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We study N noninteracting fermions in a domain bounded by a hard wall potential in d ≥ 1
dimensions. We show that for large N , the correlations at the edge of the Fermi gas (near the
wall) at zero temperature are described by a universal kernel, different from the universal edge
kernel valid for smooth potentials. We compute this d dimensional hard edge kernel exactly for
a spherical domain and argue, using a generalized method of images, that it holds close to any
sufficiently smooth boundary. As an application we compute the quantum statistics of the position
of the fermion closest to the wall. Our results are then extended in several directions, including
non-smooth boundaries such as a wedge, and also to finite temperature.

PACS numbers: 05.40.-a, 02.10.Yn, 02.50.-r

Noninteracting Fermi gas in a confining trap is a sub-
ject of great current interest, both theoretically [1] and
in cold atom experiments [2]. The trap introduces a soft
edge to the Fermi gas where the average density vanishes
at zero temperature (T = 0). Near the edge, the quan-
tum and thermal fluctuations play an important role [3].
For a harmonic trap in one-dimension (d = 1) at T = 0,
the positions of the fermions are in one-to-one correspon-
dence with the eigenvalues of the Gaussian Unitary En-
semble (GUE) of Random Matrix Theory (RMT) [4–7].
Consequently, the quantum correlations at the edge of
the trap are described by the fluctuations of the largest
eigenvalues of the GUE [8]. Furthermore, it was shown
recently that these edge correlation functions for the har-
monic trap are universal with respect to a large class
of smooth confining potentials, e.g. V (x) ∼ |x|p with
p > 0. Similarly, the edge correlations for the harmonic
trap were shown to be universal in d > 1 and T > 0 for
smooth potentials [8–10]. It is natural to ask what type
of trap potentials lead to edge physics that deviates from
this universal description? This is particularly relevant
as the current experimental techniques are able to design
traps of varying shapes [2, 11]. The simplest and perhaps
the most natural candidate is a “box” with hard wall po-
tential, a standard subject in basic quantum mechanics.
In this Letter we show that fermions near the hard wall
of a d-dimensional box have universal correlations, e.g.,
independent of the shape of the box, which are rather
different from their counterparts in smooth potentials.

In this Letter, we present exact results for the edge
properties of the Fermi gas in a box with hard wall poten-
tial in all dimensions and find a new universality class for
the edge properties. Specifically we calculate the density,
the correlations near the hard wall as well as, in the case
of a spherically symmetric potential, the distribution of
the position of the fermion closest to the wall, in typical
and large deviation regimes. We study N noninteracting
spinless fermions of mass m in a domain D, confined by a
boundary ∂D. We set the potential to be infinite outside
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FIG. 1. Fermion density in a 1d box. Continuous lines: exact
mean density for N = 50. It vanishes near the edge on scale
1/kF : the zoom (inset) indicates the scaling functions for
d = 1, 2, 3 as in Eq. (4).

D. We first focus on T = 0 and zero potential inside D.
The correlations are fully characterized, thanks to the

Wick theorem, by a “kernel” Kµ(x,y), where µ = ~2

2mk
2
F

is the Fermi energy. Far from the boundaries of D, i.e.
in the bulk, and for N � 1, it takes a universal, transla-
tionally invariant form [10, 12, 13]

Kµ(x,y) ∼ kdFKb
d (kF |x− y|) , Kb

d (r) =
J d

2
(r)

(2πr)
d
2

, (1)

where Jα(r) is the Bessel function of index α and the
superscript b refers to the bulk. In particular, for d = 1,
Kb
d=1(r) = sin r/(πr), is the sine kernel well known in

RMT [14, 15] to describe the bulk of the spectrum.
The result in (1) can be obtained using the local den-
sity approximation (LDA) [12], or more controlled large
N asymptotics [10, 13]. The fermion density, given by
ρ̃(x) = Kµ(x,x), is thus uniform in the bulk ρ̃(x) =
NρN (x) = N

Ω = ρ0 with ρ0 = kdF 2−d/γd from (1) where

γd = πd/2Γ(1 + d
2 ) and Ω the volume of the box. Hence

the typical interparticle distance ∼ 1/kF ∼ (Ω/N)1/d is
small compared to the typical size of the box in the limit
that we study, and (1) leads to an algebraic decay of the
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correlations beyond that scale.
One of our main results is that near a smooth boundary

point xw the limiting kernel takes the form

Kµ(x,y) ∼ kdFKe
d(kF (x− xw), kF (y − xw)) , (2)

where Ke
d – the superscript ‘e’ referring to the edge – is

the universal scaling function

Ke
d(a,b) = Kb

d (|a− b|)−Kb
d (|a− bT |) (3)

where Kb
d is the bulk scaling function given in (1) and bT

is the image of b by the reflection with respect to the tan-
gent plane to the boundary at xw. This is obtained by a
generalized method of images, which is shown to work for
any smooth boundary for N � 1. This is confirmed by
an exact calculation for a spherical domain. The density
near the wall is described by the scaling function

ρ̃(x) = ρ0Fd(kF z) , Fd(z) = 1−Γ(
d+ 2

2
)z−

d
2 J d

2
(2z) (4)

where z is the distance of x from the boundary. It van-
ishes close to the wall, Fd(z) ' 2

d+2 z
2 as z → 0, and

reaches the bulk density, Fd(z) → 1, as z → ∞. This is
valid for any smooth boundary with radius of curvature
R, in the limit kFR � 1. Our result (2) for the kernel
is thus quite different from the Airy kernel in d = 1, and
its generalizations in higher d, which holds for smooth
confining traps [9, 10]. In fact in d = 1 we show that
the positions xi of the fermions can be mapped exactly
(for any N) to the eigenvalues of the Jacobi Unitary En-
semble (JUE) of RMT [see Eq. (15)]. This is at vari-
ance with the corresponding exact property concerning
the harmonic oscillator and the GUE [4, 5, 7].

As a concrete application of our result for the kernel
in (2), we compute the cumulative distribution function
(CDF) of the position of the farthest fermion rmax =
max1≤i≤N{ri} in a spherical box of unit radius in the
large N limit. We show that this CDF Qd(w,N) =
Prob.(rmax ≤ w), for d > 1, displays three distinct

regimes : a first typical regime where (1−w) = O(k
− d+2

3

F ),
an intermediate deviation regime (1−w) = O(k−1

F ) and,
a large deviation regime (1 − w) = O(1) (bulk). This is
summarized as (see Fig. 2)

Qd(w,N) ∼


e−[αdk

d+2
3

F (1−w)]3 , (1− w) = O(k
− d+2

3

F )

e−k
d−1
F Gd(kF (1−w)) , (1− w) = O(k−1

F )

e−k
d+1
F Φd(w) , (1− w) = O(1) , (5)

where αd is a computable constant [16]. The intermediate
deviation function (IDF), Gd(s) is computed explicitly
in (20) and has the asymptotic behavior, Gd(s) ∼ s3 as
s→ 0, and Gd(s) ∼ s2 as s→ +∞. The large deviation
function (LDF) has the behavior Φd(w) ∼ (1 − w)2 as
w → 1 and ∼ − lnw as w → 0. The first line of Eq. (5),
with d > 1, is a special case of a Weibull distribution,

FIG. 2. Sketch of the cumulative distribution function
Qd(w,N) of the farthest fermion position rmax in d > 1 di-
mension for a spherical box as a function of w and for large
N , in the typical (blue), intermediate (green) and large devi-
ation regimes (red), as in (5). Inset: Cartoon of a 2d Fermi
gas: position of the farthest fermion indicated in blue.

and is very different from the Gumbel law found recently
for smooth potentials in d > 1 [17]. The spherical box
of unit radius in d > 1 reduces to the interval [−1, 1] in
d = 1, where the typical and intermediate scales coincide,

k
−(d+2)/3
F = k−1

F , and the corresponding merged regime
is described by the extrapolation of the second line in
Eq. (5) to d = 1. In d = 1, we also compute the CDF
q1(w,N) of the position xmax = max1≤i≤N{xi} of the
rightmost fermion. Note that q1(w,N) 6= Q1(w,N). Ex-
ploiting the mapping to the JUE we show that q1(w,N)
also has a typical and a large deviation regime as for
Q1(w,N) (but no IDF) as in (5). Most of these results
generalize to a non-zero smooth potential V (x) inside the
box (Eqs. (1), (2), (4) still hold with kF → kF (x) see
below) and to finite temperature T = O(µ).

