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In order to keep pace with the increasing data quality of astronomical surveys the observed source
redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine
the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated
with a Newtonian N-body code. A careful analysis reveals the presence of a correction term that has so far
been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and
therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the
gravitational redshift and hence amounts to an important relativistic effect.
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I. INTRODUCTION

While the standard analysis of redshift space perturba-
tions [1] only contains the leading Doppler term, recent and
future galaxy surveys have or will have sufficient statistical
power to detect subleading terms such as gravitational
redshift, weak lensing, transverse Doppler shift, time
delays, etc. These include general relativistic effects that
are interesting targets for testing gravity at cosmological
scales. For instance, a first detection of gravitational red-
shift in galaxy clusters has been claimed in [2]. Perturbation
theory can be used to understand these effects analytically
(e.g., [3]), and many results have been derived in longi-
tudinal gauge. However, their application to N-body
simulations requires due care with respect to how the data
are mapped to the relativistic spacetime.
One possibility is to run relativistic simulations directly in

longitudinal gauge [4], but the use of Newtonian N-body
codes is by far the more common practice. Coming from the
Newtonianworld it is not immediately clear how their results
should be interpreted in a relativistic context (e.g., [5–7]).
In [8] it was finally realized that one can specify a gauge, the
so-called “N-body gauge,”1 in which the relativistic equa-
tions are formally identical to the Newtonian ones, therefore
providing a framework for a fully relativistic interpretation of
Newtonian simulations.The same authorswent on to analyze
initial conditions in this framework, showing that the usual
recipes are consistent with general relativity as well [9].

The issue has so far mostly been discussed in relation to
the matter power spectrum, and the implications for the
perturbed redshift and some other observables have there-
fore not yet been fully appreciated. In the recent literature
the redshift formula of longitudinal gauge is often directly
applied toN-body simulation data, thereby disregarding the
fact that these are not provided in the appropriate coor-
dinate system. For instance, [10,11] do not account for this
aspect, but I show that the correction is fortunately very
small on the scales they are interested in. While the gauge
issue is noted in [12] where a correction term is applied to
the density perturbation [see their Eq. (17)], the redshift of
individual sources is still computed without such a cor-
rection [see their Eqs. (9) and (10)]. In the following I wish to
clarify this issue by studying the coordinate transformations
involved, and finally by deriving the correct formulas for
the perturbed redshift in N-body gauge. I show that a small
correction term due to the spatial coordinate transformation
appears and should, in principle, be included in the analysis.
However, this termonly becomes relevant on extremely large
scales.

II. WEAK-FIELD METRIC

Astrophysical objects with high compactness exist on
scales ≲0.01 parsec (the largest known supermassive black
holes), while on extremely large scales ≳100 megaparsec
the Universe can be described entirely in terms of linear
equations. In between these two extremes there lies a vast
range of scales where the distribution of matter can be very
inhomogeneous but the gravitational fields are weak,
and the geometry is therefore only weakly perturbed.
This empirical fact is confirmed every time we point a
telescope at the sky and observe that most rays seem to
propagate along almost straight paths.

*julian.adamek@obspm.fr
1In fact, [7] had already discovered “half of” the necessary

coordinate transformation, leading to what they called “New-
tonian matter gauge.” The spatial part of the transformation is
however different from the N-body gauge, leading to a non-
vanishing volume perturbation.
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It is therefore possible to describe the dynamics on those
scales in terms of the nonlinear evolution of matter on
a geometry with a linearly perturbed metric. Of course,
as for any geometry, there also exist many coordinate
systems in which the metric takes a wildly nonlinear form.
A particularly well-known coordinate system in which the
smallness of the geometric perturbation is carried into
effect is the one of the longitudinal gauge. For the purpose
of a more general discussion I adopt the notation introduced
in [13] and write the generic line element for a metric with
linear scalar perturbations on top of a Friedmann-Lemaître
model as

ds2 ¼ a2ðτÞ
�
−ð1þ 2AÞdτ2 þ ð1þ 2HLÞδijdxidxj

− 2∇iBdxidτ − 2

�
∇i∇j −

1

3
δijΔ

�
HTdxidxj

�
; ð1Þ

where aðτÞ is the scale factor, τ and xi are conformal time
and comoving coordinates on the spacelike hypersurface,
respectively, and A, B, HL, HT are scalar functions
describing perturbations. Vector and tensor perturbations
are not discussed here. A setting is said to be weak field if
there exists a coordinate system for which all the above
perturbation variables are small, i.e., jAj, jHLj,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇iB∇iB
p

