saddle points gives precisely a cosine.

Because of the explicit dependence on SU(2) coherent states, testing numerically the asymptotics is much
harder than for the 6j or 9j symbols, which possibly explains why it hasn’t been done so far. The main
technical step we perform is the use of recoupling theory to choose a basis of reducible 15j symbols, whose
evaluation is much faster. Evaluating the whole amplitude is still very demanding, but becomes doable on a
personal laptop at least for spins of a few tens. A detailed discussion of methods and computing times will be
presented in Section 3, which contains our numerical results. These show excellent quantitative agreement:
the asymptotic formula is remarkably accurate already at low spins, see for example Fig. 1 for the equilateral
configuration. An accuracy at the per cent level is reached already at spins of order 10, a situation similar
to the Ponzano-Regge asymptotics of the 6j.2

Figure 1: Numerical data versus the analytic leading order, equilateral configuration. See Section 3.1 for details.

2The situation will be different for the Lorentzian EPRL amplitude, see [21], where much higher spins will be needed.
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We then use our numerical data to investigate the next-to-leading order correction, and establish that it
decays as one extra power of the scaling parameter, namely λ−7, and oscillates with the same frequency as
the leading order. This is to be expected on general grounds for saddle point approximations, and confirms
its validity to next-to-leading order. This result has implications for the gravitational interpretation of these
quantum corrections, which are not a modification of the action by higher order curvature invariants, but
rather contribute to the measure term in the path integral. The same situation occurs in the Ponzano-Regge
model [24, 25]. The numerical results are reported in Section 3.

A question that quickly comes up when setting up numerical calculations is how to choose the orientations
of the boundary data. The point is that the coherent amplitude is gauge-invariant up to a phase, due to
the structure of SU(2) coherent states. Hence, it is more convenient to choose orientations to eliminate or
simplify the extra phase. For Regge data, this leads us to consider a specific 3d object, which we refer to as
twisted spike. The twisted spike highlights a generic key property of the geometry at the saddle point: the
4d dihedral angles of the 4-simplex are encoded in 3d twist angles between edges of adjacent triangles. For
quantum gravity models, this property is the discrete counterpart of the definition of the Ashtekar-Barbero
connection in the continuum, and it shows how the Regge data satisfy the secondary simplicity constraints
[26, 27, 28]. The explicit twist angle of the twisted spike illustrates the relation between descriptions of
extrinsic curvature in the covariant and canonical frameworks. We complete our analysis by providing an
explicit parametrisation of vector geometries as a subclass of twisted geometries, discussing their complete
shape mismatch and description in terms of shape variables. These results are contained in Section 4, and
are also relevant to the numerical analysis of the Lorentzian EPRL model, to appear in forthcoming paper
[21].

The asymptotic behaviour of the 15j symbol shows a beautiful interplay between SU(2) semiclassics and
the Euclidean geometry of a 4-simplex, and it is spontaneous to ask whether there exist a similar relation
between more general graph invariants and 4d geometric objects. Natural candidates are flat convex 4d
polytopes and SU(2) invariants on graphs dual to their boundary. The definition of the coherent amplitude
Av(jab, ~nab) extends naturally to arbitrary graph invariants, where it can be expanded in a basis of nj
symbols, and so does the twisted geometry interpretation of generic boundary data. Our procedure to
study the saddle point approximation extends straightforwardly, and we find the same structure: for non-
degenerate configurations, generic data have no saddle points, vector geometries have one saddle point,
and a special subset of them have two distinct saddle points. The special subset puts restrictions on the
combinatorial structure of the graph, satisfied by graphs dual to the boundary of a 4d polytope. It spans
however more general geometries than 3d polyhedral Regge geometries (which are uniquely characterised
by the edge lengths): it corresponds to twisted geometries with only partial shape matching: areas and
2d dihedral angles (namely the internal angles to the faces) match, and thus the valence of the faces; but
not the diagonals, nor the edge lengths. The residual mismatch corresponds to area-preserving conformal
transformations of the polygonal faces, which change their diagonals. For this reason, we can refer to such
angle-matched twisted geometries also as a class of conformal twisted geometries. Our results confirm and
generalise the findings of [29], where it was shown that for a hypercube graph and regular parallelepiped
data, geometries with conformal mismatches at the faces still admitted two distinct saddle points.3

For the angle-matched twisted geometries with two saddle points, we find that the asymptotics oscillate
with frequency given by a generalised Regge action in the form

SΓ[j, ϕ] =
∑
ab

jabθab(ϕ), (3)

where ϕ are the angles between the normals ~nab, plus constraints imposing closure and 2d angle matching.
This boundary action has some interesting properties common to the Regge action, for instance it provides
a correct discretisation of the extrinsic curvature of the 3d geometry, and it admits an extension to a 4d
tessellation with proper gluing and a well-defined notion of Regge curvature. On the other hand, because of
the partial shape mismatch and associate metric discontinuity, the space of solutions is larger than that of
Regge calculus, and its geometric meaning and possible continuous limit are unknown to us.

The angle-matched twisted geometries have two interesting subsets of data: 3d Regge data, and flat
polytope data. The first can be easily characterised imposing the remaining shape-matching conditions,

3The result of [29] was derived for the Euclidean EPRL model, whereas we consider here SU(2) BF theory. But the differences
are irrelevant for this aspect of the saddle point analysis.
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and corresponds to polyhedral Regge configurations, namely piecewise-flat geometries described by the edge
lengths. In the case of the 4-simplex, the 3d Regge data identify a unique flat 4-simplex. This is not true
in general, since a 3d Regge geometry on a tessellation of the 3-sphere cannot always be flatly embedded.
Generic 3d Regge data correspond to a curved 4d tessellation, and do not identify a flat polytope. Notice
that the asymptotic action (3) cannot capture the bulk curvature, simply because there are no internal faces
to define the deficit angles. Hence, even if the asymptotic action is now a function of edge lengths, it still
fails to be a 4d Regge action in the sense that it does not describe the extrinsic curvature of a flat polytope.
To achieve that, one has to further restrict the data to describe a 3d Regge tessellation that can be flatly
embedded. To solve this problem, we provide an explicit criterion for flat-embedding based on an application
of 4d Minkowski theorem, and the fact that the angle-matched twisted geometries can be used to define
an auxiliary flat convex polytope: this identification is infinite-to-one, and the polytope is auxiliary in the
sense that its areas do not coincide with the values of the spins. Requiring the areas to match the spins and
imposing 4d closure select data that can be flatly embedded.

These results, concluded with a discussion of the 4d polytope Regge action, are reported in Section 5.
They are relevant also for spin foam models, where more general graph amplitudes based on higher-valence
vertices are necessary if one wants to consider arbitrary spin network states [30, 31]. For reference’s ease,
we summarise in the following table the different geometric structures relevant to the saddle point analysis
of SU(2) graph invariants, comparing the case of the 4-simplex and a graph dual to the boundary of a more
general polytope. Here dim. is the dimensionality of the space of data, N and L the number of nodes and
links of the general polytope graph, and E is the number of edges of the boundary tessellation, which for a
dominant-class polytope (in the classification of [32], namely all boundary vertices 4-valent) coincides with
2(L−N).

4-simplex graph

dim. geometry type saddles

20 twisted 0

15 vector 1
(anti-parallel)

10 Regge 2
(angle-matching)

polytope graph

dim. geometry type saddles

5L− 6N twisted 0

3L− 3N vector 1
(anti-parallel)

conformal twisted 2
(angle-matching)

2L− 2N Regge 2
(shape-matching)

4N − 10 polytope 2
(flat embedding)

Table 1: Classification of geometric structures relevant to the saddle point analysis of SU(2) graph invariants.

In Section 6 we discuss some implications and applications of our results to spin foam models of quantum
gravity. The final Section 7 briefly wraps our the results and some perspectives.

Throughout the paper, we follow the conventions of [1] for the recoupling theory of SU(2), and the
notation of [23] for the dihedral angles, generically distinguishing 4d, 3d and 2d dihedral angles respectively
as θ’s, ϕ’s and α’s. The numerical calculations were mostly performed using Wolfram’s Mathematica.
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2 Semiclassics of the 15j symbol

2.1 Coherent states and coherent intertwiners

The key ingredient for the large spin semiclassical behaviour is the relation between SU(2) invariants and
polyhedra, based on the use of coherent states and the closure condition satisfied by the invariants, which
are singlet states. To make the paper self-contained and to fix our notation and convention, we provide the
required background material in this Section, which can be skipped by the reader already familiar with the
results of [5, 32].

The building blocks of the construction are the coherent states for an SU(2) irreducible representation
V (j), see e.g. [33]. These are defined starting from the lowest or highest weights |j,∓j〉 and acting with
a rotation that takes the vector ẑ = (1, 0, 0) to ~n := (sin Θ cos Φ, sin Θ sin Φ, cos Θ), and minimize the
uncertainty in the direction. The two families of states so defined are unique up to an initial arbitrary
rotation along ẑ, which translates into a phase freedom of the coherent states. This freedom is typically
fixed requiring the coherent states to define a holomorphic representation of the group. This amounts to
selecting the rotation of an angle Θ in the direction of ẑ × ~n. In the fundamental 2× 2 representation, the
associated group element gives the Hopf section of the SU(2) ' S2 × S1 fibration,

n(ζ) :=
1√

1 + |ζ|2

(
1 ζ
−ζ̄ 1

)
, ζ := − tan

Θ

2
e−iΦ (4)

In terms of Euler angles, α = Φ, β = Θ, γ = −Φ, and a generic irreducible representation V (j) of (4) is
expressed by the Wigner matrix

D(j)(n) = e−iΦJze−iΘJyeiΦJz . (5)

Accordingly, the two families of coherent states are

|j, ~n〉 := D(j)(n)|j,−j〉, 〈j,m|j, ~n〉 = D
(j)
m,−j(n) =

√(
2j

j +m

)
ζj+m

(1 + |ζ|2)j
, (6)

|j, ~n] := D(j)(n)|j, j〉, 〈j,m|j, ~n] = D
(j)
m,j(n) =

√(
2j

j +m

)
(−ζ)j−m

(1 + |ζ|2)j
. (7)

These are related by a parity transformation4 and a phase shift:

|j, ~n] := D(j)(n)|j, j〉 = ε(j)|j, ~n〉 = (−1)2j1e2ij1φ1 |j,−~n〉, ε(j)mn = (−1)j−mδm,−n. (8)

The parity transformation is trivially related to the standard anti-linear map on SU(2),

J
(
z0

z1

)
:=

(
−z̄1

z̄0

)
, J |j, ~n〉 = (−1)2j |j, ~n], (9)

which is the notation used in [4]. Using both families, it is possible to write SU(2) invariants completely
holomorphic in the Hopf sections, such as

[j, ~n|j, ~n′〉, [j, ~n|~σ|j, ~n′〉. (10)

The following formula for the scalar product will play a role below,

〈j, ~n1|j, ~n2〉 =

(
1 + ~n1 · ~n2

2

)2j

. (11)

Given these states, an n-valent coherent intertwiner [5] is defined by the group averaging,

||{ji, ~ni}〉 :=

∫
dg

n
⊗
i=1

g . |ji, ~ni〉 ∈ Inv ⊗ni=1 V
(ji). (12)

4Recall that under parity, g, ~n, ζ, (Θ,Φ) 7→ g∗,−~n,−1/ζ̄, (π −Θ, π + Φ). The ket |j, ~n〉 is a complex function of the angles,
a reason for which one often prefers to denote the coherent states by the complex stereographic coordinate, as in |j, ζ〉.
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In the large spin limit, its norm is exponentially suppressed unless the closure condition C :=
∑
i ji~ni = 0

is satisfied, in which case it scales like j−3/2 for non-co-planar normals and j−1 for co-planar normals.
Thanks to a theorem by Minkowski, each set of data satisfying closure describes a unique convex and bound
polyhedron in R3, with ji the area and ~ni the outgoing normal of the i-th face. Dividing by the action
of global rotations, we can characterise the intrinsic shape of the convex polyhedron in terms of its areas
and angles ϕij = arccos(~ni · ~nj). For a pair ij of adjacent faces ϕij are the (exterior) dihedral angles, and
for non-adjacent faces they give the angle between the two planes to which the faces belong. An explicit
algorithm for the reconstruction of the adjacency matrix of the polyhedron, as well as its volume and edge
lengths, starting from the areas and normals, is presented in [32]. For the special case of a tetrahedron all
faces touch one another, so the adjacency matrix is trivial.