Spherical box. Let us start with N noninteracting
fermions at T = 0, where D is the d-dimensional sphere of
unit radius. The N body Hamiltonian is HN =

∑N
i=1Hi

where the single particle Hamiltonian is defined, in spher-

ical coordinates, as H = − ~2

2m∆x = − ~2

2mr
− d−1

2 ∂2
rr

d−1
2 +

1
2mr2 L̂

2 for r < 1, with the condition of vanishing wave-
function at r = 1. In spherical coordinates x = (r,θ)
where θ is a d− 1 dimensional angular vector, the eigen-
functions of H, using spherical symmetry, are labeled by
the quantum numbers (n,L), where n is a positive inte-
ger, and are given by

φn,L(r,θ) = r
1−d
2 χn,l(r)YL(θ) . (6)

The YL(θ) are the d-dimensional spherical harmonics, la-
beled by the set of angular quantum numbers L, which
are eigenfunctions of L̂2 with eigenvalues ~2l(l + d − 2)
depending on a single positive integer l. The radial part
χn,l(r) is the eigenfunction of a 1d effective Hamiltonian,
Heff χn,l = En,lχn,l, with an effective potential

V leff(r) =
~2

2mr2

(
l +

d− 3

2

)(
l +

d− 1

2

)
, r ≤ 1 (7)
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and V leff(r) = +∞ for r > 1. It is given by

χn,l(r) =

√
2r

Jν−1(kn,l)
Jν(kn,l r), r ≤ 1 (8)

where ν = l + d−2
2 and χn,l(r) = 0 for r ≥ 1. The

vanishing of the wavefunction at r = 1 determines the
kn,l’s and the eigenenergies

En,l =
~2

2m
k2
n,l , kn,l = jl+(d−2)/2,n (9)

where jν,n is the n-th real zero of the Bessel function
Jν(x) [18]. Each l-sector has degeneracy gd(l) for d ≥
2 [19]

gd(0) = 1, gd(l) =
(2l + d− 2)(l + d− 3)!

l!(d− 2)!
, l > 0 . (10)

The many-body ground state wave-function
Ψ0(x1, · · · ,xN ) is given by the Slater determinant
constructed from the N lowest energy single-particle
wave functions (6) of labels (n1,L1), · · · , (nN ,LN ) as

Ψ0(x1, · · · ,xN ) =
1√
N !

det
1≤i,j≤N

φni,Li(xj) . (11)

For simplicity, we assume that, in the ground-state, all
the levels up to the Fermi energy are fully occupied. We
are interested in the p point correlation functions

Rp(x1, ...,xp) = cN,p

∫ N∏
j=p+1

dxj |Ψ0(x1, ...,xN )|2 (12)

with cN,p = N !
(N−p)! where |Ψ0|2 is the zero temperature

quantum joint PDF of the fermion positions. Using stan-
dard manipulations [10], one can show from (11) that all
correlation functions are determinantal

Rp(x1, . . . ,xp) = det
1≤i,j≤p

Kµ(xi,xj) , (13)

with the exact formula for the associated kernel

Kµ(x,y) =
∑
n,L

φ∗n,L(r,θ)φn,L(r′,θ′) Θ(kF −kn,l) , (14)

where Θ(x) is the Heaviside step function while kn,l is
given in (9) – we recall that kF ∼ N1/d.

The case of d = 1. In this case the fermions are con-
fined to the segment [−1, 1], the eigenfunctions in Eq. (6)
are labeled by a single quantum number n ∈ N∗ and given
by φn(x) = sin(nπ(x+ 1)/2) such that φn(x = ±1) = 0.
Using this, the Slater determinant in (11) can be eval-
uated explicitly and the quantum joint PDF of the N
fermions can be written as [16] (see also [20, 21])

|Ψ0(x1, .., xN )|2 =
1

ZN

N∏
i=1

(1− v2
i )

N∏
j<k

|vj − vk|2 (15)

where vj = sin
πxj

2 and ZN is a normalization constant.
Setting ui = (1 + vi)/2, one finds that the ui’s are dis-
tributed like the eigenvalues of random matrices belong-
ing to the Jacobi Unitary Ensemble (JUE) [14, 15]. Using
this connection, the scaled kernel near the hard wall at
x = 1 in Eq. (3) becomes [5]

Ke
1(a, b) =

sin(a− b)
π(a− b)

− sin(a+ b)

π(a+ b)
. (16)

Using this kernel we evaluate the CDF, q1(w,N), of
the position xmax of the rightmost fermion, by observ-
ing that this is the ”hole probability” that there are
no fermions in the interval [w, 1]. In RMT, it is well
known that such hole probabilities can be formally ex-
pressed as a Fredholm determinant, with an associated
kernel. In our case, we can then express q1(w,N) as
a Fredholm determinant with the kernel given in (16),
q1(w,N) = Prob.(xmax ≤ w) ∼ q̃1(kF (1− w)) with

q̃1(s) = D−

(
2s

π

)
, D−(t) = Det

(
I − Pπ t

2
Ke

1Pπt
2

)
(17)

where Px denotes the projector on the interval [0, x]. In-
terestingly, D−(t) also describes the probability to find
at most one eigenvalue in the interval [0, t] (in unit of
the average spacing) in the bulk of the spectrum of
matrices belonging to the Gaussian Orthogonal Ensem-
ble (GOE) [14, 22, 23]. Finally, for large deviations,
1 − w � k−1

F (where kF ∼ N), we show [16], using Eq.
(15), that q1(w,N) ∼ exp(−k2

Fϕ1(w)) with

ϕ1(w) = − 4

π2
ln

(
1

2
+

1

2
sin
(π

2
w
))

, − 1 ≤ w ≤ 1 .

(18)
The case d > 1. In this case, although there is no obvi-

ous connection with RMT, the positions of the fermions
form a d-dimensional determinantal process with a ker-
nel obtained by substituting Eqs. (6) and (8) in (14). In
the large N limit, using known asymptotics of the Bessel
functions and their zeroes, we derive [16] the limiting
form of the kernel in Eq. (3).

Using the determinantal form of Ψ0 in (11) and the
spherical symmetry of the problem, following similar
steps as in [17] we show that the CDF of rmax factor-
izes as a product over different angular sectors

Qd(w,N) =

l∗N∏
l=0

[Pl(w,ml)]
gd(l)

, (19)

where gd(l) is the degeneracy of each l-sector (10) and
ml =

∑
n Θ(kF − kn,l) is the number of fermions in this

sector. In Eq. (19), l∗N is the last occupied l-sector, with
l∗N → kF in the large N limit [16]. In Eq. (19), Pl(w,ml)
is the CDF of the position xmax,l of the rightmost fermion
among ml fermions in the 1d effective potential V leff(r) in
Eq. (7). Eq. (19) shows that rmax is the maximum among
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a large number of independent but non identical random
variables xmax,l, each counted with its degeneracy gd(l).
In the largeN limit, the product in Eq. (19) is dominated
by large values of l = O(kF ) = O(N1/d), corresponding
to large values of ml ∼ kF [16]. Because of the hard-wall
potential at r = 1, xmax,l is bounded by 1. Close to the
wall, one finds that the CDF Pl(w,ml) of xmax,l behaves

for large l = l̃kF , with l̃ fixed, as Pl(w,ml) ∼ q̃1(kF (1−
w)
√

1− l̃2). Using q̃1(s) ∼ 1−2 s3/(9π) as s→ 0 [16], we
find that the PDF of xmax,l, ∂wPl(w,ml) ∝ (1−w)2 when
w → 1. Had these variables been identically distributed
with this PDF, then from the classical theory of EVS,
their maximum rmax would be distributed by the Weibull
law Qd(w,N) ∼ exp[−aN (1 − w)3] for some aN . The
exact result in the first line of (5) thus demonstrates that
effectively these variables become independent.

As in d = 1, there is a large deviation regime for
(1 − w) = O(1), i.e. Qd(w,N) ∼ exp[−kd+1

F Φd(w)]
[see the third line of Eq. (5)]. While computing Φd(w)
remains a challenge, its small w behavior can be ob-
tained as Φd(w) ∼w→0 −κd lnw [16]. Hence for d > 1,
this large deviation regime can not match with the typ-

ical fluctuations where Qd(w,N) ∼ e−k
d+2
F (αd(1−w))3 , for

1 − w = O(k
− d+2

3

F ). Indeed, there is a new intermediate
regime, for (1 − w) = O(k−1

F ), which can be obtained
from the exact formula (19). It is reminiscent of the typ-
ical fluctuations of xmax,l within each l-sector, and one

finds that Qd(w,N) ∼ e−k
d−1
F Gd(kF (1−w)) where

Gd(s) = −
∫ 1

0

2 l̃d−2

Γ(d− 1)
lnD−

(
2

π
s

√
1− l̃2

)
dl̃ , (20)

with D−(t) given in Eq. (17). Using the asymptotic
properties of D−(t) (see [16]) we find that Gd(s) ∼ s3

as s → 0, and Gd(s) ∼ s2 as s → +∞. This ensures a
smooth matching between the three regimes in (5).

General domain. We now consider a general domain D
with the single particle Hamiltonian H = − ~2

2m∆x+V (x)
with V (x) = 0 if x ∈ D and V (x) = +∞ outside D. To
derive (3) we use the representation [10]

Kµ(x,y) =

∫
C

dt

2iπt
exp

(
µt

~

)
G(x,y; t) (21)

where C is the Bromwich contour in the complex plane
and G(x,y; t) is the euclidean propagator associated to
H. Here it is the solution of the free diffusion equation

−~∂tG = − ~2

2m∆yG inside D with Dirichlet condition
G = 0 on ∂D. Let us start with a box ]−R,R[ in d = 1.
Using the standard method of images to express G and
using (21) leads to the exact result [16]

Kµ(x, y) = kF
∑

ε=±1 ,n∈Z
εKb

1 (kF |x− εy − (4n+ 1− ε)R|)

(22)

where µ = ~2

2mk
2
F and Kb

1 is the sine kernel (1). Because
Kb

1 decays, in the limit kFR � 1 at most one image

contributes and one recovers (16). This is a general fea-
ture, and for large µ in any d e.g. with planar walls, only
images within 1/kF need to be considered.