,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇i∇jHT∇i∇jHT − ðΔHTÞ2=3

q
≪ 1. One can then find

other such coordinate systems by making a small change
of coordinates, generated by two scalar fields T and L, so
that τ → τ þ T and xi → xi þ∇iL. This shows that the
four scalar perturbations only contain two physical modes.
The longitudinal gauge is obtained by choosing T and L
such that B ¼ HT ¼ 0, leaving only the lapse perturbation
A ¼ Ψ and the volume perturbation HL ¼ Φ, where the
two potentials Ψ and Φ denote precisely the two physical
modes when written as first-order gauge-invariant expres-
sions. The typical amplitude of these perturbations is∼10−5
in our Universe, except for the vicinity of black holes or
neutron stars where the weak-field description breaks
down.
In longitudinal gauge the Hamiltonian constraint reads

−ΔΦþ 3HΦ0 − 3H2Ψ ¼ 4πGa2δρ; ð2Þ

where H is the conformal Hubble rate, a prime denotes
partial derivative with respect to τ, and the equation is
linearized in Φ and Ψ but not in δρ. In fact, the matter
perturbation δρ can be very large, but it is computed and
evolved on a linearly perturbed geometry. This equation is
however not the one used in a Newtonian N-body code.
First, such a code uses counting densities that are not
corrected for perturbations of the volume element—
Newtonian theory assumes Euclidean geometry. Second,
the Poisson equation lacks some of the terms featured on
the left-hand side.

From now on I restrict the discussion to the case where
gravitational fields are sourced exclusively by nonrelativ-
istic matter. In this case anisotropic stress can be neglected,
implying Φ ¼ −Ψ.

III. PERTURBED REDSHIFT IN
LONGITUDINAL GAUGE

The effect of geometry (and perturbations thereof) on
observables can be understood by studying the geodesics of
photons that reach the observation event. Let me denote the
tangent vector of such a geodesic as kμ. The condition
gμνkμkν ¼ 0 implies that ki=k0 ¼ nið1þ 2ΨÞ, where ni is
the unit vector (δijninj ¼ 1) pointing in the direction the
photon is traveling. The geodesic equation can then be
expressed as an evolution equation for the energy,

d ln k0

dτ
¼ −2H − 2ni∇iΨ; ð3Þ

and an equation describing the deflection of the ray,

dni

dτ
¼ −2ðδij − ninjÞ∇jΨ: ð4Þ

A reference clock is specified through a unit timelike vector
uμ ¼ a−1ð1 − Ψ; viÞ where vi ¼ dxi=dτ is the peculiar
(coordinate) velocity of the clock’s rest frame. In such a
frame, the measured photon energy is −gμνuμkν. A first
integral of Eq. (3) yields the following expression for the
observed redshift between source (src) and observer (obs):

1þ z ¼ gμνuμkνjsrc
gμνuμkνjobs

¼ aobs
asrc

�
1þ niviobs − nivisrc þ Ψobs

−Ψsrc − 2

Z
obs

src
Ψ0dχ

�
: ð5Þ

Here dχ is a conformal distance element along the photon
path. The redshift perturbations are easily identified as the
Doppler shift due to peculiar motion, the gravitational
redshift due to time dilation, and the Rees-Sciama effect
(also known as integrated Sachs-Wolfe effect in the context
of linear theory).
The boundary terms in this expression have to be

evaluated at the coordinate time at which the photon
geodesic actually intersects the world lines of source and
observer. The time of flight of the photon is affected by the
Shapiro delay, which for a coordinate distance χ between
source and observer is given by the following relation:

χ ¼
Z

obs

src
dχ ¼

Z
obs

src
ð1þ 2ΨÞdτ

¼ τobs − τsrc þ 2

Z
obs

src
Ψdχ: ð6Þ
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IV. FROM LONGITUDINAL TO N-BODY GAUGE

Given a linearly perturbed geometry specified in longi-
tudinal gauge I now make a small change of coordinates to
set HL ¼ 0. Considering the Lie derivative of the metric
tensor the required transformation is generated by T, L that
satisfy