The coherent intertwiners provide an over-complete basis for the singlet space Inv
[
⊗i V ji

]
,5 and can be

expanded in the standard basis provided by Wigner’s 3jm symbols via recoupling theory. For n = 4, we
define the generalised Wigner 4jm symbol as(

j1 j2 j3 j4
m1 m2 m3 m4

)(j12)

=
∑
mi

(−1)j12−mj12

(
j1 j2 j12

m1 m2 mj12

)(
j12 j3 j4
−mj12 m3 m4

)
, (13)

which satisfies

∑
mi

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)(
j1 j2 j3 j4
m1 m2 m3 m4

)(l12)

=
δj12l12
dj12

, (14)

∫
dg

4⊗
i=1

D(ji)
mini

(g) =
∑
j12

dj12

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)(
j1 j2 j3 j4
n1 n2 n3 n4

)(j12)

. (15)

Then, the decomposition of a coherent intertwiner say in the recoupling channel j12 with all links outgoing,
is

cj12(~ni) := 〈ji, j12|ji, ~ni〉 =
∑
mi

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)

〈ji,mi|ji, ~ni〉 = j1

~n1 j2

~n2

j3

j4

~n3

~n4

j12

, (16)

where in the last equality we have introduced a graphical notation that will be useful in the following. Using
the symmetries of the 4jm symbols, this equality is unchanged if all links are incoming. If a single link
orientation is inverted, this introduces an ε tensor in the intertwiner, that can be reabsorbed in the coherent
state using (8):

j1

~n1 j2

~n2

j3

j4

~n3

~n4

j12

=
∑
mi

(
j1 j2 j3 j4
−m1 m2 m3 m4

)(j12)

(−1)j1−m1〈j1, ~n1|j1,m1〉
∏
i6=1

〈ji,mi|ji, ~ni〉

=
∑
mi

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)

〈ji,mi|ji, ~n1]
∏
i 6=1

〈ji,mi|ji, ~ni〉.

These formulas can be immediately extended to arbitrary n.

5As the existence of exponentially suppressed norms indicates, it is also possible to restrict the family to those configurations
satisfying closure only, and still have a good over-complete basis [34, 35]. This has the advantage of reducing the number of
coherent state labels by 3, from closing vectors to shape parameters only, but for the purposes of studying the saddle point
approximation of graph invariants it is easier to keep the normals as labels.
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2.2 Definition of the amplitude

We consider the following 15j symbol,

{15j} :=
∑
mab

(−1)jab−mab

(
j12 j13 j14 j15

m12 m13 m14 m15

)(i1)(
j23 j24 j25 j12

m23 m24 m25 −m12

)(i2)

(17)

(
j34 j35 j13 j23

m34 m35 −m13 −m23

)(i3)(
j45 j14 j24 j34

m45 −m14 −m24 −m34

)(i4)(
j15 j25 j35 j45

−m15 −m25 −m35 −m45

)(i5)

=

i1

i2 i5

i4i3

j12 j15

j23 j45

j34

j25
j14j13

j24 j35

,

which arises as the vertex amplitude of 4d simplicial quantum SU(2) BF theory [36]. The generalised Wigner’s
4jm symbols used above were defined in (13). Like all recoupling symbols it depends on the orientation
of the links. Here we chose the one depicted in the graphical representation above. With this choice of
orientation, we can number the nodes so that the direction of a link ab is always from a < b to b. Reversing
a line carrying spin j results in an overall phase (−1)2j .

The interest in this SU(2) invariant is that its graph is in correspondence with (the dual to) the boundary
of a 4-simplex, where each 4-valent node, dual to a tetrahedron, has been split into two 3-valent ones. Thus,
the recoupling scheme distinguishes a set of 5 spins ia, a = 1, . . . 5, that we will refer to as intertwiner spins.

The actual asymptotic we are interested in involves not a single 15j, but a special linear superposition,
which allows us to endow this fundamentally 3d Euclidean object with a 4d geometric interpretation. To
that end, we project (17) on coherent intertwiners [5], built from group averaging SU(2) coherent states |j, ~n〉
as described in the previous Section. To define the coherent intertwiners, we need 4 unit vectors per node.
This results in the assignment of two vectors per link, which we denote ~nab and ~nba. It is also convenient to
use the graph orientation to keep track of outgoing and incoming links at each node, and include a parity
transformation when assigning vectors to say the incoming links. Accordingly, we associate a ket |jab, ~nab〉
to each outgoing link, and a parity-reversed bra 〈jab,−~nba| to each incoming one. This rule leads to a
simplification of the saddle point analysis, as we will explain below: it makes the parallel transport of two
opposite normals the identity, instead of the parity transformation.

The resulting coherent vertex amplitude can be written as

Av(jab, ~nab) =

∫ ∏
a

dga
∏
(ab)

〈−~nab|g−1
a gb|~nba〉2jab =

∑
{ia}

∏
a

dia

i1

i2 i5

i4i3

j12 j15

j23 j45

j34

j25
j14j13

j24 j35

,
(18)

where the product over (ab) means over the oriented links, and |~nab〉 := | 12 , ~nab〉 is the coherent state in
the fundamental representation. This is the quantity whose large spin behavior we are interested in. The
second equality above provides its expression as linear combinations of the 15j symbols weighted by coherent
intertwiners and dimensional factors. Notice that using recoupling theory, we could have equally decomposed
(18) on a basis of 15j symbols of any other kind, not just (17), a freedom that will play an important role
in our numerical investigations.
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An alternative definition, used in [4], is to put the parity-inversion at the level of the ket instead of
the classical label, and assign the dual bras [jab, ~nab| to the target nodes. We see from (8), that these two
definitions are related by a global phase:

Aholo(jab, ~nab) =

∫ ∏
a

dga
∏
(ab)

[~nab|g−1
a gb|~nba〉2jab =

∑
{ia}

{15j}
∏
a

diacia(nab) (19)

= e−i
∑

ab jabΦabAv(jab, ~nab).

The graphical notation is the same as above with now all coherent intertwiners outgoing as in (16). This
alternative has the advantage that the amplitude is holomorphic in all the Hopf sections (4) of the coherent
states. Furthermore, only the intertwiner with all outgoing links (16) is required in the expansion in terms of
15j symbols. On the other hand, the saddle point analysis is clearer in the first version (18) of the amplitude:
the extra global phase of (19) adds nothing to the Regge-like large spin limit. In fact, it should be clear from
the discussion above that the global phase of the coherent vertex amplitude does not capture any property
of the 15j symbol, since it can be changed arbitrarily changing the phase definition of the SU(2) coherent
states.

A further remark concerning phases. We follow the conventions of [1]6, in particular all Clebsch-Gordan
coefficients are real and thus also the recoupling symbols. On the other hand, the coherent states are complex,
and so are the amplitudes (18) and (19) as well as their large spin asymptotics. However, only the absolute
value of (18) is invariant under SU(2) transformations at the nodes, the phase is not. The whole coherent
amplitude is thus only SU(2) covariant, and one can use the freedom of changing the phase of the coherent
states to make (18) real, as argued in [4] and reviewed below.

2.3 The boundary data: twisted, vector and Regge geometries

Before reviewing the saddle point approximation of (18), let us recall the geometric interpretation of the
boundary data. This is given by a set of ten spins jab = jba, one per link, and twenty unit vectors ~nab 6=
~nba, two per link, for a total of 50 variables. The coherent vertex amplitude is invariant under SU(2)
transformations at the nodes: information on the local orientation of the normals is lost, and the amplitude
depends only on the angles among them. These are five linearly independent ones per node, ~nab · ~nac =

cosϕ
(a)
bc , hence the amplitude depends only on 10 + 5 × 5 = 35 variables. Among those, configurations

not satisfying the closure conditions are expected to be exponentially suppressed by the result of [5], and
indeed this was confirmed in [4]. Consider then only the closed boundary data. We restrict attention to
non-coplanar normals at each node. These identify tetrahedra, and ϕ are their dihedral angles The gauge-
invariant set has 35 − 3 × 5 = 20 variables, one area per link and two shape variables per tetrahedron. It
thus describes a collection of 5 tetrahedra attached by the triangles, where each triangle has a unique area,
but two different shapes determined by the two tetrahedra: a twisted geometry [22].7 If we require all the
shapes to match, this introduces 10 independent conditions, thus 20 − 10 = 10 independent variables, that
can be identified with the areas. The resulting subspace is in 1-to-1 correspondence with a flat 4-simplex.
Depending on the values of areas and normals, the 4-simplex can either be Euclidean, or Lorentzian with all
boundary tetrahedra space-like, see below Section 2.4 for more details.

The asymptotic behavior of (18) distinguishes two further subclasses of data: vector geometries and
Regge geometries. The results of [4] show that, for general boundary data, (18) decreases exponentially as
the ten spins are homogeneously rescaled. An enhancement occurs only for measure-zero special set of data,
for which the integrand has a saddle point and the amplitude decreases only as a power-law. This special
set of data is called a vector geometry and corresponds to a 15-dimensional subset of the twisted geometries,
for which closure holds and furthermore the normals can be made pairwise anti-parallel with rotations of

6These are mostly the same as those of Wolfram’s Mathematica, one notable exception being the Wigner matrices, one the
inverse of the other.

7 The most general twisted geometry, defined by a symplectomorphism to gauge-invariant SU(2) holonomies and fluxes [22]
(see also [37, 32, 38, 27, 28]), carries also an additional angle per link. This angle, denoted ξ̄ab in the gauge-invariant version
discussed in [28], describes the twist between edges, and can be used to encode the classical extrinsic curvature between two
polyhedra. This additional label does not play any role here, because we are interested in asymptotics at fixed spins, namely
with sharp areas that we identify as the (discrete) classical areas. The extrinsic curvature is reconstructed in the amplitude
from the local flat embeddings guaranteed by the g−1

a gb structure in its definition.
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each tetrahedron. For the interested reader, we will provide below in Section 4.2 an explicit parametrization
of vector geometries as a subset of twisted geometries. If we further restrict to the 10-dimensional subset of
Regge geometries, there exist a second saddle point, and the relative phase between the two saddle points
is proportional to the Regge action. Since the global phase of the amplitude can be arbitrarily changed by
re-phasing the coherent states, it is only for configurations with two saddles that one can really claim an
interesting semiclassical limit of the 15j symbol.

2.4 Critical points

We want to estimate the integral (18) in the asymptotic limit with all spins uniformly large. To that end,
we redefine the spins as jab → λjab, and rewrite the integrands in exponential form,

Av(jab, ~nab) =

∫ ∏
a

dga e
λS(ga;jab,~nab), S(ga; jab, ~nab) =

∑
1≤a<b≤5

2jab log〈−~nab|g†agb|~nba〉. (20)

Being the action complex, a saddle point approximation for λ → ∞ is usually complicated. A general
strategy is to look for critical points at which the real part of the gradient of the action vanishes, then
deform the integration contour to the complex plane to make the phase stationary. And if more than one
such critical points exist, one selects the one with the largest real part of the action. On the other hand, the
case at hand is substantially easier: first, since )

|〈jab,−~nab|g†agb|jab, ~nba〉|2 =

(
1− ~nab ·R−1

a Rb~nba
2

)2jab

, (21)

where R := D(1)(g) are SU(2) matrices in the adjoint representations, the real part of the action is always
negative, and its absolute maxima ReS = 0 easily identified at values of the rotations making the vectors
anti-parallel:

Rb~nba = −Ra~nab; (22a)

second, as we will review below, the imaginary part of the gradient can be simultaneously made to vanish,
if the boundary data satisfying the closure conditions∑

b 6=a

jab~nab = 0 ∀a. (22b)

Hence, critical points exist only for boundary data satisfying closure and whose normals can be made pairwise
anti-parallel with local rotations at the nodes. Following Barrett [18] we will refer to such data as vector
geometries, and to (22a) as orientation equations. The critical points themselves are the values of the
rotations realising (22a), and depend on the configuration of normals. To find them, let us first consider the
special set of boundary data with all normals pairwise opposite,

~nab = −~nba. (23)

For such boundary data, Ra = 1 is of course a solution of (22a). The question is whether this solution is
unique or not. To address this question, let us use the global SU(2) symmetry of (20) to eliminate one of
the integration variables and fix say g1 = 1. We then split the ten vectorial equations (22a) into the four
involving R1 and the remaining six,

Rb~nb1 = −~n1b = ~nb1, (24a)

R−1
a Rb~nba = −~nab = ~nba, (24b)

where in the second equalities we used our assumption (23) on the boundary data. Let us look first at (24a):
these equations are solved by a rotation around ~nb1 of an arbitrary angle, which for later convenience we
denote 2θ1b:

Rb := ei2θ1b~nb1· ~J . (25)
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To determine the angle, we look at (24b), with a, b 6= 1. Using (25) and the familiar composition of rotations,

we get R−1
a Rb = e2iθab~uba· ~J , a rotation of an angle 2θab such that

cos θab = cos θ1b cos θ1a + sin θ1b sin θ1a ~n1a · ~n1b, (26)

around the axis

sin θab ~uba = − sin θ1a cos θ1b ~na1 + cos θ1a sin θ1b ~nb1 − sin θ1a sin θ1b ~na1 × ~nb1. (27)

Then, the critical point equations (24b) require ~uba = ~nba. This gives us two equations which fix θ1a and
θ1b: the scalar product of (27) with ~na1 × ~nba must vanish, and assuming θ1a 6= 0, we obtain

tan θ1a =
~n1b · ~n1a × ~nba

~nb1 · ~nba + ~na1 · ~nab ~n1b · ~n1a
; (28)

and similarly for θ1b. If on the other hand θ1a = 0, then it must be so for all a as a direct consequence
of (24b), and from (26) we see that also θab = 0: we recover in this way only the trivial solution with all
rotations being the identity.