Consider for simplicity the case of fermions in a disc
D of radius R in 2d with Dirichlet boundary conditions
on the circular boundary ∂D, parameterized by (y1, y2)
measured with respect to an origin (0, 0) chosen on ∂D.
The circular boundary is described by y2

2 + (R − y1)2 =
R2. Locally, near the origin (0, 0), where y1, y2 � 1, one
has y1 ' y2

2/2R. The key idea then is to use the fact that
for large µ the time scale which dominates the integral
in (21) is t ∼ t∗ = ~/µ � 1. It is then natural to use
the rescaled time t̃ = µ t/~ and correspondingly rescaled
space x̃ = kFx and to rewrite (21) in terms of the rescaled
propagator G̃, such that G(x,y, t) = kdF G̃(x̃, ỹ, t̃). The
latter must now vanish on the curve ỹ1 ' ỹ2

2/(2kFR) (see
[16] for details). Hence in the limit kFR� 1 the wall can
be effectively replaced by a straight line and the method
of images applies for x̃ ∼ ỹ = O(1), i.e. within a distance
1/kF from the wall, leading to the general formula (3).

We note that the argument using the method of im-
ages can be extended in several directions. This includes
fermions in any d-dimensional domain D (with zero po-
tential inside) with a smooth boundary ∂D, provided
kFR� 1 where R is the minimum local radius of curva-
ture of ∂D. It also holds, under certain conditions, in the
case when the potential inside D is nonzero [16]. Finally,
this method of images can also be generalized to finite
temperature T ∼ µ, using the finite temperature bulk
kernel derived in [10] (see [16]).

The above argument fails, however, for a wedge or a
cone with apex point O at which the radius of curvature
is ill-defined. Consider e.g. a wedge domain in d = 2
with angle α. For α = 2π

m and integer m, the method of
images can again be used [16]. A more general formula
exists for any α for the propagator G [24, 25], leading to
an exact formula for the kernel [16], using (21). Let us
display only the small distance behavior near O in polar
coordinates x = (r, φ), x0 = (r0, φ0)

Kµ(x,x0) ∼ c−1
α sin

(
πφ

α

)
sin

(
πφ0

α

)
k2
F (kF r0r)

π
α

(23)

with cα = π2
2π
α Γ(πα )Γ(2+ π

α ), hence the density vanishes

as ∼ r2π/α near O, but quadratically along the walls.
Similar expressions exist for any conical box in any d [16].

In conclusion, we have computed exactly the d dimen-
sional kernel that characterizes the correlation functions
at the edge of a Fermi gas close to a hard wall in d ≥ 1
dimensions. The density vanishes algebraically near the
wall, with an exponent 2 (quadratically) near a smooth
wall, while near a cone the exponent depends contin-
uously on the solid angle of the cone. We have also
obtained the exact distribution of the position of the
fermion closest to the wall and found three regimes in
d ≥ 1, while only two regimes for d = 1. Given the
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ever increasing sophistication of designing atomic traps
of various shapes, it would be interesting to test exper-
imentally our exact theoretical predictions for the edge
correlations in a hard box potential.
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Supplementary Material for Statistics of fermions in a d-dimensional box near a hard wall

A) d−DIMENSIONAL SPHERICALLY SYMMETRIC HARD BOX POTENTIAL: EXACT RESULTS

Our starting point is a simple model of N non-interacting fermions in a d-dimensional spherically symmetric hard
box potential. The Hamiltonian of the system is as described in the main text

HN =

N∑
i=1

Hi , Hi = − ~2

2m
∆xi + VW (xi) , (24)

where VW (x) = VW (|x|) is a spherically symmetric hard box potential given by

VW (|x|) =

{
0 , x ∈ D = {x ∈ Rd, |x| ≤ 1}
+∞ , x /∈ D .

(25)

Many exact results can be derived in this model, as used in the main text, and details are provided here.

A. 1) Exact solution for N fermions in a box in d = 1

Mapping to the Jacobi Unitary Ensemble

In 1d, the hard wall potential VW (x) in Eq. (25) confines the fermions on the interval [−1, 1]. In this case, the
single particle eigenfunctions φn(x), with boundary conditions φn(x = ±1) = 0, are given by

φn(x) = sin
(nπ

2
(x+ 1)

)
, −1 ≤ x ≤ 1 , (26)

http://dlmf.nist.gov/10.22.E26
http://dlmf.nist.gov/10.22.E26
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when n > 0 is a positive integer. The associated eigenenergies En read

En =
~2

2m
k2
n , with kn =

nπ

2
. (27)

In the N -body ground state of the fermions, each single particle level n = 1 up to n = N are filled by a single fermion.
The highest occupied level (Fermi level) has energy µ = EN = ~2k2

F /(2m) with kF = Nπ
2 .

The ground state wave function Ψ0(x1, · · · , xN ) is given by the Slater determinant constructed from the N lowest
single particle eigenstates (26) as

Ψ0(x1, · · · , xN ) =
1√
N !

det
1≤i,j≤N

φj(xi) . (28)

One can rewrite this Slater determinant using the following simple identity

sinnθ = sin θ Un−1(cos θ), with Un(t) =

bn2 c∑
p=0

(
n+ 1

2p+ 1

)
tn−2p

(
1− t2

)p
, (29)

where Un(t) are called the Chebyshev polynomials of second kind [1]. In Eq. (29) bn/2c denotes the greatest integer
less than or equal to n/2. We now use this identity (29) in Eq. (28) with θ = π

2 (x+1), such that cos(θ) = − sin(πx/2).
The rows and columns of the Slater determinant in (28) can be rearranged to express this determinant in terms of
a Vandermonde determinant. This then yields the following expression for the quantum probability distribution
function (PDF)

|Ψ0(x1, · · · , xN )|2 =
1

ZN

N∏
i=1

cos2
(πxi

2

) N∏
j≤k

∣∣∣sin(πxj
2

)
− sin

(πxk
2

)∣∣∣2 . (30)

Here, ZN is a normalization constant and can be computed exactly [2]

ZN = 2N
2

(
4

π

)N
Z ′N , with Z ′N =

N∏
j=1

Γ(1 + j)Γ
(

1
2 + j

)2
Γ(N + 1 + j)

. (31)

By performing the change of variables ui = 1
2 (1 + sin

(
πxi
2

)
), one can bring this quantum joint PDF to the standard

form of the joint distribution of the Jacobi Unitary Ensemble [2]

Prob.(u1, · · · , uN ) =
1

Z ′N

N∏
i=1

√
ui(1− ui)

N∏
j≤k

|uj − uk|2 , where 0 ≤ ui ≤ 1 . (32)

The p-point correlation function Rp(x1, · · · , xp) is defined as

Rp(x1, · · · , xp) =
N !

(N − p)!

∫
|Ψ0(x1, · · · , xp, xp+1, , · · ·xN )|2 dxp+1 · · · dxN . (33)

Using standard manipulations of RMT [2, 9], one can show that correlation functions are determinantal for all
p = 1, · · · , N

Rp(x1, . . . , xp) = det
1≤i,j≤p

Kµ(xi, xj) , (34)

where the kernel Kµ(x, y) is given by

Kµ(x, y) =

N∑
n=1

φ∗n(x)φn(y) =
sin
(

(2N+1)π
4 (x− y)

)
2 sin

(
π
4 (x− y)

) −
sin
(

(2N+1)π
4 (2 + x+ y)

)
2 sin

(
π
4 (2 + x+ y)

) , (35)

where we have used φn(x) from Eq. (26).
We now consider the scaling behavior of this kernel Kµ(x, y) at the edge near x = 1 (or near its symmetric

counterpart at x = −1), for large µ ∼ N2. For this, we set the distances |x− 1| ∼ k−1
F and |y − 1| ∼ k−1

F , with
kF = Nπ/2, denoting the inverse of the typical inter-particle distance at the edge. Substituting x − 1 = a/kF and
y − 1 = b/kF and expanding for large kF ∼ N , one obtains the leading order scaling behavior of the kernel

Kµ(x, y) = kFK
e
1(kF (x− 1), kF (y − 1)), with Ke

1(a, b) =
sin(a− b)
π(a− b)

− sin(a+ b)

π(a+ b)
, (36)

as mentioned in Eq. (16) of the main text.
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Rightmost fermion CDF q1(w,N)

Typical fluctuations of xmax. Consider the CDF of the position of the rightmost fermion q1(w,N) = Prob.(xmax ≤
w). The event that xmax ≤ w necessarily indicates that there are no fermions in the interval [w, 1]. Thus this can
be interpreted as a “hole probability” (i.e., an interval free of particles). In RMT, this hole probability is a standard
observable and it is well known that it can be expressed as a Fredholm determinant with an associated kernel (it can
also be expressed in terms of the solution of a Painlevé VI equation [4, 5]). In our case, in the limit of large N , and
for w − 1 ∼ k−1

F , q1(w,N) has a scaling form

q1(w,N)→ q̃1(kF (1− w)) , with q̃1(s) = Det (I − PsKe
1Ps) , (37)

where q̃1(s) is a Fredholm determinant with kernel Ke
1 given in Eq. (36). The notation Ps denotes the projector on

[0, s]. As stated in the main text, one can also write that q̃1(s) = D−(2 s/π) where D−(t) is a Fredholm determinant
that appears in the classical Gaussian Orthogonal Ensemble in a different context [2].

