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ABSTRACT
Many statistical models in cosmology can be simulated forwards but have intractable likeli-
hood functions. Likelihood-free inference methods allow us to perform Bayesian inference
from these models using only forward simulations, free from any likelihood assumptions
or approximations. Likelihood-free inference generically involves simulating mock data and
comparing to the observed data; this comparison in data space suffers from the curse of di-
mensionality and requires compression of the data to a small number of summary statistics to
be tractable. In this paper, we use massive asymptotically optimal data compression to reduce
the dimensionality of the data space to just one number per parameter, providing a natural
and optimal framework for summary statistic choice for likelihood-free inference. Secondly,
we present the first cosmological application of Density Estimation Likelihood-Free Infer-
ence (DELFI), which learns a parametrized model for joint distribution of data and parameters,
yielding both the parameter posterior and the model evidence. This approach is conceptually
simple, requires less tuning than traditional Approximate Bayesian Computation approaches to
likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer
forward simulations. As an additional bonus, it enables parameter inference and Bayesian
model comparison simultaneously. We demonstrate DELFI with massive data compression on
an analysis of the joint light-curve analysis supernova data, as a simple validation case study.
We show that high-fidelity posterior inference is possible for full-scale cosmological data
analyses with as few as ∼104 simulations, with substantial scope for further improvement,
demonstrating the scalability of likelihood-free inference to large and complex cosmological
data sets.

Key words: methods: data analysis.

1 IN T RO D U C T I O N

In cosmological data analysis, we are often faced with scenarios
where we can generate mock data with sophisticated forward simu-
lations, but are unable to write down a tractable likelihood function.
For example, physics associated with non-linear structure formation
on small scales (Springel 2005; Klypin, Trujillo-Gomez & Primack
2011), baryonic feedback (Hellwing et al. 2016; Springel et al.
2018; Chisari et al. 2018), gravitational and hydrodynamical evolu-
tions of the intergalactic medium (Arinyo-i Prats et al. 2015; Bolton
et al. 2016), epoch of reionization (Mesinger, Greig & Sobacchi
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2016; Kern et al. 2017) etc., may be captured (to varying degrees)
by simulations, whilst compact and accurate models for the statisti-
cal properties of these processes are often elusive. Similarly on the
measurement side, complicated noise models, subtle measurement,
and selection biases etc., can often be simulated but are challenging
to incorporate exactly into a likelihood function.

The standard approach is to build an approximate likelihood that
tries to capture as much of the known physics and measurement pro-
cesses underlying the data as possible, in the hope that the adopted
approximations do not lead to biased posterior inferences. Even
if the means and variances of inferences are not appreciably bi-
ased, assessing tensions between data sets (Marshall, Rajguru &
Slosar 2006), combining inferences, and comparing models can be
strongly affected by posterior tail probabilities that are unlikely to
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be accurate when using popular likelihood approximations. With
widely reported tensions between key state-of-the art cosmologi-
cal data sets, most notably weak-lensing and cosmic microwave
background (CMB) measurements of the amplitude of matter clus-
tering (Ade et al. 2016; Joudaki et al. 2017; Alsing, Heavens & Jaffe
2016; Hildebrandt et al. 2017) and local versus CMB measurements
of the Hubble constant (Riess et al. 2011; Ade et al. 2016; Feeney,
Mortlock & Dalmasso 2017), it is worthwhile seeking methods
that might eliminate likelihood approximations from the chain of
scientific reasoning.

Likelihood-free inference methods allow us to perform Bayesian
inference using forward simulations only, free from any likeli-
hood assumptions or approximations (see Lintusaari et al. 2017
for a review). This approach has great appeal for cosmological data
analysis, since encoding complex physical processes, instrumental
effects, selection biases, etc., into a forward simulation is typically
much easier than incorporating these effects into a complicated
likelihood function and solving the inverse problem.