Now let us scrutinise the non-trivial solution more carefully: a little trigonometry shows that the equation
above is equivalent to

cos θ1a = cos θ
(b)
1a (ϕ) :=

cosϕ
(b)
1a + cosϕ

(a)
1b cosϕ

(1)
ab

sinϕ
(a)
1b sinϕ

(1)
ab

, (29)

which is the spherical cosine law between 4d and 3d dihedral angles of a flat 4-simplex, respectively θ1a

and ϕ
(1)
ab = arccos(~n1a · ~n1b), etc. On the other hand, (28) and thus (29) must hold for arbitrary a and

b. Since the left-hand side does not depend on the choice of b, non-trivial solutions exist only for those
configurations for which the right-hand side also does not depend on the choice of b. This gives us the
following edge-independence conditions,

C1a,bc =
cosϕ

(b)
1a + cosϕ

(a)
1b cosϕ

(1)
ab

sinϕ
(a)
1b sinϕ

(1)
ab

− cosϕ
(c)
1a + cosϕ

(a)
1c cosϕ

(1)
ac

sinϕ
(a)
1c sinϕ

(1)
ac

= 0, (30)

which assure that the value of the 4d dihedral angle θ1a does not depend on the edge chosen to compute it
with the spherical cosine law. Notice also that substituting the solutions (29) in (26), we derive a spherical
cosine law for the angles θab of the rotations between the node a and b, hence θab are also 4d dihedral angles.
The substitution can also be used to show that the edge-independence conditions (30) hold with an arbitrary
node d replacing 1.8 We have excluded from the analysis the case in which the normals at one node are
coplanar, for which the 3d volume and one or more of the ϕ angles are zero, making the spherical cosine
laws and 3d geometry ill-defined.

At this point we have determined all the group elements at the second saddle point, and established that
its existence requires data satisfying the edge-independence conditions. It is easy to show (see for instance
[26] and below in Section 5.2) that these edge-independence conditions imply the shape-matching conditions
of [23], namely adjacent tetrahedra define shared triangles of the same shape. Hence, areas and 3d angles
admitting a second saddle point determine a unique Euclidean 4-simplex.9

Summarising, pairwise-antiparallel normals satisfying closure admit a critical point R
(0)
a at the identity;

if they additionally satisfy the shape-matching conditions, a second critical point R
(θ)
a exists, for which the

8Explicitly, one can first write the spherical cosine law for θ1a with b as third node, and for θ1b with a as third node. Plugging
these in (26) gives a spherical cosine law for θab with 1 as the third node. Choosing different third nodes for θ1a and θ1b will
give more complicated expressions for θab, and their equality implied by (30) implies also edge-independence conditions with
arbitrary d replacing 1.

9Using shape-matched areas and 3d angles also avoids the issue of special regular configurations for which the Jacobian
between edge lengths and areas vanishes, notably the case with all equal areas, to which both an equilateral and a Tuckey
configuration with 7 equilateral and 3 isosceles triangles exist [18]. Notice that shape-matched areas and 3d angles can also
determine a unique Lorentzian 4-simplex, with all tetrahedra space-like. For those configurations however, the spherical cosine
laws (29) determine hyperbolic cosines instead of cosines, and (22a) is not satisfied. Hence the SU(2) coherent amplitude (18)
has no critical points and its asymptotic behaviour exponentially suppressed. Lorentzian configurations are on the other hand
relevant for the Lorentzian EPRL model, see [14] and our companion paper [21].
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rotation at a chosen node is still the identity, and all others are a rotation by (twice) the 4d dihedral angle
in the direction of the normal outgoing to the chosen node. Notice that to derive this result we used the
vectorial representation of SU(2). When going back to the fundamental representation which defines our
integral, both candidate saddle points have a two-fold degeneracy due to the double covering of SU(2) on
the group of rotations:

R(0)
a ≡ 13 7→ g(0,±)

a ≡ ±12, R(θ)
a 7→ g(θ,±)

a = ±g(θ)
a . (31)

This sign degeneracy is nothing but the usual Z2 symmetry in the map between SU(2) spinors and vectors,
and plays no role in the evaluation of the integral: changing any one of the signs at the saddle point we get
a factor (−1)2

∑
b jab , which is always unit because of the Clebsch-Gordan conditions at the node. For this

reason, we will still refer in the following to configurations admitting a single or two critical points, instead
of 2 and 4. The reader should keep in mind the vectorial representation when we say so.

2.5 Expansion around the critical points

In the previous subsection we found two saddle points, g
(0)
a and g

(θ)
a , at which the real part of the action

has an absolute maximum, and thus the real part of the gradient vanishes, since the action is a periodic
function. On the other hand, we have not said anything yet about the imaginary part of the gradient, so
we do not know whether these points can be used for a good approximation of the integral. To answer this

question, let us Taylor expand the action around g
(θ)
a ; the expansion around the trivial point g

(0)
a can be

straightforwardly obtained for θab = 0. To do so we parametrise

ga = g(θ)
a exp

(
i

2
~ma · ~σ

)
= g(θ)

a

(
1+

i

2
~ma · ~σ −

1

8
~ma · ~ma1+ o(|~ma|3)

)
(32)

for a = 2, . . . 5, where we assumed |~ma| � 1. Inserting these expansions in the action (20) we obtain

S =
∑
(ab)

2jab log〈−~nab|
(
1− i

2
~ma · ~σ −

1

8
~ma · ~ma1

)
g(θ)
a
†g

(θ)
b

(
1+

i

2
~mb · ~σ −

1

8
~mb · ~mb1

)
|~nba〉+ o(|~ma|3)

= 2i
∑
(ab)

jabθab + i

5∑
a=2

~ma

∑
b 6=a

jab~nab −
1

4

5∑
a=2

∑
b 6=a

jab (~ma · ~ma − ~ma · ~nba ~ma · ~nba)

+
1

2

∑
2≤a<b≤5

jab exp (−2iθab) (~ma · ~mb − ~ma · ~nba ~mb · ~nba + i~ma × ~mb · ~nba) + o(|~ma|3), (33)

where θab = θab(ϕ) via (29).
The gradient is purely imaginary, as anticipated at the beginning of this Section, and furthermore can be

made to vanish if the closure conditions (22a) are satisfied for every tetrahedron.10 The zeroth-order action
is also purely imaginary, with

− i

2
S(g(θ)

a ; ja, ~nab) = SR :=
∑
(ab)

jabθab(ϕ). (34)

It can be identified with the Regge boundary action for a 4-simplex because, although a priori the areas

jab and dihedral angles ϕ
(a)
bc are independent variables, the non-trivial saddle point g

(θ)
a only exists provided

that the closure and shape-matching conditions are satisfied.11 It is then more appropriate in our opinion
to speak of an angle-area Regge action, and think of (34) as the following constrained action:

S[jab, ϕ
(a)
bc ] =

∑
jabθab(ϕ) +

∑
λa,bCa,b(j, ϕ) +

∑
µab,cd Cab,cd(ϕ), (35)

10What (33) actually imposes is the closure at the four tetrahedra a = 2 . . . 5, but the closure for tetrahedron 1 then follows
from the vector geometry conditions (23).

11We stress that when we talk about Regge action we are making a statement about the independent variables to be varied,
and not merely about the apparent form of the action. If it weren’t for closure and shape matchings being implemented, (34)
would not have much to do with the Regge action. This important point appears to be overlooked in some literature, where
formal variations or resummations of the spins are done at the saddle point treating them as if the were independent – which
they are not because of the constraints. We will have the occasion to appreciate the difference when discussing the generalisation
to polytopes below in Section 5.3.
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where
Ca,b(j, ϕ) := jab +

∑
c6=a,b

jac cosϕ
(a)
bc = 0 (36)

is the closure constraint written in terms of angles, and the shape-matching constraints are given in (30).
The equivalence of this action to the Regge action based on edge lengths as independent variables was proved
in [23].

Finally, let us comment on the Hessian of (33). It is a 12 × 12 matrix, that can be arranged in 3 × 3
blocks defined by

Hab =
δ2S

δ~maδ ~mb
(37)

= −1

2
δab
∑
c6=a

jac (1− ~nac ⊗ ~nac) +
1

2
jab (1− δab) exp (−2iθab) (1− ~nab ⊗ ~nab − i ?~nab) ,

with a, b = 2 . . . 5, consistently with the gauge-fixing chosen, and where we used a Hodge star notation for
the mapping of 3d vectors to 3×3 antisymmetric matrices, (?~n)ij := εijknk. The diagonal blocks a = b given
by the first term in the expression can be recognised as the Hessian arising from the coherent intertwiners
[5], and it has maximal rank for non-coplanar normals. The non-trivial 4-simplex structure is in the non-
diagonal blocks mixing different tetrahedra, and which carry the dependence on θab. The structure of the
non-diagonal blocks is complicated enough to prevent an explicit calculation of the determinant in a compact
analytic form. For our purposes, we limited ourselves to numerical studies of various configurations. We
found that the determinant is non-vanishing for generic configurations,12 consistently with the assumption
of [4]; furthermore, the following reality property holds,

det−H(0) = det−H(θ). (38)

To give two explicit examples: for the equilateral configuration with all spins equal 1 we have

det−H(0) =
1618200− i316712

√
15

177147
, det−H(θ) =

1618200 + i316712
√

15

177147
; (39)

for an isosceles configuration, with an equilateral tetrahedron with spins equal 2 and four isosceles tetrahedra
of spins 2 and 1, we get

det−H(0) =
158279364− i22307203

√
6

708588
, det−H(θ) =

158279364 + i22307203
√

6

708588
. (40)

We checked that (38) holds for more general configurations as well without symmetries, but we were not
able to prove it analytically for lack of an explicit formula for the determinant. It could be proved also
without computing explicitly the determinant if one could show that the Hessian matrices of (33) around
the two critical points are complex conjugated up to a similarity transformation. In fact, by looking directly
at the action one could also prove a more general result, namely that the phase of the whole expansion (42)
coincides with the one of the leading order, if the same similarity conjugation holds for all terms in the
expansion of the action. This may be unexpected, but our numerical studies reported below suggest that
it may well be the case. To that end, we remark here that the action to all orders around the pairwise
anti-parallel configuration can be written in a simple close form as

S(g(θ)
a ; ja, ~nab) = 2i

∑
(ab)

jabθab + 2i

5∑
a=2

jab log f(g(θ)
a , ~nab), (41)

f(g(θ)
a , ~nab) := cos

(
|ma|

2

)
cos

(
|mb|

2

)
− 1

2
~ma · ~nab ~mb · ~nab

− e−i2θab

(
sin

(
|ma|

2

)
sin

(
|mb|

2

)
~ma · ~mb + ~ma · ~nab ~mb · ~nab − i~nab · ~ma × ~mb

)
.

12It will vanish for degenerate configurations, e.g. the normals in a tetrahedron are all co-planar. In this case the amplitude
can have a slower power law decay. These case are excluded from our analysis.
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2.6 Asymptotic formula

We have identified proper critical points for boundary data satisfying closure and pairwise anti-parallel
normals (23) and we computed the quadratic expansion of the action around them. With these results we
can proceed to a Gaussian approximation of the integral. Taking into account the two-fold degeneracy of
the critical points and the redundancy of one group integral, we get

Av(jab, ~nab) =
∑

g
(c)
a

exp
(
λS(g(c)

a ; ja, ~nab)
) ∫ 4∏

a=1

d3 ~ma

(4π)2
exp

(λ
2

∑
a,b

~ma ·Hab ~mb

)
+ o(λ−7)

= 24
∑

R
(c)
a

(
2π

λ

)6
1

(4π)8

exp
(
λS(R

(c)
a ; ja, ~nab)

)
√

det(−H(c))
+O(λ−7). (42)

For the explicit expression, we have to distinguish the two cases of shape-matched and non-shape-matched
configurations.

• Vector geometries (23), not satisfying the shape-matching conditions: a single critical point at the
identity, and

Av(jab, ~nab) =

(
2π

λ

)6
24

(4π)8

1√
det−H(0)

+O(λ−7). (43)

• Regge geometries, satisfying the shape-matching conditions: two distinct saddle points, and

Av(jab, ~nab) =

(
2π

λ

)6
24

(4π)8

(
1√

det−H(0)
+

ei2λSR

√
det−H(θ)

)
+O(λ−7) =

=

(
2π

λ

)6
24

(4π)8

eiλSR√∣∣det−H(0)
∣∣ cos

(
λSR −

1

2
arg det−H(0)

)
+O(λ−7), (44)

where in the second step we used (38).

Let us comment on the global phases of (43) and (44). With our definition (18) of the coherent vertex
amplitude, the leading order for pairwise anti-parallel boundary data (23) is automatically real, since the
critical point is at the identity. For Regge boundary data, the leading order can be made real redefining the
phase of the coherent states, see discussion above (4). What we need in this case is

|jab, ~nab〉 7→ eijabθab(ϕ)|jab, ~nab〉. (45)

This re-phasing can harmlessly be done (although the new coherent states will not provide a holomorphic
representation of the SU(2) algebra), notice however that it requires each coherent state to be redefined with
a phase that depends on all the spins of the graph.