Atypical fluctuations of xmax. As we have seen in the previous paragraph, typical fluctuations of xmax near w = 1
occur on a scale 1−w ∼ kF−1 (where kF ∼ N is large) and the CDF of such typical fluctuations are described by the
scaling form in Eq. (37). What about the fluctuations that are atypically large, e.g. when 1−w = O(1). The scaling
form in (37) can not be applied in this regime and we need a separate calculation. This can be done very simply as
follows. We start from the joint distribution of the ui = 1

2 (1 + sin(π xi/2)) variables in Eq. (32). The event xmax ≤ w
corresponds to umax ≤ g(w) = 1

2 (1 + sin
(
πw
2

)
). Hence we can write

q1(w,N) =
1

Z ′N

∫ g(w)

0

du1 · · ·
∫ g(w)

0

duN

N∏
i=1

√
ui(1− ui)

N∏
j≤k

|uj − uk|2 , where g(w) =
1

2
(1 + sin

(πw
2

)
) , (38)

and Z ′N given in Eq. (31). In the limit of large N , the dominant contribution to this multiple integral comes from

the squared Vandermonde term (and is of order eN
2

), while the product
∏N
i=1

√
ui(1− ui) is of order eN . Hence,

keeping only the squared Vandermonde term, and neglecting the rest, we can estimate the remaining integral simply
by a change of variables vi = ui/g(w) followed by a power counting. This gives to leading order for large N

q1(w,N) ∼ [g(w)]
N2

2 , (39)

which can be re-written in the large deviation form (using kF = Nπ/2)

q1(w,N) ∼ exp
(
−k2

Fϕ1(w)
)
, with ϕ1(w) = − 4

π2
ln

(
1

2
+

1

2
sin
(π

2
w
))

, (40)

as announced in Eq. (29) of the main text. The rate function ϕ1(w) is plotted in Fig. 3 and it has the following
asymptotic behaviors

ϕ1(w)→

{
(w−1)2

4 , w → 1 ,

− 8
π2 ln(1 + w), w → −1 .

(41)

Using this asymptotic behavior of ϕ1(w) when w → 1, one gets q1(w,N) ∼ e−k
2
F

(w−1)2

4 . In contrast, if we start

from the typical regime in Eq. (37), using the asymptotic behavior of q̃1(s) as s → ∞ (i.e., q̃1(s) ∼ e−s
2/4), we find

q1(w,N) ∼ e−k2F
(w−1)2

4 to leading order. Thus we see that there is a smooth matching between the typical regime and
the large deviation regime.

A. 2) Exact solution for N fermions in a spherical box in d > 1

Computation of the finite N kernel

Our starting point is the exact expression for the d-dimensional kernel Kµ(x,y) in spherical coordinates x = (r,θ),
y = (r′,θ′) given in the main text in Eq. (14) together with Eqs. (6) and (8)

Kµ(x,y) = (r r′)
1−d
2

∑
n,L

Y ∗L (θ)YL(θ′)χ∗n,l(r)χn,l(r
′)Θ(kF − kn,l) , (42)
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FIG. 3. Large deviation function ϕ1(w) given in Eq. (40) corresponding to atypically large fluctuations of xmax in d = 1.

where Θ(x) is the Heaviside step function, kF =
√

2mµ/~2 with µ being the Fermi energy and kn,l = jl+(d−2)/2,n

where jν,n is the n-th real zero of the Bessel function Jν(x). The function χn,l(r) in Eq. (42) is given by

χn,l(r) =

√
2r

Jν−1(kn,l)
Jν(kn,l r), r ≤ 1 (43)

where ν = l+ d−2
2 and χn,l(r) = 0 for r ≥ 1. To analyze the discrete sums in Eq. (42), it is convenient to parameterize

the set of quantum numbers L as L = (l,m) where m is a d − 2 dimensional vector which, for a given value of l,
takes gd(l) different values corresponding to distinct eigenstates [see Eq. (10) of the main text] which have all the
same eigenenergy En,l = ~2k2

n,l/(2m). Because of the step function Θ(kF − kn,l), both l and n are bounded (see Fig.
4): within each l-sector, n is bounded by ml, 0 ≤ n ≤ ml (see Fig. 4), where ml is given by

ml =
∑
n≥1

Θ(kF − kn,l) , or equivalently kml,l ≤ kF < kml+1,l . (44)

Similarly l is bounded by l∗N , 0 ≤ l ≤ l∗N (see Fig. 4) such that ml∗N
> 0 and ml∗N+1 = 0. Here, for simplicity, we

restrict ourselves to non-degenerate ground state, i.e., the highest energy level is fully occupied and therefore the total
number of fermions N is given by (using the parameterization L = (l,m))

N =
∑
n,L

Θ(kF − kn,l) =
∑
l≥0

∑
m

∑
n≥1

Θ(kF − kn,l) =

l∗N∑
l=0

gd(l)ml . (45)

Using this parameterization of the quantum numbers L = (l,m), the kernel in Eq. (42) reads

Kµ(x,y) = (r r′)
1−d
2

l∗N∑
l=0

(∑
m

Y ∗l,m(θ)Yl,m(θ′)

)
Kl

eff(r, r′) , (46)

where Kl
eff(r, r′) is the effective one-dimensional kernel for fermions in a given l-sector

Kl
eff(r, r′) =

ml∑
n=1

χ∗n,l(r)χn,l(r
′) , (47)

and is completely independent of m. In Eq. (46), the sum over the quantum numbers m runs over gd(l) possible
values (as the ground-state is non-degenerate) and it can be performed explicitly using the following sum rule for the
spherical harmonics (see for instance [6])∑

m

Y ∗l,m(θ)Yl,m(θ′) =
gd(l)

Sd
Pl,d(t) , t =

x · y
|x| |y|

, (48)

where Sd = d πd/2/Γ(d/2 + 1) is the area of the d-dimensional unit sphere and where the variable t depends obviously
only on the angular variables θ and θ′. The functions Pl,d(t) are related to the associated Legendre polynomials [6]
and satisfy the differential equation

(1− t2)P′′l,d(t) + (1− d)tP′l,d(t) + l(l + d− 2)Pl,d(t) = 0 , (49)
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FIG. 4. Occupation of the energy levels in the (l, n) plane in the ground-state of the 2d spherical hard box for kF = 15, which
corresponds to N = 56 fermions (in good agreement with the asymptotic formula N = (kF /2)2 ≈ 56). In this case, the energy
levels are En,l = ~2j2l,n/(2m) where jν,n is the n-th real zero of the Bessel function Jν(x) and the degeneracy is gd=2(l) = 2 for
all l. The filled circles indicate the occupied states (note that each circle actually corresponds to two distinct quantum states,
as gn,l = 2). In each l-sector, each one indicated with a different color, there are ml occupied states and the last occupied state

is indicated in yellow. The green points correspond to the asymptotic large N behavior ml ∼ kFN (l̃ = l/kF ) as given in Eq.
(53) and they are in relatively good agreement with the exact values of ml, even for this low value of kF . Finally, l∗N = 10
denotes the last occupied l-sector, i.e. ml = 0 for l > l∗N .

with the conditions Pl,d(−t) = (−1)lPl,d(t) and Pl,d(1) = 1. Finally, the kernel takes the simplified form

Kµ(x,y) =
(r r′)

1−d
2

Sd

l∗N∑
l=0

gd(l)Pl,d(t)K
l
eff(r, r′) , (50)

with Kl
eff(r, r′) given in Eq. (47) and gd(l) is given in Eq. (10) of the main text.

Note that this formula for the kernel (50), exact for any N , also holds for non-interacting fermions in an arbitrary

spherically symmetric potential, i.e. with single particle Hamiltonian H = − ~2

2m∆x + V (|x|). In this case, Kl
eff(r, r′)

is the kernel corresponding to 1d non-interacting fermions in an effective potential V leff(r) as given in Eq. (7) of the
main text with the substitution VW (r)→ V (r) and gd(l) is given in Eq. (10) of the main text.

Large N analysis of the kernel at the edge

We now analyse this formula in Eq. (50) for large N , equivalently for large kF =
√

2mµ/~2 ∼ N1/d. As we will
see, the sum over l in Eq. (50) is dominated by large values of l. Within each l-sector Eq. (50) shows that the radial
part Kl

eff(r, r′) and the angular part Pl,d(t) are decoupled and we will thus analyze them separately in the limit of
large l.