HT þ 1

3
ΔL ¼ Ψ: ð7Þ

I furthermore choose L0 ¼ 0 such that velocities are not
transformed. In this new coordinate system one finds
B ¼ T and HT ¼ −L. It is important to verify that these
new perturbations do not violate the weak-field conditions.2

As explained below, L is chosen such thatΔL is of orderΨ,
and hence the same is true for the perturbations generated
by HT. One can then easily convince oneself that ∇iT is
of the order of a peculiar velocity—in fact, it coincides
with the Zel’dovich approximation thereof—and thereforeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇iB∇iB
p

∼ v≲ 10−3 at low redshift. The shift perturba-
tion in the new coordinate system is therefore substantially
larger than Ψ, but still comfortably within the weak-field
regime. The lapse perturbation becomes

A ¼ ΨþHT þ T 0; ð8Þ

and as explained shortly I arrange that it vanishes at
leading order.
The Hamiltonian constraint becomes

Δ
�
HB −

1

3
ΔHT

�
þ 3H2A ¼ 4πGa2δρ; ð9Þ

and as a consequence of HL ¼ 0 the density perturbation
δρ can be obtained simply by counting the mass elements
per coordinate volume, in accordance with the procedure
relevant for Newtonian codes. For nonrelativistic particles
the geodesic equation reduces to

dvi

dτ
þHvi ¼ ∇iðHBþ B0 − AÞ: ð10Þ

Since I assume that matter is nonrelativistic and hence the
pressure perturbation can be neglected, the spatial trace of
Einstein’s equations yields

HA0 −
�
H2 − 2

a00

a

�
A ¼ 0 ⇒ A ∝

1

aH2
: ð11Þ

This shows that an appropriate choice of boundary con-
ditions sets A ¼ 0. Furthermore, with such a choice Eqs. (9)
and (10) are formally identical to the ones of Newtonian
gravity if Eqs. (7) and (8) are used,

ΔΨ ¼ 4πGa2δρ;
dvi

dτ
þHvi ¼ −∇iΨ: ð12Þ

Keeping in mind that the above equations remain valid
even if δρ=ρ becomes large I now set the boundary
conditions at early times when matter perturbations are
still linear. According to Eq. (8) the condition A ¼ 0 is
satisfied when

T ¼ −
1

a

Z
a Ψ
H

d ~a: ð13Þ

The linear solution of Ψ is constant in matter domination,
and with Eq. (7) the corresponding choice of L is given by
ΔL ¼ 5Ψin. Here I introduce Ψin to denote the linear initial
condition for Ψ in matter domination.
With this choice one can see that ∇iB ¼ vi in the linear

regime, which (together with HL ¼ 0) is the original gauge
condition used in [8] for the N-body gauge. So even though
my gauge condition H0

T ¼ −L0 ¼ 0 is different, the
resulting coordinate system is the same whenever only
nonrelativistic matter is present. The advantage of my
condition is that it does not explicitly refer to a matter
perturbation and can hence be easily extended into the
nonlinear regime of matter as long as gravitational fields
remain weak. In a slight abuse of terminology I therefore
always call this system of coordinates the one of N-body
gauge, as the state of a Newtonian N-body simulation is
given in precisely these coordinates.
I now discuss the repercussions of this change of

coordinates from longitudinal to N-body gauge. The null
condition is solved in N-body gauge by ki=k0 ¼ ni þ
∇iBþ njð∇j∇i − δijΔ=3ÞHT , and the photon geodesic
equation can be written as

d ln k0

dτ
¼ −2H − ninj∇i∇jB; ð14Þ

and

dni

dτ
¼ −ðδij − ninjÞ∇j

�
nk∇kB −

1

3
ΔHT

�
: ð15Þ

Considering how the coordinate transformation acts on uμ

one sees that uμ ¼ a−1ð1; viÞ in the new coordinates. Thus,
a first integral of Eq. (14) gives the following new
expression for the observed redshift:

2For instance, had I made a change of coordinates that sets
A ¼ B ¼ 0 instead, like in a synchronous gauge, I would have
found L0 ¼ T ¼ −a−1

R
aðΨ=HÞd ~a and that HL receives a con-

tribution ∼ΔΨ=H2 ∼ δρ=ρ. The volume perturbation therefore
does not remain small everywhere in such a coordinate system,
rendering the weak-field treatment inconsistent.
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zþ 1 ¼ aobs
asrc