The result generalises easily to arbitrary critical points, i.e. configurations satisfying (22a) but not
directly (23). In fact, we can use the invariance of the amplitude under SU(2) transformations at the nodes
to bring us back to the case (23) studied above, and the critical points will be shifted accordingly. Denote
R′a = exp(i(ψa/2)~va ·~σ) ∈ SO(3) the solution of (22a), and define ~n′ab = R′a~nab. The new normals ~n′ab satisfy
(23), and the results derived above immediately apply. We only have to rotate the final expression back to
the original ~nab, and in doing this we pick up a phase from the component of the rotation R′a along the
direction ~nab. This can be computed to be

δab = arctan

(
~va · ẑ

(1 + ~nab · ẑ) tanψa/2 + ~nab × ~va · ẑ

)
, (46)

so that (43, 44) are corrected by an extra global phase
∑
ab jabδab. Again, it can be reabsorbed re-phasing

the coherent states, as explained in [4]. Hence, it is always possible in this way to get real leading order
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behaviours, non-oscillating like (43) for non-shape-matched vector geometries, and a cosine like (44) without
the global phase for Regge geometries. Our numerics below will show that this reality extends well beyond
the leading order.

Finally, if the normals are such that there is no solution to the critical point equations (22a), then there
are no saddle points and the amplitude is exponentially suppressed.

The results have been derived for the definition (18) of the coherent amplitude, but everything extends
trivially to the holomorphic version (19) used in [4]. The difference between the two is only a global phase,
whose irrelevance we have commented upon and that can also be reabsorbed in the definition of the coherent
states to obtain a real result. Up to the phase difference, both definitions contain a parity transformation
in the map between the two classical vectors and the two kets associated with a link, and this is what
simplifies the saddle point analysis. Had we worked with bras 〈~nab| without any parity transformation, the
trivial saddle point would have shifted from the identity to the parity group element ε, thus unnecessarily
complicating the analysis.

We have thus recovered the results of [4]. The global phase of the leading order is gauge-covariant, and
can be arbitrarily changed re-phasing the coherent states. Only when two distinct saddle points exist, the
relative phase is unambiguous and has a meaning intrinsic to the 15j. The frequency of these oscillations
is given by the Regge (boundary) action for a flat 4-simplex, and this is the most important aspect of the
asymptotic behaviour. In the next Section, we present numerical calculations supporting these results, and
providing additional information on their accuracy and next-to-leading order behaviours.

3 Numerical results

To proceed with a numerical evaluation of (18), there are two possible approaches that one can take: either
performing the integrals in the first equality with MonteCarlo techniques; or perform an exact evaluation of
the 15j symbols summed over the coefficients of the coherent states, as in the second equality.

The first approach is a priori faster, however adaptive methods are required to deal with the oscillations,
and the convergence can be slow already with the simpler invariants used in the Barrett-Crane model
[39, 40, 41]. Furthermore, our main motivation for numerical studies of the coherent 15j asymptotics was
as a warm-up exercise for the Lorentzian EPRL model [10], and in that case the MonteCarlo approach
suffers further from the non-compactness of the group integrals. This difficulty can be reduced using the
factorisation property of SL(2,C) Clebsch-Gordan coefficients [42], but the technique requires to handle
summations over SU(2) nj symbols. With these considerations in mind, we used for this paper the exact
summation approach. We postpone a study of MonteCarlo techniques for such vertex amplitudes to future
work.

With this approach, the main difficulty comes from the power-law increase of 15j symbols required to
compute the sum over intertwiner labels ia in (18). For instance, for an equilateral configuration with all
spins equal to j, we need (2j + 1)5 different 15j symbols for each data point. It is thus adamant to be
as efficient as possible in the evaluation of each symbol. If we started from the definition (17) in terms of
Wigner’s 3jm symbols, evaluating the asymptotics would be an impossible task. To give an idea, with a
2,4 GHz CPU running Wolfram’s Mathematica, the best timing we could reach13 is order 10−2 seconds to
compute one {15j} for jab = ia = 1, but this quickly grows to about 9 seconds for jab = ia = 5. At those still
very small spins, we would already need approximately 17 days to sum ≈ 105 of them. The trick to avoid
this obstacle is the observation that we do not need to evaluate the irreducible 15j symbols (17). In fact, the
sum over coherent intertwiners is invariant under change of basis. We can thus choose a basis of reducible
15j symbols, whose evaluation is much faster. In particular, we took as basis the following reducible symbol

13To optimise the calculation, we stored all the needed 4jm symbols in the RAM, and reduced the summation over magnetic
indices implementing in the algorithm the Clebsch-Gordan selection rules.
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(related to (17) by two recoupling moves on i2 and i5), and which factorises into two 6j’s and one 9j symbol:

i1

i2 i5

i4i3

j12 j15

j23 j45

j34

j25 j14j13

j24 j35

= (−1)χ

i1
i3

i2

j23j13

j12

i1
i4

i5

j45j14

j15

i1i2

i3

i4
j24

j34

j25

j35

i5
(47)

with the phase given by χ := 2(j13 + j15) + 2i1 − (i2 + i3 + i4 + i5). Then, the evaluation of 6j’s and
9j’s can be performed in virtually instantaneous machine time using the C−based softwares wigxjpf and
fastwigxj developed in [43], and to which we refer for more precise evaluation times and estimates of the
numerical errors.14 Adapting them to properly interact with out Mathematica code, each (47) takes about
10−6 seconds. This enormous improvement makes the approach feasible. To complete the the computation
of the amplitude, we need to weight the reducible {15j} symbols with the coherent states (16) and sum over
the intertwiners. The number of 15j so required increases as a power law, and so does the evaluation time.
Fig. 2 provides a measure of the time required for each data point in the equilateral configuration of area
j. To evaluate the amplitude numerically, we used (18) with Perelomov’s coherent states. We present in

Figure 2: Evaluation times for the equilateral configuration of Fig. 4. The log-log plot shows a power law increase
in the needed time, with power law that can be fitted by 0.01λ4.36. The extrapolated time for λ = 25 which is the
last point of Figure 4 is of about three hours and a half. Note that this estimation is done with 3jm’s, 6j’s and 9j’s
already calculated and pre-loaded into RAM.

this Section data plots covering all three asymptotic behaviours: saddle-less generic boundary data, non-
shape-matched vector geometries, and Regge data. For all cases studied we confirmed the estimates of [4] to
very good accuracy, and found that the leading order global phase is exact to all orders, within numerical
precision at least. Examples of the exponential suppression for generic boundary data, and non-oscillating
power-law (43) for vector geometries, are shown in Fig. 3. For Regge data, we present two examples, the
equilateral configuration in Fig. 4, and the isosceles configuration of (40) (an equilateral tetrahedron with
spins equal 2λ and four isosceles tetrahedra of spins 2λ and λ) in Fig. 5.

3.1 Regge data, leading order

Let us first point out a technical detail on our choice of data for the numerics. When choosing areas and
normals for Regge data, it is convenient to fix the relative orientations of the tetrahedra in order to make

14Wigner’s functions are evaluated with machine precision using Mathematica. Summations are performed with the command
Compensate to achieve again machine precision. Hence, the only meaningful numerical errors of our results are those that can
come from [43].
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Figure 3: Left panel: An example of saddle-less configuration showing exponential decay of the amplitude. Log-log
plot in the main picture, with data points in red and a λ−6 plotted line for comparison. A linear plot is also shown in
the upper picture. The boundary data are those of a Lorentzian 4-simplex, which satisfy closure but not the orientation
condition (22a). Right panel: A vector geometry configuration with a single critical point, showing a power law
decay λ−6. Log-log plot in the main picture, with data points in red and the analytic result (43) and ∝ λ−6 plotted for
comparison. A linear plot is also shown in the upper picture. The boundary data are jab = 2 except j23 = j45 = 3,
and angles ϕ53,42 = π

4
, ϕ34,5 = ϕ25,4 = ϕ25,3 = ϕ34,2 = π

8
in the notation developed in Section 4.2.

Figure 4: Numerical data points versus the analytic leading order (44) for equilateral Regge data, log-log (left panel)

and linear (right panel) plots.

the normals pairwise antiparallel as in (23). This avoids the presence of the extra global phase (46) in the
asymptotics. For a different configuration of normals corresponding to Regge data one has to determine
anyways a set of rotations that makes the normals pairwise antiparallel in order to evaluate (46) and get the
right global phase of the asymptotic.15 For instance for the equilateral configuration, the simplest choice of
data would be to take five identical copies of the same configuration of normals. The asymptotic will however
depend explicitly via the global phase on the rotations making the normals pairwise antiparallel. It is then
simpler to start directly from the pairwise antiparallel configuration, and compare the numerical data to
(44). This is what we did for our numerical studies. The configuration with all normals pairwise antiparallel
can be represented by a 3d object that we refer to as twisted spike, whose construction and properties will be
described in Section 4.1 below. The explicit configuration of normals used for the equilateral configuration
is reported in Appendix A.

For Regge data, our numeric analysis tests three properties of the asymptotic formula (44): the λ−6

slope, the oscillations with frequency given by the Regge action, the offset given by the phase of the Hessian.
The first two were computed in [4], the last one we provided above on a case-by-case basis thanks to (38).
All three results are confirmed to very good accuracy, see for examples the data for the equilateral and
isosceles configurations in Figs. 4 and 5. Notice that in these plots the numerical data have been divided

15One can of course bypass this point looking only at the absolute value of the data and the amplitude, however we wanted
to test also the global phase of the formula, especially in the light of studying the next-to-leading order.
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Figure 5: Numerical data points versus the analytic leading order (44) for isosceles Regge data, log-log (left panel)
and linear (right panel) plots. We provide less data points than for the equilateral configuration of Fig. 4 because of
the slower evaluation times (caused by the ratio 2-to-1 between the spins) and of the absence of half-integer spins, not
allowed for this configuration.

by the leading-order global phase eiλSR , to have a real leading order. This division could leave a priori an
O(λ−7) imaginary part in the data, but the results of numerics are exactly real, at least to machine accuracy
at O(10−22). This suggests that the leading order phase may be exact to all orders, as anticipated at the
end of Section 2.5, where we also provided a possible way to prove it.

To improve the visibility of the data, we have plotted in the figures the asymptotic formula only for
integer arguments. The real frequency of the asymptotic formula is however much higher that what a naive
interpolation may suggest, as can be seen in Fig. 6, a familiar feature from the 6j case.

Figure 6: The rescaled data (for the equilateral configuration) and asymptotic formula with real arguments, showing
that the real frequency is much higher that what could be naively inferred from looking only at the integer values. A
similar situation occurs in the asymptotics of the 6j symbol.

To estimate the accuracy of the asymptotic formula, we looked at the relative error, defined as the
difference between the exact evaluation and the leading order, normalised by the exact evaluation. See left
panel of Fig. 7. This shows that we already have agreement to a few per cent level at spins of order 10. This
accuracy is comparable to that of the Ponzano-Regge formula for the 6j.16

3.2 Regge data, higher orders

The validity of the saddle point approximation (44) also makes precise predictions about the higher order
terms: they are organised in increasing inverse powers of λ, and share the same frequency of oscillations (but
a priori different global phases and phase offsets). To provide some numerical testing of these properties, we

16The situation will be different for the Lorentzian EPRL model based on SL(2,C), where for Lorentzian boundary data
much higher spins will be needed [21].
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looked at the next-to-leading order by subtracting from the numerical data the corresponding value obtained
from the asymptotic formula. The result for the equilateral configuration is shown in Fig. 7. The left panel
shows agreement with the O(λ−7) scaling. To confirm the same frequency of oscillations as the leading order,
we performed a discrete Fourier analysis of the data, shown in the right panel.

Figure 7: Left panel: Log-log plot of the ratio between of the next-to-leading order and the exact evaluation of
the amplitude (red dots) as a function of the scale λ, compared to the power law λ−1 (blue line) predicted by the
asymptotic formula. Righ panel: Discrete Fourier analysis of the analytic leading order formula, and the exact
numerical evaluation, and of the estimated next-to-leading order (NLO) of the left panel, showing they all have the
same frequency. The presence of two symmetric peaks is a trivial consequence of the properties of the discrete Fourier
transform of a real signal. For the analytic formula this is to be expected, and the plot shows that also the exact
evaluation and estimation of the NLO are exactly real to within machine accuracy. The three plots have different
vertical shifts because the signal is not normalised.

The numerics confirm the good validity of the saddle point expansion for the Regge data considered. If
we extrapolate this expansion to all orders, we expect an asymptotic series with the following structure:

Av(jab, ~nab) =

∞∑
n=0

1

λ6+n

(
cn(jab, ~nab)e

iλSR(jab,~nab)+iΦn(jab,~nab) + dn(jab, ~nab)e
−iλSR(jab,~nab)+iΨn(jab,~nab)

)
,

with cn, dn,Φn,Ψn real functions. From the explicit calculations of Section 2.4 we know that c0 = d0,
Φ0 = Ψ0, which leads to the cosine form (44) of the leading order. It is possible that similar relations hold
to all orders, thus making the series a sum of cosine and sine terms. For instance, our numerical data in
Fig. 7 show the reality of the next-to-leading order, and two symmetrical peaks in the Fourier transform.
This indicates that c1 = d1 and Φ1 = Ψ1, hence

ANLOv (jab, ~nab) =
2c1(jab, ~nab)

λ7
cos
(
λSR(jab, ~nab) + Φ1(jab, ~nab)

)
. (48)

This extrapolation can be compared with the expansion to all orders for the isosceles 6j symbol explicitly
computed in [24] (see also [25]), which shares the same structure.