Likelihood-free methods are emerging as a viable way forward
for analysing complex data sets in cosmology, with recent applica-
tions to inference of the quasar luminosity function (Schafer &
Freeman 2012), galaxy merger rate evolution at early times
(Cameron & Pettitt 2012), cosmological parameters from super-
nova observations (Weyant, Schafer & Wood-Vasey 2013), galaxy
formation (Robin et al. 2014), weak-lensing peak statistics (Lin &
Kilbinger 2015), the galaxy–halo connection (Hahn et al. 2017),
cosmological redshift distributions (Kacprzak et al. 2017), photo-
metric evolution of galaxies (Carassou et al. 2017), and Lyman-α
and -β forests (Davies et al. 2017), with public likelihood-free in-
ference codes implementing Approximate Bayesian Computation
(ABC) facilitating the rise in popularity of these methods (Ishida et al.
2015; Akeret et al. 2015; Jennings, Wolf & Sako 2016).

In its simplest form, likelihood-free inference with ABC involves
forward simulating mock data given a set of input parameters drawn
from the prior, and then comparing the simulated data to the ob-
served data, accepting parameters when the simulated data are close
(by some distance metric) to the observed data. This comparison in
data space suffers from the curse of dimensionality, scaling expo-
nentially with the size of the data set; for large data sets such a com-
parison is completely impractical and it is essential to compress the
data down to a small number of summary statistics. The need for data
compression is common amongst even sophisticated likelihood-free
inference methods. Data compression schemes should be carefully
designed to reduce the data to the smallest set of summaries possi-
ble, whilst retaining as much information about the parameters of
interest as possible (see Blum et al. 2013, for a review).

Once a data compression scheme has been prescribed, the second
hurdle for achieving scalable likelihood-free inference is choosing
how to propose parameters and run forward simulations in the most
efficient way, minimizing the number of simulations required to ob-
tain high-fidelity posterior inferences. This is of particular impor-
tance for applications in cosmology, where forward simulations are
often extremely computationally expensive; even with very aggres-
sive data compression, ABC methods typically require an unfeasibly
large number of simulations for many cosmological applications.

This paper tackles the two key hurdles for scalable likelihood-
free inference: (1) how do we compress large cosmological data
sets down to a small number of summaries, whilst retaining as
much information about the cosmological parameters as possible,
and (2) how do we perform likelihood-free inference using a feasible
number of forward simulations. We propose a general two-step data
compression scheme, first compressing the full data set D ∈ R

N

down to d ∈ R
M well-chosen heuristic summary statistics as is

standard practice in cosmological data analysis (e.g. compressing
maps down to power spectra, supernova light curves, and spectra
down to estimated distance moduli and redshifts), and secondly
asymptotically optimally1 compressing the M summaries down to
just n numbers t ∈ R

n – one for each parameter of interest – while
preserving the Fisher information content of the data, following
Alsing & Wandelt (2018), Heavens, Jimenez & Lahav (2000), and
Tegmark, Taylor & Heavens (1997).

With the two-step compression scheme defined, we then intro-
duce Density Estimation Likelihood-Free Inference (DELFI, Bonassi,
You & West 2011; Fan, Nott & Sisson 2013; Papamakarios &
Murray 2016), which learns a parametrized model for the joint den-
sity of the parameters and compressed statistics P (θ , t), from which
we can extract the posterior density by simply evaluating the joint
density at the observed data to, i.e. P (θ |to) ∝ P (θ , t = to). We
will show that high-fidelity posterior inference can be achieved
with orders of magnitude fewer forward simulations than, for
example, available implementations of Population Monte Carlo
ABC (PMC-ABC), making likelihood-free inference feasible for full-
scale cosmological data analyses where simulations are expensive.
As a case study, we will demonstrate DELFI with massive data com-
pression on an analysis of the joint light-curve analysis (JLA) su-
pernova data set (Betoule et al. 2014).

The structure of this paper is as follows: in Section 2, we discuss
massive asymptotically optimal data compression for application
to likelihood-free inference methods. In Section 3, we introduce
likelihood-free inference methods, discussing ABC and introducing
DELFI (Bonassi et al. 2011; Fan et al. 2013; Papamakarios & Murray
2016) as a scalable alternative. In Section 4, we validate the DELFI

method with asymptotically optimal data compression on a simple
analysis of the JLA supernova data set, and compare to PMC-ABC.
We conclude in Section 5.

2 MASSI VE ASYMPTOTI CALLY OPTI MAL
DATA COMPRESSI ON

In this section, we describe the two-step data compression, first
from N data to a set M of well-chosen summary statistics, and then
compressing the M summaries down to just n numbers, where n is
equal to the number of parameters to be inferred.