�
1þ niviobs − nivisrc þΨobs −Ψsrc þHBjobs

−HBjsrc − 2

Z
obs

src
Ψ0dχ

�
: ð16Þ

In order to recover all the terms of Eq. (5) I used ðHBÞ0 ¼Ψ0
and HBþ B0 ¼ −Ψ, but evidently a new boundary term
HB appears. Noting that B ¼ T this boundary term can be
understood as the result of the change of coordinates acting
on the background term aobs=asrc. In other words, the term
has to appear because the equal-time hypersurfaces in
N-body gauge do not coincide with the ones of longitudinal
gauge. The coordinate time of a Newtonian N-body simu-
lation is the one of N-body gauge, and hence this boundary
term needs to be taken into account.
Let me now inspect the time of flight for the photon in

N-body gauge,

χ ¼
Z

obs

src

�
1þ ni∇iBþ ninj∇i∇jHT −

1

3
ΔHT

�
dτ

¼ τobs − τsrc þ Bobs − Bsrc þ ni∇iHT jobs − ni∇iHT jsrc
þ 2

Z
obs

src
Ψdχ; ð17Þ

where I again use the gauge conditions to recover the terms
known from longitudinal gauge. Compared to Eq. (6) there
are two new boundary terms. These are expected from the
gauge transformation, since the coordinate time transforms
as τ → τ þ T ¼ τ þ B, and the coordinate distance trans-
forms as χ→ χþni∇iLjobs−ni∇iLjsrc¼ χ−ni∇iHT jobs þ
ni∇iHT jsrc. For a photon trajectory with fixed end points,
the coordinate time of emission and observation therefore
transforms such that the boundary terms due to the shift
perturbation in Eqs. (16) and (17) cancel exactly. The other
boundary term in Eq. (17) gives precisely the change in the
coordinate distance due to the spatial transformation
between longitudinal and N-body gauge. Therefore, the
perturbed redshift for the trajectory remains invariant.

V. DISCUSSION

The precedent analysis clarifies that in order to use the
longitudinal gauge for computing the perturbed redshifts
with N-body simulation data one should transform the
coordinates appropriately. In particular, the coordinate
distance between observer and sources changes according
to a spatial transformation that is independent of time. This
has already been pointed out in [5], and I explicitly show

how to recover this result in the relativistic framework
provided by the N-body gauge. Alternatively the compu-
tation of the perturbed redshift can also be carried out
directly in N-body gauge. In this case the coordinates of
sources are directly taken from the simulation, and the
effect appears as a modification of the Shapiro delay.
In order to estimate the amplitude of the correction, let

me compute the typical change δχ ¼ ni∇iLjobs − ni∇iLjsrc
of the coordinate distance. Using the relation ΔL ¼ 5Ψin
the variance of δχ is given by

hδχ2i ¼ 50

Z
∞

0

dk
k3

�
1

3
−

1

kχ
j1ðkχÞ þ j2ðkχÞ

�
ΔΨ

k ; ð18Þ

where ΔΨ
k is the dimensionless power spectrum of Ψin.

Unfortunately the integral has an infrared divergence for
nearly scale invariant spectra, but in practice this diver-
gence is regulated by the finite size of a simulation.
Imposing a cutoff close to the Hubble scale one finds that
δχ=χ ∼ 10−4 almost independent of scale χ and precise
value of the cutoff. Considering how a change in the
coordinate distance affects the time of flight one sees that
the typical correction to the redshift due to this coordinate
effect is δz=ð1þ zÞ ∼Hδχ. Therefore the effect becomes of
the order of the gravitational redshift for trajectories at or
above the gigaparsec. At these extreme scales the gauge
correction is of the same order as all other relevant terms
and should be taken into account.
As suggested in [2] the gravitational redshift may be

measured statistically by looking for “excess redshift” of
the brightest galaxies at the center of clusters when
compared to the fainter galaxies in the outskirts. For
simulating such a measurement the relevant correction is
given by the difference in time of flight between the
different sources, and therefore the effect is suppressed
by the small ratio between the scale of the cluster and the
Hubble scale. One expects that in this case the correction is
typically less than 1% of the signal and can therefore safely
be neglected.
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