The fact that the same Regge action appears at all orders has implications for quantum gravity models
based on these amplitudes: the large spin limit is interpreted as a semiclassical ~G 7→ 0 limit, and one could
ask whether the saddle point approximation is related to an expansion in higher order curvature invariants of
the metric. This would actually be hard to achieve in the framework of Regge calculus, a discretisation that
cannot distinguish for instance the square of the Ricci tensor from the square of the Ricci scalar, prior to
taking the continuum limit. In any case, the saddle point expansion shows that the quantum corrections do
not add extra curvature invariants to the action, but rather contribute to the measure of the path integral.
This can be understood if we recall that the quantum amplitude arises from a first order path integral. The
saddle point approximation is thus computing the contribution to the measure arising from integrating over
the connection degrees of freedom.17

17See also [44] for additional discussions on the BF versus Regge measure term in the path integral.
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4 The twisted spike and vector geometries

In this Section we study a few more properties of the geometries described by the boundary data, providing
a 3d picture for those corresponding to a 4-simplex, and a characterisation of vector geometries as a special
class of twisted geometries.

4.1 The twisted spike

Barrett’s reconstruction theorem, or the related procedure described above, shows how to reconstruct a
4-simplex from a shape-matching configuration of areas and closing normals. But now consider the opposite
question: given a 4-simplex described by its lengths (or equivalently its areas), how do we derive a compatible
set of 3d normals? This ‘deconstruction’ was necessary to us to provide explicit boundary data for the
numerical tests of the previous Section, but it is also useful to gain more insight on the geometry of the
boundary data and leads us to a contact between the dynamics and the canonical theory.

Consider an Euclidean 4-simplex, and denote Na the 4d unit vectors normal to the tetrahedron a, so
that the external dihedral angle between two tetrahedra is θab = arccos (Na ·Nb). To project it to 3d, let us
pick the tetrahedron 1 as reference, and rotate in R4 the remaining tetrahedra as to align their normals to
N1. Each of these rotations preserve the triangle shared between the tetrahedron a and 1, and the result is
a collection of five tetrahedra all glued to the triangles of the tetrahedron 1 that is contained in the three
dimensional hyperplane orthogonal to N1. We refer to this 3d geometric object as the spike, see left panel
of Fig. 8. The five tetrahedra share now a common R3 frame and we can compute the outgoing 3d normals
to the triangles. By construction, the normals to the triangles shared with the tetrahedron 1 are opposite to
one another, ~n1a = −~na1, but not the others. Consider then a rotation of each tetrahedron around the axis
of the normals shared with 1, of an angle given by the 4d dihedral angle θ1a. As we know from the saddle
point analysis in Section 2.4, the result of this rotation is to make all normals pairwise anti-parallel, as in
(23). We refer to this geometric object as the twisted spike, shown in the right panel of Fig. 8.

From this perspective, it may look surprising that precisely a rotation of the dihedral angle has the
property of making the normals all opposite; but this is fairly easy to show. Consider the angle between two
edge vectors in the common R3 frame of the spike: it is straightforward to show that when (23) holds this
angle coincides with the 4d dihedral angle obtained from the spherical cosine laws (29),

(~n1b × ~n1a) · (~na1 × ~nab)
‖~n1b × ~n1a‖ ‖~na1 × ~nab‖

(23)
≡ cos θ

(b)
1a (ϕ). (49)

Here we used the common R3 frame, but the property that the twist angle between edge vectors coincides
with the 4d dihedral angle at the saddle point is gauge-invariant. To see that, we define the gauge invariant
twist angle as in [26, 28], and using this time (22a) we have

cos ξ
(b)
1a :=

(~n1b × ~n1a) ·R1R
−1
a (~na1 × ~nab)

‖~n1b × ~n1a‖ ‖~na1 × ~nab‖
(22a)
≡ cos θ

(b)
1a (ϕ). (50)

This 3d twisting thus records a 4d rotation preserving a triangle in terms of a 2d rotation in the plane of that
triangle. For the applications of the asymptotic results to loop quantum gravity, it is important to stress
that this twisting is the discrete counterpart of the use of self-dual Ashtekar variables in general relativity
(here for Euclidean signature). In particular, (55) encodes at the discrete level the secondary simplicity
constraints guaranteeing the torsionlessness of the connection, as discussed in [26, 27, 28].18

For completeness and to make contact with the procedure of [4], let us briefly touch upon the bivector
description of the geometry. Given an Euclidean 4-simplex, from the areas and 4d normals to the tetrahedra

18The construction can also be extended to real Ashtekar-Barbero variables, in which case the exact embedding of SU(2) in
SO(4) or SL(2,C) depends on the Immirzi parameter γ [26, 27, 28]. For the Lorentzian case the 4d dihedral angle is a boost
Ξ1a, and the shape-matched solution of the discrete secondary simplicity constraints gives

ξ
(b)
1a =

1

γ
Ξ1a, N1 ·Na = − cosh Ξ1a.
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Figure 8: Left panel: the ‘spike’, an Euclidean 4-simplex shown in R3 by means of rotating four tetrahedra in the

same 3d space of a reference tetrahedron, here the central one (the four outmost vertices would be identified in R4).

The associated normals are shown in the bottom left picture, equal colour for those belonging to the same tetrahedron.

Right panel: the ‘twisted spike’, a rotation in the plane of each shared triangle by an equal amount to the dihedral

angle makes the triangle normals all opposite to one another.

we can define a set of 20 simple bivectors as follows,

Bab = jab ?
Na ∧Nb
‖Na ∧Nb‖

, B2
ab = j2

ab,

or in components BIJab = (jab/2 sin θab)ε
IJ
KLN

K
a N

L
b . Since we derived them from a geometric 4-simplex,

they also satisfy cross-simplicity εIJKLB
IJ
ab B

KL
ac and non-degeneracy, as well as the orientation and closure

conditions
Bab = −Bba,

∑
b 6=a

Bab = 0 ∀a. (51)

These conditions guarantee that the self-dual and anti-self-dual components of the bivectors coincide up to
an SO(3) rotation. We can thus write

Bab = jab(~nab, Ra~nab), (52)

for some unit vectors ~nab and SO(3) rotations Ra. Then (51) immediately imply the closure and orientation
equations (22) for either self-dual or anti-self-dual parts, so the geometric 4-simplex defines a saddle point.

Using bivectors, we can also get the mapping between the twist angle and the 4d dihedral angle as defined
by the scalar product of 4-normals, without passing for the spherical cosine law. To that end, let us choose
a 4d normal, N1, to define a unique self-dual projector for all bivectors: N1IP

IJ
KL := N1I(δ

IJ
KL + 1

2ε
IJ
KL)/2.

Then, taking the 3d normal as the self-dual parts of the bivectors,

jabn
J
ab := N1IP

IJ
KLB

KL
ab = jab

1

4 sin θab
N1I

(
δIJKL +

1

2
εIJKL

)
NK
a N

L
b

⊥N1−→ jab~nab. (53)

Using εijk = N I
1 εIijk we can lift (49) to a covariant formula, and after some lengthy but straightforward

algebra, we get
(~n1b × ~n1a) · (~na1 × ~nab)
‖~n1b × ~n1a‖ ‖~na1 × ~nab‖

(53)
≡ N1 ·Na. (54)

This proves that (51) implies that (i) the twist angle is the same for every edge of the chosen triangle,
and (ii), it coincides with the 4d dihedral angle. The exactly same formula can be derived choosing the
anti-self-dual projection, and using the expression (50),

cos ξ
(b)
1a = N1 ·Na. (55)
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4.2 Vector geometries

Since vector geometries are a subset of twisted geometries, they can be interpreted as a collection of mis-
matched tetrahedra. One can then ask whether it is possible to span the space of gauge-invariant vector
geometries using 5 independent shape variables. The answer turns out to be negative, because the shape mis-
match is in general quite complicated. The best parametrisations we could find are either 6 shape parameters
subject to a non-linear constraint, or 4 shape parameters plus a fifth non-gauge invariant parameter.

For the first parametrisation, we start by fixing the 10 areas and the 2 shape parameters of three
tetrahedra, and try to build a vector geometry configuration. Using the freedom to independently rotate the
three tetrahedra, we can always arrange the normals on the shared triangles to be opposite to one another.
Consider next the fourth and fifth tetrahedra. We have not specified yet any of their normals, so we are
free to take them as we want. For both tetrahedra, we fix three normals imposing them to be opposite
to the normals of the face shared with the first three tetrahedra; the last one is then fixed by the closure
constraint. By construction, the directions of the last two normals obtained from the closure constraints are
automatically normal, but one of the two will not necessarily be a unit vector. Imposing unit norm is the
constraint reducing the 6 shape variables to the 5 degrees of freedom of a vector geometry. The constraint
so obtained is highly non-linear in the areas and shapes, so that we are not even able to write it in a closed
form, and very difficult to solve in order to provide only five independent variables.

There is an alternative parametrisation that can be reduced to five independent variables, but which is
not gauge-invariant. Choosing the twisted-spike gauge in which the normals are all pairwise antiparallel, we
can express a vector geometry in terms of 10 areas, 4 three dimensional dihedral angles (1 shape parameter
per tetrahedron) and 1 extra angle between faces of different tetrahedra. To prove this statement is useful to
study the problem in the Kapovich-Millson (KM) space [45]. A tetrahedron is represented in this space as a
4-sided polygon in R3 with edge vectors ~vab := jab~nab. For the twisted spike we can embed all 5 tetrahedra
in the same KM space. The orientation conditions read as an identification of sides (with pairwise opposite
orientation), and can be represented as in the example of Fig. 9. We can then find KM variables for the
vector geometries, for instance by reconstructing all normals in terms of the five diagonals in dashed in the
Figure. To that end, we first notice that the external parallelogram (~n24, ~n42, ~n35, ~n53) is fixed (up to a

Figure 9: The Kapovich-Millson diagram of a vector geometry. The numbers label five parallelograms in R3, each
corresponding to a tetrahedron. The internal black lines are 8 pairs jab~nab = −jab~nba, and the 4 external ones
are opposite pairwise, and could be identified to give the whole configuration the topology of a torus. In dashed the
independent diagonals that parametrise the vector geometries at fixed areas.

global rotation) by the two spins (j24, j35) and the (squared) length of its diagonal

(j53~n53 + j42~n42) · (j53~n53 + j42~n42) = j2
53 + j2

42 + 2j53j42 cosϕ53,42. (56a)

Next, we look at the six edges spanned by this diagonal, the diagonals of the polygons 4 and 5, and the three
vectors ~v53, ~v42 and ~v45 = −~v54. This six edges define a tetrahedron, hence from j35, j24, j45, (56a) and the
two (squared) length of the diagonals

(j54~n54 + j53~n53) · (j54~n54 + j53~n53) = j2
54 + j2

53 + 2j54j53 cosϕ34,5, (56b)

(j42~n42 + j45~n45) · (j42~n42 + j45~n45) = j2
42 + j2

45 + 2j42j45 cosϕ25,4, (56c)
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we can reconstruct the normals ~n53, ~n42 and ~n45. With the same logic we can determine ~n23 = −~n32 from
the two (squared) length of the diagonals of the polygons 2 and 3,

(j32~n32 + j35~n35) · (j32~n32 + j35~n35) = j2
32 + j2

35 + 2j32j35 cosϕ25,3, (56d)

(j24~n24 + j23~n23) · (j24~n24 + j23~n23) = j2
24 + j2

23 + 2j24j23 cosϕ34,2. (56e)

Then, the diagonal of the polygon 1 is fixed by 3d closure as the norm of j54~n54 +j53~n53 +j24~n24 +j23~n23.
Finally also by closure we determine ~n25 and ~n34.

In the end, we have reconstructed pairwise opposite normals from the ten areas jab and five angles ϕ’s
used in (56). Out of these, 4 are dihedral angles of tetrahedra, hence invariant under local rotations. The
initial one in (56a) however is an angle between normals of different tetrahedra, cosϕ53,42 := ~n53 · ~n42, and
it is not gauge invariant.

5 Higher valence and polytopes

The relation of the coherent 15j symbol to a flat 4-simplex and its Regge action is a beautiful generalisation
of the Ponzano-Regge result for the 6j symbol, and it is natural to ask the question of whether a similar
relation exists for more complicated SU(2) graph invariants, or higher-valence vertices in the language of
spin foams. The amplitude (18) generalises to an arbitrary graph is a straightforward manner; and so does
the twisted geometry interpretation of the boundary data as a 3d collection of flat polyhedra, adjacent by
faces as specified by the graph. The question is whether these polyhedra are geometrically glued together
at the critical points, and whether the gluing defines a 4d object. As we will see, the case of the 4-simplex
graph is special in two ways: first, the integrand has two distinct saddles only for shape-matched data,
defining a 3d Regge geometry; second, that 3d Regge geometry admits a unique flat embedding. The first
result means that the amplitude oscillates only for metric data; the second that the metric data can be
given a 4d interpretation. Both properties are lost in generalisations to more complicated graphs: the twin
saddle points do not suffice to identify a shape-matched 3d geometry, and even those that do, can not in
general be associated with the boundary of a flat 4d object with areas given by the spins, hence a further
restriction would be necessary to link the asymptotic oscillations to a Regge action. In this Section we answer
these questions, and characterise what geometric objects admit twin saddles, and what special subclasses do
identify a flat polytope. Only for the latter the asymptotic oscillates with the cosine of the polytope Regge
action.