The first step is already common practice in cosmological data
analysis; for example, data from cosmological surveys are typically
compressed to maps and then estimated n-point statistics (power
spectra or correlation functions, bispectra, etc.) or other summary
statistics. The second step, compressing down to just one num-
ber per parameter whilst retaining as much (Fisher) information
about the parameters as possible, has been considered by Tegmark
et al. (1997), Heavens et al. (2000), and Alsing & Wandelt (2018);
we follow the most general of these studies here (Alsing & Wan-
delt 2018). These Fisher-information preserving data compression
ideas are already widely used in astronomy and cosmology, with
applications spanning determining galaxy star formation histories
(Reichardt, Jimenez & Heavens 2001; Heavens et al. 2004; Panter
et al. 2007), CMB data analysis (Gupta & Heavens 2002; Zablocki
& Dodelson 2016), gravitational waves (Graff, Hobson & Lasenby
2011), transient detection (Protopapas, Jimenez & Alcock 2005),
fast covariance-matrix estimation (Heavens et al. 2017), galaxy

1 For a discussion of precisely what is meant by optimal in this context, see
Section 2.3.
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power spectrum and bispectrum analyses (Gualdi et al. 2017), and
optimal power spectrum estimation (Tegmark, Taylor & Heavens
1997; Bond, Jaffe & Knox 1998, 2000).

2.1 Two-step data compression

The two-step compression proceeds as follows:

(I) Compress the full data set d ∈ R
N into a set of summary

statistics d ∈ R
M , with the aim of retaining as much information as

possible about the parameters of interest:

D → d(D) = {list of summary statistics} (1)

(II) Compress the vector of M summary statistics d into
a vector of n numbers t ∈ R

n, as follows: assume an ap-
proximate form for the log-likelihood function L, and de-
fine the compressed statistics t to be the score function –
the gradient of the log-likelihood – evaluated at some fiducial
parameter set θ∗:

d → t = ∇θL∗. (2)

In the case where we assume a Gaussian likelihood for the summary
statistics, 2L = −(d − μ)TC−1(d − μ) − ln|C| with the mean and
covariance depending on the parameters, the compressed statistics
t are given by (Alsing & Wandelt 2018):

t = ∇θμ
T
∗C

−1
∗ (d − μ∗) + 1

2
(d − μ∗)TC−1

∗ ∇θC∗ C−1
∗ (d − μ∗), (3)

where μ∗ ≡ Eθ∗ [d] and C∗ = Eθ∗
[
(d − μ)(d − μ)T

]
are the mean

and covariance of the summary statistics d (evaluated at the fiducial
parameter values), which can be estimated from forward simula-
tions.

Let us consider the practical considerations and limitations of
steps (I) and (II) in turn.

2.2 Step I: initial compression to summary statistics

Compression step (I) retains as much information as can be cap-
tured by the carefully chosen summary statistics d. In special cases,
where sufficient summary statistics can be found, this step will be
lossless, but in general step (1) will be lossy. Nevertheless, it is
standard practice to reduce large cosmological data sets to sets of
summary statistics in the hope of retaining as much information
as possible, whilst making the subsequent inference task tractable.
A substantial body of literature exists on summary statistic choice
for cosmological data analysis. In the context of likelihood-free in-
ference, one may include in d a list of as many relevant summary
statistics for the problem as is feasible in the hope of capturing as
much information as possible, without needing to be able to write
down a joint likelihood function for the summaries.

Importantly, the only requirement for likelihood-free inference
is that realizations of the summary statistics can be generated by
forward simulation given a set of input parameters; in contrast to
likelihood-based analyses, we do not require a predictive model
for the expected summary statistics μ(θ ) = Eθ [d]. For cosmologi-
cal data analysis, this has great appeal, since many problems have
summary statistics that are expected to contain a wealth of infor-
mation but that we may not have a reliable predictive model for.
Examples in the context of large-scale structure analyses include
the galaxy power spectrum and bispectrum in redshift space and

on small scales, the weak-lensing power spectrum on small angu-
lar scales, cosmic void statistics, the flux power spectrum of the
Lyman-α forest, and many others.