Radial part. We first analyze Kl
eff(r, r′) given in Eq. (47) in the limit of large l. We anticipate that the sum over n

is dominated by large values of n and we thus determine the asymptotic behavior of χn,l(r) given in Eq. (43) for both
l and n large (and both of the same order O(kF ) as we will see below). In this limit, we make use of the following
asymptotic expansion of the Bessel function (the so called Debye’s expansion) [1]

Jν(kn,lr) ∼

(
2

π
√

(kn,lr)2 − l2

) 1
2

cos

(
kn,lξ

(
r,

l

kn,l

)
− π

4

)
with ξ(r, l̃) =

√
r2 − l̃2 − l̃ arccos

(
l̃

r

)
, (51)

with ν = l+ (d− 2)/2 ∼ l for large l. From this expansion (51), one can already obtain the expansion of kn,l for large
n and l. Indeed, by definition kn,l is the n-th real zeros of Jν(x), i.e., Jν(kn,l) = 0. Hence from Eq. (51) with r = 1
one obtains

kn,l ξ

(
1,

l

kn,l

)
− π

4
=

(
n+

1

2

)
π ' nπ for n� 1 . (52)



10

Let us first apply this relation (52) to n = ml such that kml,l ' kF [see Eq. (44)]. One obtains that for l� 1, kF � 1,

keeping l̃ = l/kF fixed, ml takes the scaling form

ml ∼ kFN
(
l

kF

)
, with N (l̃) =

1

π
ξ(1, l̃) =

√
1− l̃2 − l̃ arccos l̃

π
. (53)

One can easily check that N (l̃ < 1) > 0 and N (1) = 0 and therefore one concludes that the last occupied l-sector
is such that l̃ = 1, i.e. l = l∗N ≈ kF . From Eq. (53) one sees that the typical scale of l is l = O(kF ) and Eq. (52)
suggests that the typical scale of n is also kF . Furthermore, from (52) one obtains that for large l and n, keeping
l̃ = l/kF and ñ = n/kF fixed, kn,l takes the scaling form

kn,l ≈ kF K
(
n

kF
,
l

kF

)
, (54)

where K(l̃, ñ) satisfies the equation (deduced easily from Eqs. (52) together with the expression of ξ(1, l̃) in Eq. (51))√
K2 − l̃2 − l̃ arccos

(
l̃

K

)
= ñ π , (55)

where we used the shorthand notation K ≡ K(ñ, l̃). Note that, by definition of ml (44), one has kml,l ≈ kF . Since

ml ≈ kFN (l̃), the scaling form in Eq. (54) implies that K satisfies

K
(
N (l̃), l̃

)
= 1 . (56)

Note also that, by differentiating Eq. (55) with respect to ñ, one obtains the identity

∂K
∂ñ

=
πK√
K2 − l̃2

, (57)

which will be useful in the following.
We now use Eq. (51) to study the asymptotic form of the wave function χn,l(r) close to the wall at r = 1. A Taylor

expansion near r = 1 of the function ξ(r, l̃) in this equation yields

ξ(r, l̃) =

√
1− l̃2 − l̃ arccos(l̃) + (r − 1)

√
1− l̃2 +O

(
(1− r)2

)
. (58)

Inserting this expansion (58) into equation (51) and using the relation satisfied by kn,l in Eq. (52) one obtains for
(1− r) ∼ k−1

F � 1

Jν(kn,lr) ∼

 2

π
√
k2
n,l − l2

 1
2

cos

((
n+

1

2

)
π + (r − 1)

√
k2
n,l − l2)

)

∼ (−1)n+1

√
kF

(
2

π
√
K2 − l̃2

) 1
2

sin

[
kF (r − 1)

√
K2 − l̃2

]
. (59)

On the other hand, to compute the asymptotic behavior of χn,l(r) in Eq. (43), we also need to analyze Jν−1(kn,l) =
J′ν(kn,l) (where we have used the relation Jν−1(x) = J′ν(x)+(ν/x) Jν(x)). From the asymptotic expansion in Eq. (51)
one obtains

Jν−1(kn,l) = J′ν(kn,l) ∼
1√
kF

(−1)n+1

(
2

π
√
K2 − l̃2

) 1
2

1

K

√
K2 − l̃2 . (60)

Therefore, using these asymptotic expansions (59) and (60) in the expression for χn,l(r) in Eq. (43) one obtains that,

for both n and l large, with ñ = n/kF and l̃ = l/kF fixed and (1− r) = O(k−1
F ), χn,l(r) behaves as

χn,l(r) ∼ K

√
2

K2 − l̃2
sin

(
kF (r − 1)

√
K2 − l̃2

)
, (61)
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where K ≡ K(l̃, ñ) is given implicitly by the solution of equation (55).
Using this asymptotic form (61), one can now compute the effective one-dimensional kernel Kl

eff(r, r′) for large
l = O(kF ) and (r − 1) as well as (r′ − 1) of order O(k−1

F ). One obtains

Kl
eff(r, r′) ∼

kFN (l̃)∑
n=1

2K2

K2 − l̃2
sin

(
kF (r − 1)

√
K2 − l̃2

)
sin

(
kF (r′ − 1)

√
K2 − l̃2

)
. (62)

In the limit of large kF = O(N1/d), the variable ñ = n/kF becomes continuous and the discrete sum of n can be
replaced by an integral

Kl
eff(r, r′) ∼ kF

∫ N (l̃)

0

dñ
2K2

K2 − l̃2
sin

(
kF (r − 1)

√
K2 − l̃2

)
sin

(
kF (r′ − 1)

√
K2 − l̃2

)
. (63)

This integral can be performed explicitly by performing the change of variable ñ→ z =
√
K(ñ, l̃)2 − l̃2. Indeed, using

the identity in Eq. (57) one has

dz

dñ
=
∂K
∂ñ

K√
K2 − l̃2

= π
K2

K2 − l̃2
. (64)

Hence the integral in (63) can be written as

Kl
eff(r, r′) ∼ kF

2

π

∫ √1−l̃2

0

dz sin[kF (r − 1) z] sin[kF (r′ − 1) z] . (65)

where we have used z(N (l̃)) =
√
K(N (l̃), l̃)− l̃2 =

√
1− l̃2 [see Eq. (56)]. Finally, performing explicitly the integral

over z one finds

Kl
eff(r, r′) ∼ kF

√
1− l̃2Ke

1

(
kF

√
1− l̃2 (r − 1), kF

√
1− l̃2 (r′ − 1)

)
, (66)

where we recall that

Ke
1(a, b) =

sin(a− b)
π(a− b)

− sin(a+ b)

π(a+ b)
. (67)

Angular part. We now analyze the angular dependence of the kernel Kµ(x,y) in Eq. (50), which within each
l-sector is controlled by the function Pl,d(t), with t = x·y

|x| |y| = cosψ, ψ being the angle formed by the two vectors x

and y. Since we are interested in the limit where x and y are close to each other, with |x − y| = O(k−1
F ), and also

close to the boundary, i.e. |x|, |y| ≈ 1, we are also interested in the regime where ψ = O(k−1
F ). From the differential

equation satisfied by Pl,d(cosψ) in Eq. (48), one can show that when l� 1 and ψ � 1 keeping the product l ψ fixed,
it takes the scaling form

1

Sd
Pl,d(cosψ) ∼ fd(l ψ), with fd(u) =

Γ(d− 1)

4π

J d−3
2

(u)

(4πu)
d−3
2

. (68)

Scaling form of the full kernel. With the help of these asymptotic forms both for the radial part (66)-(67) and for
the angular part (68) we can now analyze the asymptotic form of the kernel, in the large kF = O(N1/d) limit, and at
the edge, i.e. close to the hard wall. In the edge scaling limit close to a boundary point xw, it is useful to parameterize
the positions of the fermions as follows (see Fig. 5)

x =

(
1 +

an
kF

)
xw +

at
kF

y =

(
1 +

bn
kF

)
xw +

bt

kF

(69)

where xw · at = xw · bt = 0. With this parameterization (69), one can show that the radial kernel Kl
eff(|x|, |y|) only

depends on an and bn and takes the scaling form as in Eq. (67), i.e.,

Kl
eff(|x|, |y|) ≈ kF

√
1− l̃2Ke

1

(√
1− l̃2 an,

√
1− l̃2 bn

)
. (70)
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On the other hand, the angular part Pl,d(
x·y
|x||y| ) only depends on |at − bt|. And in the limit of large l, it takes the

scaling form as in Eq. (68), i.e.,

1

Sd
Pl,d(cosψ) ≈ fd(l̃ |at − bt|) . (71)

By injecting these scaling forms (70) and (71) in terms of these scaling variables (69), into Eq. (50), one obtains

Kµ(x,y) ∼ kF
l∗N∑
l=0

gd(l) fd(l̃|at − bt|)
√

1− l̃2Ke
1

(√
1− l̃2 an,

√
1− l̃2 bn

)
. (72)

We recall that for large kF = O(N1/d), l∗N ≈ kF and the sum is dominated by the large values of l = O(kF ) such that
one can replace gd(l) by its large l behavior

gd(l) ≈
2

Γ(d− 1)
ld−2 = kd−2

F

2

Γ(d− 1)
l̃d−2 . (73)