5.1 Asymptotics of generalised graph invariants

The formula for the coherent 4-simplex amplitude immediately generalises to an arbitrary graph Γ with N
nodes and L links,

AΓ(jab, ~nab) =

∫ N∏
a=1

dga
∏
(ab)

〈−~nab|g−1
a gb|~nba〉2jab , (57)

where a, b label nodes as before. Again we choose the orientation of each link so that a < b, for bookkeeping
simplicity. The boundary data are then a collection of areas jab and pairs of normals (~nab, ~nba) associated
to each oriented link (ab). For ease of language, we will refer to first-neighbour nodes also as ‘linked’ nodes,
meaning they are connected by a single link. Expanding this formula in an orthonormal basis of graph
invariants one obtains a linear combination of nj symbols associated to the graph, weighted by coherent
intertwiners describing each a polyhedron with the number of faces determined by the valence of the node.
The formula is valid for any graph; however the existence of two distinct saddle points will put strong
restrictions on them, and we will mostly discuss the case of graphs dual to tessellations of a 3-sphere.

Extending the previous saddle point approximation is straightforward: the only new feature that appears
is that not all pairs of nodes are first neighbours. The critical points for which both real and imaginary parts
of the gradient of the action vanish are identified as before by vector geometries,∑

b 6=a

jab~nab = 0, Rb~nba = −Ra~nab, (58)
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with the closure holding for each node and the second condition for all pairs of first-neighbour nodes ab.
These data span 3(L−N) dimensions, and their characterisation can be derived generalising the procedure
described in the previous Section. To solve the critical point equations we follow our earlier derivation: we
look first at pairwise anti-parallel boundary normals ~nba = −~nab, and later use gauge invariance at the nodes
to extend the results to an arbitrary configuration (58).

For pairwise anti-parallel normals there exist trivially a critical point at the identity, Ra = 1 ∀a. This
saddle point exists for any graph, and leads to a power-law asymptotics. The existence of a second saddle
point will put more severe restrictions on the graph. Graphs that are dual to the boundary of a polytope
will turn out to always admit data leading to a second saddle point, and we will restrict our attention to
them. To look for a second saddle point, we begin as before by using the gauge freedom to fix g1 = 1, and
solving the equations (24) for all nodes a and b first-neighbours to 1. This determines the group elements

Ra := e2iθ1a~na1· ~J , cos θ1a =
cosϕ

(b)
1a + cosϕ

(a)
1b cosϕ

(1)
ab

sinϕ
(a)
1b sinϕ

(1)
ab

, (59)

now valid for all nodes first-neighbours to 1. The spherical cosine law for θ1a so derived has to hold for
every node b linked to both 1 and a, else there is no solution. The geometric meaning of these generalised
edge-independence conditions and of the data satisfying them will be discussed in details below, for the time
being we just assume that non-trivial solutions exist. We remark that we can also determine via (26) the
angles θab for a, b first-neighbours to 1, and that none of the θab angles derived so far can be zero, or else
they are all zero.

Next, we pick one of the nodes not linked to 1 whose group element we still have to determine, denote it
c, and look at its critical point equations with all a’s linked to 1:19

R−1
c Ra~nca = −~nac = ~nca. (60)

To solve these equations we iterate the above procedure. We choose a node x linked to both c and 1 (let’s
say with x > c to fix the orientation of the rotation Rc, if x < c one should replace Rc with R−1

c in the
formulas below), and reparametrise R̃c = R−1

x Rc. The critical point equations splits in two sets similar to
(24), that is

R̃−1
c ~ncx = ~ncx, R̃−1

c R−1
x Ra~nca = ~nca. (61)

From the equations on the left we immediately find the axis of rotation, R̃c = e2iθxc~ncx· ~J , with an angle 2θxc
to determine using the equations on the right. The rotation R−1

x Ra = e2iθxa~nxa· ~J is already determined, and
projecting as before we obtain, for θxa 6= 0,

cos θxc =
cosϕ

(b)
xc + cosϕ

(b)
xc cosϕ

(x)
cb

sinϕ
(c)
xb sinϕ

(x)
cb

. (62)

In other words, we have extended the result (59) to the new base point x. With the composition of rotations
we can at this point identify also the rotation angle and direction of Rc, as well as all angles θac associated
to the rotations R−1

c Ra.
The procedure iterates in the same way to the remaining nodes. In the end, we determine all the

rotations at the non-trivial critical point in terms of normals. In the process we also established that all
pairs of rotations on linked nodes have the form

R−1
a Rb = e2iθab~nba· ~J , (63)

with θab given by (62) – with a replacing x. These require generalised edge-independence conditions for all
angles θab, namely

Cab,cd =
cosϕ

(c)
ab + cosϕ

(b)
ac cosϕ

(a)
bc

sinϕ
(b)
ac sinϕ

(a)
bc

−
cosϕ

(d)
ab + cosϕ

(b)
ad cosϕ

(a)
bd

sinϕ
(b)
ad sinϕ

(a)
bd

= 0, (64)

19We assume that there are at least 2 of them. This is the case for graphs dual to the boundary of a polytope. If it is not true,
say for instance a graph that can be reduced to two disconnected graphs by cutting a single link, then interesting degeneracies
can appear in the saddle point analysis, leading to slower power law decays like for the 3d degenerate configurations, and like
those, with less interesting geometric interpretation.
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for all a and b first-neighbours, c first-neighbours to a and d to b. Also, we had to exclude configurations
with any θab = 0, as this would immediately collapse the system to the single trivial solution.20 Hence, a
second saddle point exists only for configurations with all θab 6= 0 among linked nodes and satisfying the
edge-independence conditions. We will prove in the next Section that this data set is not empty, and that
the effect of (64) is to impose the matching of the 2d internal angles of the faces of a twisted geometry.
Finally, notice also that we assumed 3d non-degeneracy as for the 4-simplex, meaning the closure conditions
are satisfied with normals non coplanar. This is needed for the spherical cosine laws and the polyhedral
interpretation of the normals.

To compute the leading order asymptotics of these configurations, we straightforwardly generalise the
expansion of the action (33) and the Gaussian approximation. This yields:

• Vector geometries (23), not satisfying the angle-matching conditions: a single saddle point at the
identity, and

ALO
Γ (jab, ~nab) =

(
2π

λ

) 3
2 (N−1)

2N−1

(4π)2(N−1)

1√
det−H(0)

. (65)

• Angle-matched vector geometries: two distinct saddle points, and

ALO
Γ (jab, ~nab) =

(
2π

λ

) 3
2 (N−1)

2N−1

(4π)2(N−1)

(
1√

det−H(0)
+

ei2λSR

√
det−H(θ)

)
, (66)

where
SΓ =

∑
ab

jabθab(ϕ) (67)

is an action defined with closure and angle-matching satisfied.

The Hessian has the same block structure (37), and we do not have a closed expression for its determinant.
We did not perform numerical checks, but it is reasonable to expect that the reality condition (38) is still
satisfied, in which case (66) can also be put in cosine form as (44).

As in the 4-simplex case, the results extend up to a global phase to arbitrary boundary data satisfying
(58), and to the holomorphic definition of the vertex amplitude like (19). For more generic boundary data
that are not vector geometries, there are no critical points and the amplitude is thus exponentially suppressed.

5.2 Geometric interpretation of the twin saddles: conformal twisted geometries

As we have seen, generalising the asymptotic expansion of the 4-simplex amplitude to an arbitrary graph is
rather straightforward. What requires more work is the geometric interpretation of the results. In particular,
it is not true any longer that the complete set of data admitting two distinct saddle points describes Regge
geometries, nor that the asymptotic action (67) is a Regge action: it may have the right-looking form, but it
does not have the right functional dependence to be a Regge action. In this Section, we discuss the geometric
meaning of the data admitting two saddle points. In the next Section, of the asymptotic action.

In the following, we will restrict attention to graphs dual to the boundary of a polytope, namely dual
to a tessellation ∆3 of the 3-sphere. See Fig. 10 for two examples. The graph alone carries of course much
less information than the tessellation: the nodes N and links L determine the number C = N of 3d cells
of the tessellation, their connectivity, and the number F = L of faces; we do not know the valence of each
face f (namely the number of edges in its boundary, call it valf ), nor the number of edges (E) and vertices
(V ). We can try to reconstruct this missing information from the boundary data (jab, ~nab) of the coherent

20The reader may wonder about polytopes with parallel 4d normals between two or more polyhedra. Let us distinguish two
cases. If the parallel normals concern two non-adjacent polyhedra, their vanishing relative angle never appears in the formulas
above, which only include angles between first neighbours. This case can thus be described by the boundary data and has two
distinct critical points. If on the other hand the vanishing dihedral angle occurs between adjacent polyhedra, this configuration
will effectively lack a second critical point. Notice however that such a polytope is exactly equivalent to a polytope whose
boundary has one less polyhedron and one less face. Its geometry will then appear with two distinct critical points for the
reduced graph with one less node.
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Figure 10: The Schlegel diagrams of two simple polytopes and their associated boundary graphs, defined as the

1-skeleton of the dual to the boundary of the polytope. The boundary graph loses information about the polytope, for

instance it is not possible to tell which of the 3-cycles of the graph identify an edge of the polytope, and which a virtual

edge given by the intersection of three polyhedra’s hyperplanes outside the boundary of the polytope. Left panel: A

3-3 duo-prism, with (V,E, F,C) = (9, 18, 15, 6). The boundary is still a complete graph as in the 4-simplex, but not

all 3-cycles correspond to edges. All 3-cycles identify nonetheless a generalised edge, and the spherical cosine law for

the dihedral angles of the polytope correctly applies. By Minkowski theorem, an arbitrary flat convex 3-3 duo-prism

has 14 degrees of freedom, which means that there exist one non-trivial flat embedding condition for its boundary 3d

tessellation described by 15 edge lengths. Right panel: A hypercuboid, with (V,E, F,C) = (16, 32, 24, 8). The boundary

graph is not a complete graph. In the saddle point analysis, we have spherical cosine laws only for the 3-cycles, i.e.

those triples of nodes which are mutually first neighbours. By Minkowski theorem, an arbitrary convex hypercuboid

has 22 degrees of freedom, thus we expect 10 non-trivial flat-embedding conditions.

amplitude: the Minkowski theorem guarantees that areas and (non-coplanar) normals satisfying closure will
determine locally the geometry of a flat polyhedron, and thus its adjacency matrix [32]. The difficulty with
this procedure is that the reconstructed twisted geometry will in general have faces of mismatched shape as
well as valence: a face reconstructed as a triangle from the data on one node may be a pentagon (of the
same area) using the data of the adjacent node. The mismatch prevents in general the identification of a
tessellation, since we still lack an identification of the edges. This is also the case if we restrict to vector
geometries (58) with a single saddle point: generalising the procedure of Section 4.2, one can easily convince
oneself that the restrictions imposed by the orientation equations are too mild, in particular mismatch in
the valence of the shared faces is still allowed. As for the dimension of the space of vector geometries, the
condition of pairwise antiparallel normals means that we have a single independent normal per link; including
the spins and subtracting one closure condition per node, this gives 3(L−N).

On the other hand, we will now prove that the configurations with two distinct critical points do allow
a complete identification of the tessellation, thanks to the generalised edge-independence conditions (64):
these imply the matching of the 2d dihedral angles, thus the matching of the valence of the shared faces;
which in turns allows us to combinatorially identify the edges of the tessellation. To that end, let us start
from the meaning of (62): this spherical cosine law gives the relation between 4d and 3d dihedral angles as
defined by intersections of planes and hyperplanes. The difference with the 4-simplex case is that the 1d
intersection of the three hyperplanes to which the polyhedra x, b and c belong needs not be a boundary
of the polyhedra, but this does not affect the validity of the spherical cosine law. On the other hand, the
solution exists only if the data satisfy the generalised edge-independence conditions (64), where we extend
the use of edge to mean the triple intersection of hyperplanes, not necessarily belonging to the boundary of
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the polyhedron.21

Next, we want to show that (64) imply the matching of 2d dihedral angles. This can be easily done in two
steps. First, the orientation equations imply that the 4d dihedral angles, computed with the edge-dependent
spherical cosine laws, coincide with the twist angles (50):

cos ξ
(c)
ab =

(~nab × ~nac) · (~nba × ~nbc)
‖~nab × ~nac‖ ‖~nba × ~nbc‖

≡ cos θ
(c)
ab . (68)

Hence, (64) are equivalent to the matching of twist angles

cos ξ
(c)
ab = cos ξ

(d)
ab (69)

for triples of mutually first-neighbour nodes.
Second, consider two adjacent polygonal faces, and pick a vertex shared by two edges, either authentic

or virtual. If one of the edges is aligned between one face and the other, its twist angle is zero; it is then
obvious that vanishing of the second twist angle implies matching of the 2d dihedral angles. In general, both
edges may be misaligned. Then one can look at the triangles defined by the self-intersection of the faces,
and easily derive that

α
(cd)
ab − α

(cd)
ba = ξ

(c)
ab − ξ

(d)
ab . (70)

This is a simple exercise in similarity of triangles that can be best explained with the help of Fig. 11. In

Figure 11: Proof that matching of twist angles implies matching of 2d dihedral angles. Here the blue and yellow

lines are the edges of two adjacent polygonal faces with the same valence. The ξ’s are twist angles and the α’s the 2d

dihedral angles. More precisely, ξ
(c)
ab is the twist angle between the vectors built from the data of the polyhedron a and

the data of the polyhedron b and associated to the same edge abc; α
(cd)
ab and α

(cd)
ba are the 2d dihedral angle between

the edges abc and abd computed respectively from the data of a and from the data of b. The intersection of the faces

determine two triangles, which by construction have one angle identical to one another, denoted β. Then, matching

of the ξ’s implies matching of the α’s by similitude of the triangles. Notice that the edges need not be adjacent in

the face, i.e. the 2d dihedral angle may not belong to the face: matching the proper internal 2d angles implies also

matching the ‘external’, or improper ones, as in higher dimensions (see footnote 21).

this way one matches all the 2d dihedral angles defines by edge vectors, whether they belong or not to the
polygonal face. It should be clear that the complete angle matching (of both proper and improper 2d angles)
can only be only satisfied if the two polygonal faces have the same valence, as it follows trivially from the
fact that the sum of the 2d angles must equal (valf − 2)π.