Furthermore, the scaled variable l̃ = l/kF becomes continuous such that the discrete sum in Eq. (72) can be
replaced by an integral over l̃ ∈ [0, 1], yielding the scaling form

Kµ(x,y) ≈ kdFKe
d (kF (x− xw), kF (y − xw)) , (74)

where the scaling function Ke
d(a,b) reads

Ke
d(a,b) =

2

Γ(d− 1)

∫ 1

0

dl̃ l̃d−2fd(l̃|at − bt|)
√

1− l̃2Ke
1

(√
1− l̃2 an,

√
1− l̃2 bn

)
. (75)

It turns out that the integral over l̃ can be explicitly computed. First we perform the natural change of variable
l̃ = sin θ to obtain

Ke
d(a,b) =

2

Γ(d− 1)

∫ π/2

0

dθ(cos θ)2 (sin θ)d−2fd(|at − bt| sin θ)Ke
1 (an cos θ, bn cos θ) (76)

where Ke
1(a, b) and fd(u) are given respectively in Eqs. (67) and (68). Quite remarkably, this integral over θ can be

performed explicitly using the following identity [1]∫ π
2

0

(cos θ)τ+1 Jτ (y cos θ)(sin θ)σ+1 Jσ(z sin θ)dθ =
zσyτ Jτ+σ+1(

√
z2 + y2)

(z2 + y2)
τ+σ+1

2

. (77)

Using this formula with τ = 1
2 and σ = d−3

2 to compute the integral in Eq. (76) one obtains

Ke
d(anxw + at, bnxw + bt) =

J d
2
(
√

(an − bn)2 + (at − bt)2)

(2π
√

(an − bn)2 + (at − bt)2)
d
2

−
J d

2
(
√

(an + bn)2 + (at − bt)2)

(2π
√

(an + bn)2 + (at − bt)2)
d
2

. (78)

Using finally that
√

(an − bn)2 + (at − bt)2 = |a−b| and
√

(an + bn)2 + (at − bt)2 = |a−bT | (see Fig. 5), Eq. (78)
gives the result announced in the Letter in Eq. (3) of the text.

Farthest fermion CDF Qd(w,N) in d > 1

In this section, we give some details regarding the results about the CDF Qd(w,N) of rmax in dimension d > 1, for
N fermions in a spherically symmetric hard box, as in Eqs. (24), (25).

Intermediate deviation function. Our starting point is the formula for Qd(w,N) given in Eq. (19) of the main text
(see also [7])

Qd(w,N) = exp

 l∗N∑
l=0

gd(l) lnPl(w,ml)

 , (79)
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FIG. 5. Sketch of the method of images for the sphere (see Eqs. (69) and (78)).

where Pl(w,ml) is the CDF of the position of the rightmost fermion xmax,l among ml fermions (within each l-sector)
in the 1d effective potential V leff(r) given in Eq. (7) in the main text. Now within each l-sector the ml fermions form
a 1d determinantal process with an edge kernel, close to the boundary at r = 1, given by Eq. (66). Therefore, up to

the scale factor
√

1− l̃2, this is the same determinantal process as the one studied above [see Eq. (36) and below].
One thus immediately concludes that, in the limit of large kF = O(N1/d),

Pl(w,ml) ≈ q̃1

(
kF (1− w)

√
1− l̃2

)
, l̃ =

l

kF
, (80)

where we recall that q̃1(s) = Det(I − PsKe
1Ps) = D−

(
2
π s
)

[see Eq. (17) in the main text]. For later purpose, we also
give its asymptotic behaviors [8]

q̃1(s) =

{
1− 2

9π s
3 − 2

75π s
5 +O(s7), s� 1

s−
1
8 e−

s2

4 + s
2 +O(1), s� 1

. (81)

To analyse Qd(w,N) given in Eq. (79) in the large N (equivalently large kF = O(N1/d)) limit we replace Pl(w,ml)
by its asymptotic form in Eq. (80) as well as gd(l) by Eq. (73), as the sum over l is dominated by large values of
l = O(kF ). Therefore, the discrete sum over l can be replaced by an integral over l̃ = l/kF (we recall that l̃ ∈ [0, 1]
since l∗N ≈ kF ). Hence in the large N and large l limit, one may write Qd(w,N) under the following scaling form

Qd(w,N) ∼ exp
(
−kd−1

F Gd(kF (1− w))
)

where Gd(s) = − 2

Γ(d− 1)

∫ 1

0

l̃d−2 ln q̃1

(
s

√
1− l̃2

)
dl̃ , (82)

which corresponds to the intermediate deviation regime, given in the second line of Eq. (5) in the main text. The

asymptotic behavior of Gd(s) can be simply obtained by replacing q̃1

(
s
√

1− l̃2
)

by its appropriate asymptotic form,

which can be read from Eq. (81) and by performing the remaining integral over l̃. This yields

Gd(s) ≈


(αd s)

3 , s→ 0 with αd =
[
3× 2d−1Γ

(
d
2 + 2

)
Γ
(
d
2

)]− 1
3

d
(d+1)!s

2 , s→∞ ,

(83)

as announced below Eq. (21) of the main text.
Typical region. For large kF , and for d > 1, Qd(w,N) is non-zero only when Gd(s) = O(k1−d

F ) � 1, with
s = kF (1−w), which happens when s→ 0 [see Eq. (83)]. By using the small s behavior of q̃1(s) given in the first line of

Eq. (81) one can thus replace ln q̃1(s
√

1− l̃2) by its asymptotic behavior for small s, ln q̃1(s
√

1− l̃2) ∼ − 2
9π (1− l̃2)

3
2 s3

into the expression of Gd(s) in Eq. (82). Performing the remaining integral over l̃ we find

Qd(w,N) ∼ exp
(
−[k

d+2
3

F αd(1− w)]3
)
, with αd =

[
3× 2d−1Γ

(
d

2
+ 2

)
Γ

(
d

2

)]− 1
3

, (84)
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as announced in the first line of Eq. (5), which describes the typical behavior of Qd(w,N) (see also Fig. 2 in the main
text).

Large deviation regime. As in the 1d case [see Eq. (40)], one expects that there is a large deviation regime associated
to Q(w,N) for (1 − w) = O(1). To unveil this regime, we recall that Pl(w,ml), within each l-sector, can be written
as (see [7])

Pl(w,ml) =
1

ml!

∫ w

0

dr1 · · ·
∫ w

0

drml

(
det

1≤i,j≤ml
χj,l(ri)

)2

, (85)

where χn,l(r) is given in Eq. (43). Computing this multiple integral (85) for arbitrary w with 1 − w = O(1) seems
very hard but progress can be made in the limit w → 0. Indeed in this limit, one can replace the squared determinant
in Eq. (85) by its limiting behavior when r1, r2, · · · rml are all small, i.e.,

1

ml!

(
det

1≤i,j≤ml
χj,l(ri)

)2

≈ zl
ml∏
i=1

r2l+d−1
i

ml∏
i<j

∣∣r2
i − r2

j

∣∣2 , for r1, r2, rml � 1 , (86)

where zl is some constant, which is not important here. Inserting this asymptotic behavior (86) into Eq. (85) and
performing the change variable yi = ri/w, the small w behavior can the be simply obtained by power counting as

Pl(w,ml) ≈ z′lw2ml(ml+l+d/2−1) . (87)

By inserting this small w expansion (87) into Eq. (79) one obtains

Qd(w,N) ≈ exp(cd,N lnw) , w → 0 with cd,N = 2

l∗N∑
l=0

gd(l)ml (ml + l + d/2− 1) . (88)

This is the exact small w behavior of Qd(w,N) for any finite N . In the large N limit, the sum in (88) is dominated
by large values l and one can replace gd(l) by its asymptotic behavior (73) and ml by its scaling form ml ≈ kFN (l̃),
with l̃ = l/kF (53). For kF � 1 the sum over l can be replaced by an integral (we recall that l∗N ≈ kF ) and one finds

Qd(w,N) ≈ exp
[
kd+1
F κd lnw

]
, κd =

4

Γ(d− 1)

∫ 1

0

dl̃ l̃d−2N (l̃)(N (l̃) + l̃) . (89)

This behavior (89) is thus fully compatible with a large deviation formQd(w,N) ≈ exp(−kd+1
F Φd(w)), for 1−w = O(1),

as given in the third line of Eq. (5) of the main text. In addition, the result in Eq. (89) implies that Φd(w) ∼ −κd lnw,
as w → 0, as announced in the paragraph above Eq. (20) in the main text. This integral over l̃ in Eq. (89) can
be computed explicitly in terms of hypergeometric functions. In particular one finds κ2 = 64/(27π2) = 0.2401 . . . or
κ3 = 1/32 + 1/(2π2) = 0.0819 . . ..

Special case d = 1. For completeness, we mention that the large deviation function Φ1(w) can be computed
explicitly in d = 1, along the lines exposed in section A.1 (relying on the mapping to the JUE). In that case, one finds
Φ1(w) = − 4

π2 ln sin
(
πw
2

)
, for 0 < w ≤ 1.