21To help the reader pictorially with a specific example, consider a flat polytope like in Fig. 10. We can compute its 4d
dihedral angles using (59) for any triple of pairwise-adjacent polyhedra, obtaining the same result, even if in some cases this
will mean taking a triple of polyhedra that do not share an edge. E.g. in the 3-3 duo-prism computing the dihedral angle
between the top and bottom prisms respect to the outside prism.
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This proves that the second saddle point can only exist for data that identify polyhedra adjacent by
faces whose areas and angles match: an angle-matched twisted geometry. This means that the edges can
be combinatorially identified. On the other hand, their lengths is not uniquely assigned: each polyhedron
determines a priori a different edge length. This is the main difference with the 4-simplex: in that case, the
angle-matchings immediately imply unique edge-lengths, hence shape-matchings and the existence of a 3d
Regge geometry. In the general case, adjacent polygonal faces with the 2d angles matching can still carry
a conformal mismatch, whereby the area and 2d angles match, but not the diagonals, hence not the edge
lengths. See Fig. 12 for an example.

The existence of saddle points for geometries with conformal mismatches at the faces was first observed
in [29], where the authors considered a hypercube graph and reduced 3d data corresponding to regular
parallelepipeds (6 free spins and no free angles out of the possible 72 boundary variables). Our results
confirm and generalise these findings. More recently in [46] the same authors considered truncated pyramids
(3 free spins, no free angles out of 72). It was there observed that that the 2 saddle points in this setup
collapse to one or zero depending on whether the reconstructed 4d dihedral angle from the 3d data vanishes
or becomes imaginary, consistently with our analysis above.

Figure 12: Example of faces with matched areas and angles, differing by the diagonals. The freedom of such conformal

or similitude transformations is valf − 4. The picture also shows the shadows of the two polyhedra sharing the face,

and an example of 2d angle and the 3 edges whose 3d dihedral angles are used to determine it in each polyhedron.

Angle-matched configurations thus constrain the 3d dihedral angles.

It is not straightforward to compute the dimensionality of the space of conformal, angle-matched twisted
geometries: neither the variables (angles) nor the constraints (angle-matchings) are linearly independent,
which makes an explicit counting difficult. We leave this question to future research. On the other hand,
it is easy to count the dimensionality of the subset that describes 3d Regge geometries. For shape-matched
configurations, the boundary data describe a unique cellular decomposition ∆3 of the 3-sphere: its intrinsic
geometry is described by E data corresponding to the edge lengths. The number of edges E can then
be counted as follows. In the most general case, each vertex of the tessellation will be 4-valent. Higher
valence vertices require special alignments of normals and are thus measure-zero, or subdominant in the
classification of [32]. For a closed graph with 4-valent vertices we have 2V = E. Then, from Euler’s formula
−C + F − E + V = 0 we get E = 2(F − C) = 2(L −N). This is the largest dimension 3d Regge data can
span, and subdominant classes can always be derived when one or more edge lengths vanish.

The next question is what 4d geometry can be defined with the 3d Regge data. Since by construction
our normals are outgoing and our dihedral angles always between 0 and π, it is natural to look for a 4d
convex embedding. However, it cannot be flat in general: a convex flat 4d polytope has 4C − 10 degrees
of freedom, which is less than E for a dominant class. There are thus more degrees of freedom in the 3d
Regge data than in a flat polytope with the same number of cells. The only exception is the case of the
4-simplex, where the number of degrees of freedom match, and the 3d Regge data identify a unique flat 4d
object. This is not surprising: even in the smooth case, a 3d hypersurface cannot always be flatly embedded
in Euclidean space, and the same is true for a Regge triangulation. Combinatorially, we count E− (4C−10)
flat-embedding conditions. For configurations that do not satisfy them, the data is not the boundary of flat
polytope but rather of a curved 4d tessellation, made necessarily of more than one 4d building block.

A way to count the geometric degrees of freedom of a flat, convex polytope is to use the Minkowski
theorem: a collection of n vectors in Rk satisfying the closure condition determines a unique flat and convex
k-polytope up to isometries. Each vectors is normal to a k− 1 facet of the polytope, and its norm gives the
k − 1 volume of the facet, and the degrees of freedom are (n− 1)k − k(k − 1)/2. For C vectors V Ia = VaN

I
a
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in 4 dimensions (a = 1, . . . C, I = 1, . . . 4), this gives as anticipated above 4C − 10: the 3d volumes of the
polyhedral facets, and 3C − 10 independent dihedral angles θab, defined as the angles between the outgoing
4-normals, N I

aN
J
b δIJ = cos θab.

The theorem gives us also a criterion for the identification of flatly embeddable 3d Regge data. To that
end, notice that as soon as the angle-matching conditions (59) are satisfied, we have a unique notion of 4d
dihedral angles θab(~nab), hence of 4d normals N I

a (~nab), up to a global SO(4) rotation. Furthermore, since
closure is locally satisfied at the nodes, we know entirely the geometry of each polyhedron, including the
volumes Va = Va(jab, ~nab). At this point we can forget about the local geometry of the polyhedra and their
shape mismatches, and just use the 4d Minkowski theorem: the data (Va, Na) can be used to define a unique
convex polytope in R4, if we select those satisfying the 4d closure condition

∑
a VaNa = 0. Of course,

the boundary geometry of this auxiliary polytope has nothing to do with the 3d geometry of the individual
polyhedra, apart from the volumes that coincide by construction. In particular, the areas Aab(Va, Na) differ
from the spins jab. It should also be clear that infinitely many angle-matched data reconstruct the same
auxiliary polytope. Then, a criterion for flat embedding is to demand that the 3d Regge geometry and the
auxiliary flat polytope match. That means imposing the matching of the areas, but also the 4d closure
condition, which is not a priori satisfied by the 3d Regge data. Boundary data (jab, ~nab) satisfying closure,
shape-matching conditions and furthermore

Aab
(
Va(jab, ~nab)

)
≡ jab,

∑
a

Va(jab, ~nab)Na(jab, ~nab) = 0, (71)

describe the boundary of a flat convex polytope, and can thus always be flatly embedded. The criterion
(71) is a non-linear system of equations that we do not develop explicitly here. For the interested reader,
we point out that it can be obtained from a 4d version of the adapted Lasserre algorithm developed in
[32]. Accordingly, we refer to 3d Regge data satisfying these further conditions as polytope data, a set of
4C − 10 = 4N − 10 dimensions.

Summarising, the boundary data admitting two distinct critical points describe in general a collection of
polyhedra with areas and angles of adjacent faces matching, but not complete shape matchings. 3d Regge
and polytope data are special subsets. Hence, the cosine oscillatory asymptotic behaviour (66) is more
general than for 3d Regge geometries, and its frequency (67) is in general not a Regge action, but a more
general action whose independent variables describe the angle-matched conformal twisted geometries. We
will discuss in the next Section some properties of this generalised Regge action.

5.3 The Regge action for polytopes

Having classified the various geometries described by the boundary data and relevant subsets, let us come
back to the oscillatory behaviour of the amplitudes. The case we are interested in is when two distinct critical
points exist, for which we found a relative phase proportional to the action (67), namely an area-angle action
with closure and 2d angle-matching constraints:

SΓ[jab, ϕ
(a)
bc , λa,b, µab,cd] =

∑
jabθab(ϕ) +

∑
λa,bCa,b(j, ϕ) +

∑
µab,cd Cab,cd(ϕ), (72)

with (λa,b, µab,cd) Lagrange multipliers. See (36) and (64) for the explicit forms of the constraints.
From the discussion in the previous Section, we know that the independent variables in this action span

angle-matched twisted geometries, a generalisation of Regge geometries with conformal mismatch allowed.
These geometries can also be mapped (infinite-to-1) to an auxiliary flat convex polytope with θab(ϕ) as
dihedral angles, but whose areas are not given by jab. Hence, (72) is not a proper Regge action for all the
geometric configurations for which it is defined, but only for a subset of them.

Although not a proper Regge action in general, (72) has some interesting properties thanks to the fact
that the 4d dihedral angles are well defined. First, it shares the property of the Regge action of being the
discretisation of the boundary’s extrinsic curvature. Second, it can be consistently added up to define a bulk
action for a tessellated spacetime ∆4, similarly to the way the 4-simplex boundary Regge action is added
up to give the Regge action of a triangulation [47]. Consider a combinatorial tessellation of spacetime by
4d polytopes σ, and endow it with areas and 3d angles satisfying closure and angle matching (f labels faces
and c the polyhedral 3d cells). Locally the geometry of each polyhedron is well defined, hence the gluing of
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4d cells is automatic. Furthermore, the deficit angles are uniquely defined,

εf (ϕ) = 2π −
∑
σ∈f

θσf (ϕ), (73)

and thus a notion of spacetime curvature a la Regge. Adding up the individual building blocks (72) we
obtain an area-angle action for ∆4 with closure and angle-matching,

S∆4 [jf , ϕ
c
ff ′ , λfc , µ

dd′

cc′ ] := −
∑
σ

SΓ(σ)[j, ϕ, λ, µ]

=
∑
f

jf εf (ϕ)−
∑
c,f∈c

λfcC
f
c (j, ϕ)−

∑
cc′dd′

µdd
′

cc′ Ccc′,dd′(ϕ)− 2π
∑
f

jf . (74)

Here we have switched to a notation jf for the spins, and ϕcff ′ for the 3d angles between faces f and f ′

within the polyhedron c, and similarly relabelled the constraints and Lagrange multipliers. The last term
has no effect on the equations of motion, and is eliminated by the face weights (−1)2

∑
f jf present in the

BF partition function.
Because of the conformal mismatch, the space of solutions of the equations of motion of this action is

certainly larger than that of Regge calculus. It would be interesting for future work to study its geometric
meaning, and whether it admits a well-defined continuum limit. Consider then a restriction to 3d Regge
data, adding by hand the remaining shape-matching constraints to (72). The first term of the action now
properly describes the extrinsic curvature of a 3d Regge tessellation, but not necessarily flatly embeddable.
Hence, as we vary the action restricted to 3d Regge data, we span all possible flat polytopes and also a finite
amount of allowed bulk curvature. To properly describe the curvature, one should subdivide the boundary
graph and the polytope into respectively tetrahedra and 4-simplices with internal faces. One can also take
this as the building block of an action for ∆4 like for (74), and again we expect to get a theory more general
than Regge calculus, with geometric meaning and continuum limit to be explored.

Finally, let us consider restricting to polytope data, adding further the flat-embedding conditions to (72).
Since the metric variables of a flat polytope are volumes and 4d normals, (72) is now equivalent to

Sσ(Va, θa) :=
∑
(ab)

Aab(V, θ)θab, (75)

which is the proper Regge action one would write for a flat convex 4d polytope. Hence, for polytope data
the asymptotics of the coherent amplitude (57) oscillates with frequency given by the polytope Regge action,
providing a proper extension of the result of [4] to nj symbols and polytopes.

Now one could also entertain the idea of using a polytope tessellation of 4d spacetime, and write a Regge
action for it adding up the individual contributions (75), as in the simplicial case. Again the deficit angles
(73) are well defined and so is the Regge curvature. However, the gluing of polytopes is not automatic
anymore. In fact, the geometry of each polyhedron is in general determined by the (Va, Na) data of the
whole polytope; two polytopes sharing a polyhedron will provide the same volume, but different shapes in
general. To consistently add up the polytope terms to a ∆4 action we would need to include polyhedral
shape-matching conditions. This is the 4d generalisation of the same problem of shape mismatch for twisted
geometries, and it is analogue of the non-local area constraints needed for area Regge calculus.