B) METHOD OF IMAGES AND FERMIONS IN A WEDGE GEOMETRY

Here we derive Eqs. (22) in the text, we provide more details for the argument leading to the method of images for
a smooth boundary, and we derive (23) for the wedge.

B.1) Smooth boundary: method of images

For the box ]−R,R[ in d = 1 the standard method of images gives the propagator

G(x, y; t) =

+∞∑
n=−∞

( m

2π~t

) 1
2

(
e−m

(4nR+x−y)2
2~t − e−m

((4n+2)R−x−y)2
2~t

)
(90)
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Inserting into (21) and using the identity valid for arbitrary d and a > 0∫
Γ

dt

2iπtd/2+1
exp

(
zt− a

t

)
=
(z
a

) d
4

J d
2
(2
√
az) (91)

we obtain the exact result, valid for any µ and N , for the kernel, (22) in the text. We note that because of the decaying
behavior of the sine kernel, it is clear on Eq. (90) that (i) for x, y inside the box and farther than 1/kF ∼ 1/N from
either boundary walls only the direct term (n = 0 of first sum) contributes, leading to the standard sine kernel (ii)
x, y are within 1/kF of the wall at x = R, only the additional term n = 1 of the second sum contributes (respectively
only n = −1 near x = −R) (iii) all other images can be neglected, as they are much farther than 1/kF of any point
in the box, i.e. the parameter RkF � 1. As mentionned in the text, the latter feature is general, i.e. for large µ (see
below) only nearby images need to be considered. Note that the model immediately extends to a rectangular box of

size Rx ×Ry, in d = 2 in the limit Ry � Rx, and at fixed µ =
~k2F
2m , with Kb

1 → Kb
d (in that application N is infinite

if Ry is taken infinite).
Let us now detail the argument given in the text for d = 2. Consider for simplicity the model of the circular box

of radius R. Let us shift the coordinates for convenience so that the wall passes through (0, 0) and consider nearby

points. Inside the circle the euclidean propagator must satisfy −~∂tG = HG, with H = ~2

2m (∂2
y1 + ∂2

y2), and vanish

on the wall, i.e. G(x, (y1 = f(y2), y2); t) = 0, where y1 = f(y2) = R ±
√
R2 − y2

2 is the equation of the wall, with
f(y2) ' y2

2/(2R) near (0, 0). Let us rewrite (21) denoting t = ~t̃/µ where t̃ is the dimensionless rescaled time

Kµ(x,y) =

∫
C

dt̃

2iπt̃
exp(t̃)G(x,y; ~t̃/µ) = kdF

∫
C

dt̃

2iπt̃
exp(t̃)G̃(x̃, ỹ; t̃) (92)

where G(x,y; ~t̃/µ) = kdF G̃(x̃, ỹ; t̃). In the second equality we use the dimensionless variables x̃ = kFx, ỹ = kFy where

here we denote µ = ~2

2mk
2
F . The dimensionless propagator satisfies −∂t̃G̃ = (∂2

ỹ1
+ ∂2

ỹ2
)G̃ with G̃(x̃, ỹ; 0) = δd(x̃− ỹ).

The key point is now it must vanish G̃(x, (ỹ1 = f̃(ỹ2), ỹ2); t) = 0 i.e. on the line ỹ1 = f̃(ỹ2) = kF f(ỹ2/kF ) '
ỹ2

2/(2kFR) ≈ 0 using that kFR � 1. Hence we see that only the shape of the wall near the considered point (0, 0)
matters (the remainder is sent to infinity) and that the effective radius of curvature of the wall is now kFR. Thus in
the limit kFR� 1 the wall can be considered as a plane and the method of images applies in the region x̃ ∼ ỹ = O(1),
i.e. within distance 1/kF from the wall. For the same reason as in the 1d discussion above, we can focus on this
region and neglect the contributions from other parts of the wall at distances much larger than 1/kF .

As discussed in the text the above argument can be extended to any finite domain x ∈ D in any d confined by a
smooth (twice differentiable) boundary ∂D acting as a hard wall, and in presence of an additional smooth potential
V (x) inside the domain (until now we have considered V (x) = 0). The control parameter of the problem is µ, the
Fermi level energy, and one now defines kF (x) =

√
2m(µ− V (x))/~.

Bulk regime: The small time expansion of [9] leads to a density in the bulk ρ̃(x) ' [kF (x)]d/(2dγd), as a function of
µ for large µ. This formula is valid for x at distances � 1/kF (x) from the wall. Note that this result for the density
in the bulk is independent of whether there is a wall or not. On the other hand the total number of fermions is given
by
∫
x∈D ρ̃(x) = N and obviously depends on the presence of the wall.

Hard wall edge regime: The conditions for the above arguments to be valid are as follows. First one must have at
any boundary point xw, kF (xw)R(xw)� 1, where R(xw) has the following interpretation. In dimension d > 2 there
are d − 1 directions in the tangent plane to the wall at xw each characterized by a radius of curvature. R(xw) is
the minimum of all these d− 1 radii of curvatures. Then the method of images applies near the wall and the kernel
is given by Kd

b minus its reflection with respect to the hyperplane tangent to the wall at that point as indicated in
formula (3). If V (x) 6= 0 additional conditions are required, namely that the potential does not vary too fast near
the wall. This can be again obtained from the short time expansion performed in [9] (see Section VII there). To
discard higher order terms in t, one needs that the characteristic time t∗ introduced in the text, which in presence of
a potential renormalizes to t∗ = ~/(µ− V (xw)) be much smaller than tN , the characteristic time for the smooth edge
regime defined in Eq. (281) of Ref. [9]. The condition t∗ � tN leads to√

µ− V (xw)� |V ′(xw)|1/3~1/3m−1/6 (93)

which can also be written as kF (xw)� 1/wN , where wN is the width of the smooth edge regime. If this condition is
violated, one enters a more complicated edge regime in presence of a hard wall, which we leave for future study.

Finite temperature. Following the same lines as [9] (see Section VII there) the same conclusions extend to finite
temperature T > 0 in the regime T ∼ µ where µ is the Fermi energy defined in the paper. Let us focus here on
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the case of the hard wall box with zero internal potential V (x) = 0. One defines µ̃ the finite temperature chemical
potential of the grand canonical ensemble as the solution of [9]

−Lid/2(−eµ̃/T ) =
NλdT

Ω
(94)

where Liν(z) =
∑
n≥1

zn

nν , Ω is the volume of the box and N the mean number of fermions in the box. We also

introduce the de Broglie thermal wavelength λT = ~
√

2π
mT and the ”finite temperature Fermi momentum scale”

k̃ =
√

2mµ̃/~. Using Eq. (240) of [9] and integrating by part we obtain the finite temperature kernel KT
µ̃ (x,y) as

KT
µ̃ (x,y) =

∫ +∞

0

dµ′Kµ′(x,y)
1

4T [cosh 1
2T (µ′ − µ̃)]2

' λ2
T

8π

∫ +∞

0

dkkd+1Ke
d(kx, ky)

1

[cosh
λ2
T

8π (k2 − k̃2)]2
(95)

where in the last formula we have performed the change of variable µ′ = ~2k2/(2m) and taken the large N limit. For
simplicity we have located the hard wall at xw = 0. Here Ke

d is the zero temperature edge kernel defined in the text
in (2)-(3), and given explicitly as

Ke
d(a,b) =

Jd/2(|a− b|)
(2π|a− b|)d/2

−
Jd/2(|a− bT |)

(2π|a− bT |)d/2
(96)

where, as in the text, bT is the image of b by the reflection with respect to the tangent plane to the boundary at
xw = 0. When x,y are farther than a distance ∼ 1/kF from the wall, the second term in (96) vanishes and one
recovers the finite temperature bulk kernel given in an equivalent form in formula Eq. (274) in [9] (note the misprint
in the published version, see the correct formula (272) in arXiv version). Note that as kFλT � 1 one recovers the
zero temperature result. Finally, the above analysis can be extended to an arbitrary internal smooth potential V (x)
along the lines of [9].

B.2) Wedge geometry: method of images

Consider a wedge domain in d = 2, with apex angle α. Let us start with the simplest case where α = 2π
m and

integer m, where the method of images, with multiple images, can be applied. Let us use complex plane coordinates
z = x1 + ix2. Let us denote ω = eiα with ωm = 1, the rotations Rj : z → ωjz and reflections Tj : z → ωj z̄. The
method of images generates all compositions of the two reflections T0 and T2, i.e. the set R2k and T2k for all k ∈ Z.
It is easy to see that for even m = 2p the resulting group is G : {R2j , T2j}j=0,..p−1 with m elements, while for odd
m = 2p+ 1 odd it is G : {Rj , Tj}j=0,..m−1 with 2m elements. The resulting scaled kernel in the wedge reads

Ke
2(w, z) =

p−1∑
j=0

(Kb
2 (|w − ω2jz|)−Kb

2 (|w − ω2j z̄|) , m = 2p even (97)

Ke
2(w, z) =

m−1∑
j=0

(Kb
2 (|w − ωjz|)−Kb

2 (|w − ωj z̄|) , m = 2p+ 1 odd . (98)

The simplest example is the square p = 2. The density at point x = (x1, x2) with z = x1 + ix2, in the upper quadrant
wedge x1, x2 > 0 is

ρ̃(z) =
k2
F

4π
F square

2 (kF z) (99)

F square
2 (z) = 4πKe

2(z, z) = 1− J1(2x1)

x1
− J1(2x2)

x2
+
J1(2

√
x2

1 + x2
2)√

x2
1 + x2

2

' 1

6
x2

1x
2
2 +O(x6) (100)

where J1 is the Bessel function. For the square quadrant, the density thus vanishes quartically with the distance to
the apex.

Until now the formula for the kernel (97) is exact for any µ for a wedge. Extensions for a wedge made of smooth
curved pieces, in presence of a smooth potential V (x) and at finite T are immediate, along the lines of the previous
paragraph, and with similar conditions, since, again, it is a simple application of the method of images.
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B.3) Wedge geometry : exact result for any angle

Exact formula

Here we work in units m = ~ = 1. We now use the exact formula given in [10] for the propagator in a wedge in 2d
of apex angle α. Denoting z = reiφ, z0 = r0e

iφ0 , one has in polar coordinates

G(z, z0; t) =
2

α

+∞∑
n=1

sin

(
nπφ

α

)
sin

(
nπφ0

α

)∫ +∞

0

dk k e−k
2t/2 Jn πα (kr) Jn πα (kr0) (101)

=
2

αt

+∞∑
n=1

sin

(
nπφ

α

)
sin(

nπφ0

α
)In πα

(r0r

t

)
exp

(
−r

2 + r2
0

2t

)
(102)

which vanishes for φ = 0, α. Here we have given two equivalent forms. We recall that the kernel Kµ(z, z0) is related
to the propagator by the relation∫ +∞

0

dµKµ(z, z0)e−µt =
1

t
G(z, z0; t) , Kµ(z, z0) = LT−1

t→µ
1

t
G(z, z0; t) . (103)

First form of the kernel. Starting from the first form (101) of the propagator, and using that LT−1
t→µe

−k2t/2/t =
Θ(µ− k2/2) we can perform the integral over k and obtain a first formula for the kernel in a universal form

Kµ(z, z0) =
4k2
F

α

∞∑
n=1

sin(
nπφ

α
) sin(

nπφ0

α
)KBes,nπα

(k2
F r

2, k2
F r

2
0) (104)

where

KBes,ν(x, y) =
1

2(x− y)
(Jν(
√
x)
√
y J′ν(

√
y)− Jν(

√
y)
√
x J′ν(

√
x)) (105)

is the standard Bessel kernel known in RMT [11], and we replaced µ = k2
F /2 in our units. The density is thus

ρ̃(z) = Kµ(z, z) =
k2
F

4π
Fwedge,α

2 (kF z) (106)

Fwedge,α
2 (z) =

4π

α

∞∑
n=1

sin2

(
nπφ

α

)(
J′nπ
α

(r)2 +

(
1− n2π2

α2r2

)
Jnπ
α

(r)2

)
. (107)

This series converges quickly and the formula is useful to plot the density (see Figure 6).
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FIG. 6. Plot of Fwedge,α
2 (z) ≡ Fwedge,α

2 (r, φ) given in Eq. (107) as a function of r for α = 7π/10 and fixed φ = α/2.
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Second form of the kernel. Let us give a formula which makes more apparent the relation with the method of
images. Let us now start from (102) and use the representation [1]

Iν(y) =
1

π

∫ π

0

dψ ey cosψ cos(νψ)− sin(πν)

π

∫ +∞

0

due−y coshu−νu (108)

as well as formula (91) to perform the inverse Laplace transform and obtain

Kµ(z, z0) =
2

α

+∞∑
n=1

sin

(
nπφ

α

)
sin

(
nπφ0

α

)
(109)

×
(

1

π

∫ π

0

dψ cos(
nπψ

α
)

√
2µ

r2 + r2
0 − 2rr0 cos(ψ)

J1(
√

2µ(r2 + r2
0 − 2rr0 cos(ψ))) (110)

−
sin(nπ

2

α )

π

∫ +∞

0

due−n
π
αu

√
2µ

r2 + r2
0 + 2rr0 cosh(u)

J1(
√

2µ(r2 + r2
0 + 2rr0 cosh(u)))

)
(111)

The second term is absent when π
α = q with q integer. Using the Poisson summation formula

∑n=+∞
n=−∞ einθ =

2π
∑k=+∞
k=−∞ δ(θ− 2πk), and using the constraints 0 < φ, φ0 < α and 0 < ψ < π, leads a finite sum with alternate signs

over images. In the general case, the summation over n in both terms can also be achieved and leads to an explicit
but complicated formula that we do not display here.

Small distance expansion of the wedge kernel

It is easy to perform the small distance expansion of the formula (102). We use that

Iν(x) =
xν

2νΓ(1 + ν)
+O(x2+ν) (112)

and obtain

G(z, z0; t) ' 2

α t2
π
αΓ
(
1 + π

α

) sin

(
πφ

α

)
sin

(
πφ0

α

)(r0r

t

) π
α

(113)

and we use that LT−1
t→µ

1

t2+
π
α

= µ1+ π
α

Γ(2+ π
α ) to obtain the formula (23) in the text. For the square wedge, α = π/2, it

agrees with the result (99).

General cone in d dimensions

One can consider a cone in dimension d, which is a direct generalization of a wedge in d = 2. For any pair of points
x and y belonging to the domain W bounded by the cone, the quantum propagator has the following expansion [12]

G(x,y; t) =

∞∑
j=1

mj

(
x

|x|

)
mj

(
y

|y|

)∫ +∞

0

dk k e−k
2t/2 Jαj (k|x|)
|x|d/2−1

Jαj (k|y|)
|y|d/2−1

(114)

=
1

t(|x||y|)d/2−1

∞∑
j=1

mj

(
x

|x|

)
mj

(
y

|y|
)

)
Iαj

(
|x||y|
t

)
e−

x2+y2

2t , αj =
√
λj + (d/2− 1)2 (115)

where mj(x/|x|) are the eigenfunctions, with associated eigenvalues λj , of the Laplace-Beltrami operator (up to a
minus sign), i.e. the operator L2, on Sd−1 (unit sphere in Rd) with the condition that they vanish on the boundary

of the domain W. For the 2d cone mj(φ) =
√

2
α sin πjφ

α and αj = jπ/α, and we recover (102). From Eq. (114) we

derive, as in the previous section,

Kµ(x,y) =
2k2
F

(|x||y|)d/2−1

∞∑
j=1

mj

(
x

|x|

)
mj

(
y

|y|

)
KBes,αj (k

2
F |x|2, k2

F |y|2) (116)
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where KBes,αj is the Bessel kernel (105), which arises from solving the radial problem. From these expressions one
can derive the small distance expansion of Kµ as

Kµ(x,y) ' 1

2α1Γ(1 + α1)Γ(2 + α1)
(|x||y|)

√
λ1+(d/2−1)2−(d/2−1)m1

(
x

|x|

)
m1

(
y

|y|

)
, α1 =

√
λ1 + (d/2− 1)2

where λ1 is the smallest eigenvalue of the Laplace-Beltrami operator (up to a minus sign) on the sphere with vanishing
conditions on the cone boundary. This generalizes the result (23) given in the text to a cone in any dimension d.
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[5] E. Dueñez, D. K. Huynh, J. P. Keating, S. J. Miller, N. C. Snaith, J. Phys A, 43(40), 405204 (2010).
[6] C. R. Frye, C. J. Efthimiou, arXiv preprint arXiv:1205.3548 (2012).
[7] D. S. Dean, P. Le Doussal, S. N. Majumdar, G. Schehr, J. Stat. Mech., 063301 (2017).
[8] U. Grimm, Phys. Stat. Sol. B 241, 2139 (2004).
[9] D. S. Dean, P. Le Doussal, S. N. Majumdar, G. Schehr, Phys. Rev. A 94 063622 (2016).

[10] M. Chupeau, O. Bénichou, S. N. Majumdar, Phys. Rev. E 91 032106 (2015).
[11] P. J. Forrester, Log-Gases and Random Matrices (London Mathematical Society monographs, 2010).
[12] R. Garbit, K. Raschel, Electron. J. Probab. 19 1 (2014).

http://dlmf.nist.gov/10.22.E26

	Statistics of fermions in a d-dimensional box near a hard wall
	Abstract
	 References
	 A) d-dimensional spherically symmetric hard box potential: exact results
	 A. 1) Exact solution for N fermions in a box in d=1
	 Mapping to the Jacobi Unitary Ensemble
	 Rightmost fermion CDF q1(w,N)

	 A. 2) Exact solution for N fermions in a spherical box in d>1
	 Computation of the finite N kernel
	 Large N analysis of the kernel at the edge
	 Farthest fermion CDF Qd(w,N) in d>1


	 B) Method of images and fermions in a wedge geometry
	 B.1) Smooth boundary: method of images
	 B.2) Wedge geometry: method of images
	 B.3) Wedge geometry : exact result for any angle
	 Exact formula
	 Small distance expansion of the wedge kernel
	 General cone in d dimensions


	 References