Summarising, we can distinguish five classes of data for a coherent vertex amplitude (57) on a general
simple graph, and different associated asymptotic behaviours. In order of specialisation, these are:

• Twisted geometries.22 These are data required only to satisfy closure, and span a space of dimensions
5L−6N = L+

∑
c 2(valc−3), which can be parametrised by a areas jab and 2(valc−3) shape variables

per tetrahedron with valc faces. The faces are mismatched both in shape and valence, and there is no
clear notion of edges of the dual tessellation (or cellular decomposition). The amplitude has no saddle
points and decades exponentially.

22With ξ̄ab = 0 since we are working with sharp areas, see footnote 7. The most general twisted geometry has 6(L − N)
dimensions.
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• Vector geometries. The data satisfy also the orientation equations, namely the normals are pairwise
anti-parallel up to local rotations. These data span a space of dimensions 3(L − N), for which the
shapes and valences of faces are still mismatched. A parametrisation can be found generalising the
procedure of Section 4.2. These data can be given on any graph, the corresponding amplitude has a
saddle point, and decays with a power-law.

• Angle-matching vector geometries. The data satisfy also the edge-independence conditions (64). They
describe piecewise-flat geometries that allow a conformal mismatch in the polygonal faces. The ampli-
tude has two distinct saddle points, whose interference produces oscillations whose frequency is given
by the generalised Regge action (72).

• Regge data. All shapes match, and the data describe a 3d tessellation of the 3-sphere which is uniquely
characterised by the edge lengths, generically E = 2(L−N). Two distinct saddle points. Oscillations
with a Regge action giving the extrinsic curvature of a generically curved bulk.

• Polytope data. 3d Regge data admitting a flat embedding, a set of 4N − 10 dimensions. Two distinct
saddle points, oscillations with a proper Regge action (75) corresponding to the extrinsic geometry of
a flat convex 4d polytope.

For completeness, we should add that we excluded from our analysis degenerate configurations with
vanishing 3d volumes, for which the Hessian can be degenerate thus giving slower power-law fall offs and
dominating amplitudes, but whose geometric interpretation is less interesting.

6 Implications for spin foam models of quantum gravity

Entirely new section.
Although our background and motivations come from quantum gravity, the results presented concern

purely algebraic and geometric properties of SU(2) invariants, and are valid in any context in which they
enter. In this Section we would like to discuss their specific relevance to spin foam models of quantum gravity
[48], aimed at readers with a certain familiarity with this approach.

The current state of the art in spin foam quantum gravity is exemplified by the EPRL model [10]. A key
property of this model is the emergence of the Regge action in the asymptotics of its vertex amplitude [13, 14],
since it makes a connection with general relativity in the semiclassical limit conceivable. From this point of
view, it came as a bit of a surprise when [4] showed that the Regge action appears also in the asymptotics
of the 15j symbol, which is the vertex amplitude for a spin foam model of SU(2) topological BF theory [36].
But there is no tension here: at the level of a single 4-simplex both models are 4d flat, and whether or not
one gets the Regge behaviour depends on the boundary data, which can be arbitrarily chosen in both cases.23

Crucial difference between the two models is expected to show up when 4-simplices are glued together to
form a triangulated 4-manifold: BF theory is invariant under Pachner moves (once it is suitably regularized),
whereas the EPRL model is not. A key open question is whether this difference is enough to make the EPRL
model capture the correct Regge dynamics on the full triangulation, something that BF theory does not do.
A difficulty in this respect is associated with properly treating the variation with respect to the bulk spins,
leading to a possible flatness problem and an ongoing open debate [49, 50, 51, 52, 53, 54, 55]. A more
detailed understanding of the dynamics on a full triangulation is needed, and this is one of our goals. The
results presented here can be seen as preliminary work in that direction, useful in various ways.

First of all, the interpretation of the boundary data (twisted, vector, Regge geometries) is exactly the same
in BF theory and in the EPRL model, as is the boundary Hilbert space. More importantly, the structure
of the coherent vertex amplitude (18) is the same, the only difference being that the SU(2) matrices are
replaced by SO(4) or SL(2,C) unitary matrices in one-to-one correspondence with SU(2) matrices – via the
Immirzi-parameter-dependent Y -map; hence, also the action (20) for the saddle point approximation has
the same structure, and we can learn a great deal about the EPRL asymptotics by simply looking at SU(2)

23The only difference in the Regge behaviour is that for the EPRL model the Immirzi parameter shows up in front of the
action, consistently with the area spectrum of loop quantum gravity. This is an immediate consequence of the linear embedding
of SU(2) irreps in SO(4) or SL(2,C) ones imposed by the primary simplicity constraints. These constraints do not restrict in
any way the 4-simplex boundary data, which can still be arbitrarily chosen.

31



vertex amplitudes.24 We then expect the results presented in Sections 2-4 to extend in a simple way to the
EPRL model, as we will show and make use of in future publications. In particular the better understanding
of the precise link between the saddle point conditions and the constraints of area-angle Regge calculus, and
the fact that there aren’t higher order corrections to the Regge action, both relevant when studying the
dynamics on a full triangulation.

Secondly, a generalized (i.e. non-simplicial) EPRL vertex amplitude for arbitrary graphs was introduced
in [30, 31], and it allows the model to provide transition amplitudes for arbitrary spin networks (when
restricting to simplicial ones, one redefines the Hilbert space of LQG in terms of 4-valent spin networks
only). It is unknown, and important to establish, whether the generalized amplitude still shows a large spin
limit compatible with a discretization of general relativity, this time on a cellular decomposition instead of a
triangulation. For that, one has to generalize Barrett’s analysis [13, 14] to non-simplicial vertices. Our results
presented in Section 5 for the simpler case of SU(2) show a pathway for doing this. Again the structure
of the vertex amplitude for non-simplicial EPRL model, which is identical to our (57) but with SO(4) or
SL(2,C) matrices now, strongly suggests that the result summarized in the end of Section 5.3 and in Table 1
will be the same, or very similar; and this is further supported by the consistency of our results with the
observations made in [29]. Assuming this to be the case in general, there is a clear conclusion that can be
drawn from our results: either one can show that the generalized Regge action (72) discussed at length in
the previous Section is a good discretization of general relativity, or the model as it is has a worse behaviour
with non-simplicial vertices, which may be problematic for the semiclassical limit.25

As a final comment, we have for the sake of concreteness focused our discussion on the EPRL model. But
our results have direct applications to the spin foam formalism in general, along the lines described above,
as long as the boundary Hilbert space and strategy to define the vertex amplitudes are the same.

7 Conclusions

Largely rewritten
In the paper we presented two different types of results. Numerical results, aimed at studying the accuracy

of the saddle point approximation of [4]; and analytic, aimed at extending it to more general SU(2) graph
invariants. The numerics show that the accuracy is very high already at low spins, and give insights into the
higher-order corrections: the frequency of oscillations and the global phase appear to be numerically exact to
all orders. The analytic results show that the asymptotic relation between SU(2) invariants and 4d Euclidean
geometric objects extends to more general graphs. There exist saddle points for special configurations of
the boundary data, which have an interesting geometric interpretations. The necessary condition for having
at least one saddle point is a straightforward generalization of the notion of vector geometries already
introduced by Barrett, a subset of the most general twisted geometry boundary data. The subset admitting
two different saddles, which carries the most interesting cosine asymptotic behaviour, is on the other hand
more subtle: it selects a class of conformal twisted geometries with 2d angle matchings. For the 4-simplex
case this automatically implies a 3d Regge geometry, but not so for more general graphs. The frequency of
the cosine oscillations is thus given by a generalisation of the Regge action, whose structure and meaning we
briefly discussed, suggesting new directions to explore. A subset of the twin saddles describes 3d polyhedral
Regge geometries, which in general cannot be flatly embedded: these are boundary data for curved bulk
discretisations. We provided also a criterion for the flat embedding, identifying reduced data compatible
with the boundary of a 4d flat convex polytope. In this case the asymptotic action coincides with the 4d
Regge action defined as the total extrinsic curvature of the polytope.

24For the Euclidean case the action is the sum of two actions like (20), corresponding to the splitting so(4) ' su(2)⊕ su(2).
For the Lorentzian case there is a technical difference, as the infinite dimensionality of the unitary matrices requires the
intermediate use of spinors instead of 3-vectors, so some work is needed to adapt our approach. Let us also point out that
Lorentzian amplitudes can be exactly written as linear combinations of SU(2) vertex amplitudes weighted by 1-dimensional
boost integrals at the edges [42]. In this case the results here obtained are directly applicable to the Lorentzian EPRL model,
but they need to be completed with the analysis of the large spin limit of the booster functions [56]. This approach will be
discussed in more details in [21].

25To be fair, the negative answer would not be unexpected: as proved already in the defining paper [9], the linear simplicity
constraints used in the model implement all of the classical ones only thanks to the use of 4-simplices. Our discussion suggests
that for non-simplicial foams one may want to consider additional constraints amenable to select the data leading to (75).
Alternative considerations to impose additional constraints in the non-simplicial EPRL model have recently appeared in [57],
with the same motivations.
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Our results apply to SU(2) graph invariants and BF theory, but are also relevant to quantum gravity
models based on constrained BF theory, like the EPRL model. The numerical study of Barrett’s asymptotic
formula for the Lorentzian EPRL model will appear in a companion paper [21]. Future related work is to
investigate the implications and extensions of our analytic results to the EPRL model with both simplicial
and generalised vertices, and study the problem of asymptotics on extended 4d triangulations, for which the
relation to solutions of the Regge equations is subject of a crucial debate [49, 50, 51, 52, 53, 54, 55]. It would
also be interesting to explore if our techniques can be generalised to quantum deformations, see e.g. [16, 58].
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A Boundary data for geometric 4-simplices: an explicit example

We give here the explicit example of the reconstruction of the twisted spike for an equilateral 4-simplex with
all areas A. We start from its definition as the convex hull of five vertices in R4, which we take to be

v1:
√
A
(
0, 3−3/4, 3−1/4, 2−1/23−3/4

)
v2:

√
A
(
0, 3−3/4,−3−1/4, 2−1/23−3/4

)
v3:

√
A
(
0,−2 · 3−3/4, 0, 2−1/23−3/4

)
v4:

√
A
(
0, 0, 0,−2−1/231/4

)
v5:

√
A
(
−51/22−1/23−1/4, 0, 0, 0

)
We define the 4d normals to the tetrahedra as (normalised) external products of triples of edge vectors, and
then orienting them to be outgoing:

τ1 {v1, v2, v3, v4} : N1 = (1, 0, 0, 0)

τ2 {v1, v2, v3, v5} : N2 =
(

1
4 , 0, 0,−

√
15
4

)
τ3 {v1, v2, v4, v5} : N3 =

(
1
4 ,−

√
5
6 , 0,

1
4

√
5
3

)
τ4 {v1, v3, v4, v5} : N4 =

(
1
4 ,

1
2

√
5
6 ,−

1
2

√
5
2 ,

1
4

√
5
3

)
τ5 {v2, v3, v4, v5} : N5 =

(
1
4 ,

1
2

√
5
6 ,

1
2

√
5
2 ,

1
4

√
5
3

)
We then compute the SO(4) rotations Ga mapping Na to N1. These act on the plane {N1, Na} by an angle
θ1a = arccos(−1/4). Now the vertices lie all in 3d, and we can compute the 3d normals from the (normalised)
external products of the edge vectors. The configuration defines the spike of the left panel of Fig.8. To get
the twisted spike of the right panel, we apply a 3d rotation around each normal ~na1 of an angle arccos(−1/4).
The resulting configuration of 3d normals is reported in the following table.

~nab 1 2 3 4 5

1 (0, 0, 1)
(

2
√

2
3 , 0,− 1

3

) (
−
√

2
3 ,
√

2
3 ,−

1
3

) (
−
√

2
3 ,−

√
2
3 ,−

1
3

)
2 − (0, 0, 1)

(
− 1

3
√

2
,−
√

5
6 ,

1
3

) (
1−3
√

5
6
√

2
,
√

3+
√

15
6
√

2
, 1

3

) (
1+3
√

5
6
√

2
,
√

5−1
2
√

6
, 1

3

)
3 −

(
2
√

2
3 , 0,− 1

3

)
−
(
− 1

3
√

2
,−
√

5
6 ,

1
3

) (
3+
√

5
6
√

2
, 1−
√

5
2
√

6
,
√

5
3

) (
−
√

5−3
6
√

2
,− 1+

√
5

2
√

6
,−
√

5
3

)
4 −

(
−
√

2
3 ,
√

2
3 ,−

1
3

)
−
(

1−3
√

5
6
√

2
,
√

3+
√

15
6
√

2
, 1

3

)
−
(

3+
√

5
6
√

2
, 1−
√

5
2
√

6
,
√

5
3

) (
1
3

√
5
2 ,

1√
6
,−
√

5
3

)
5 −

(
−
√

2
3 ,−

√
2
3 ,−

1
3

)
−
(

1+3
√

5
6
√

2
,
√

5−1
2
√

6
, 1

3

)
−
(
−
√

5−3
6
√

2
,− 1+

√
5

2
√

6
,−
√

5
3

)
−
(

1
3

√
5
2 ,

1√
6
,−
√

5
3

)
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