Whilst step (I) typically results in an enormous reduction in the
size of the data space, for cosmological applications the number of
summary statistics M is still often ∼102 or larger. For example, we
may have compressed a vast number of time-ordered data points
from a CMB survey down to a few hundred or thousand estimated
power spectrum modes, or measured supernova light curves and
spectra down to an estimated apparent magnitude, redshift, colour,
and stretch parameter for each of the sources. Hence, the space of M
summaries is still typically much too large for practical data-space
comparisons and likelihood-free inference; further compression of
these summaries down to a small number of compressed statistics
is still required.

2.3 Step II: asymptotically optimal compression to the score
function of an approximate likelihood

Once an appropriate set of summary statistics has been chosen, the
massive compression in step (II) proceeds by assuming an approx-
imate form for the likelihood and compressing to the score func-
tion – the gradient of the log-likelihood evaluated at some fiducial
parameter set θ∗ (equation 2). This compression results in just n
numbers – one per parameter of interest – that are optimal in the
sense that they preserve the Fisher information, to the extent that
the assumed form for the (unknown or intractable) likelihood is a
good approximation to the true likelihood function and the fiducial
expansion point is close to the maximum likelihood (this can be
iterated if necessary; see Alsing & Wandelt 2018 for details). A
detailed discussion of optimality in this context is given at the end
of this section.

Crucially, the assumed approximate likelihood function is used
for the sole purpose of performing the data compression; once the
compression is done, all likelihood assumptions are dropped and the
subsequent inference is genuinely likelihood-free. Better likelihood
approximations for the compression step will lead to more optimally
compressed statistics, but there is no sense in which these choices
will bias the final parameter inferences.

For many applications, a Gaussian likelihood may be a reason-
able first approximation, but not accurate enough in detail to be used
for likelihood-based inferences. In these situations, a Gaussian like-
lihood may be assumed for the data compression, leading to com-
pressed statistics given by equation (3). Computing the compression
in equation (3) requires an estimate of the mean, covariance matrix,
and their derivatives at some fiducial parameter set θ∗. These can
all be obtained using forward simulations only, as is already com-
mon practice for mean and covariance estimation for conventional
likelihood-based analyses. Derivatives can be estimated quickly by
performing simulations with matched random seeds but perturbed
parameter values.

For likelihood-based analyses assuming Gaussian likelihoods,
poorly estimated covariance matrices will in general lead to biased
parameter inferences and great care needs to be taken to ensure
these are determined precisely, including any parameter dependen-
cies, and any covariance-matrix uncertainties should be formally
marginalized over (Sellentin & Heavens 2015). In contrast, for
likelihood-free analyses, if the covariance matrix used for the com-
pression in equation (3) is approximate, the worst outcome is that
the resulting compression will be sub-optimal; crucially, there is
no sense in which poorly estimated covariance matrices can bias
the final parameter inferences and parameter-dependent covariance
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matrices are not required. The same principle applies to the mean
and derivatives appearing in equation (3); approximations are al-
ways safe, only leading to sub-optimality. This means that when
fast approximate models for the covariances and means are avail-
able, they can be used safely for rapid compression, reducing the
total number of forward simulations required (at the cost of some
optimality).

2.4 Asymptotic optimality

Compression to the score function of a given likelihood promises
to be optimal in the sense that it preserves the Fisher information
content of the data, to the extent that the likelihood assumed for the
compression is a good approximation to the true likelihood and the
gradient (score) can be evaluated close to the maximum likelihood.

In typical likelihood-free inference applications, the form of the
likelihood function under the model is either not known or not com-
putationally tractable, and using an approximate likelihood function
for the compression will be lossy. In these cases, if the compression
is performed under a ‘best guess’ for the true likelihood then there
is still a sense in which the compression is ‘optimal’; it preserves as
much Fisher information as possible under the level of knowledge
and resources available for making a good likelihood approxima-
tion for the compression. In other words, you can only do as well
as your likelihood ignorance allows.

Even when the compression is performed under the exact like-
lihood, compression to the score only promises to preserve the
Fisher information content of the data. Whilst this is a clearly stated
definition of optimality, in cases where the likelihood is a highly
non-Gaussian or multimodal function of the parameters the Fisher
information is not guaranteed to be a good measure of the infor-
mation content of the data and there may be more effective com-
pression schemes. This is rarely the case for cosmological appli-
cations. Nevertheless, in the asymptotic limit where the likelihood
becomes Gaussian with (expected) curvature specified by the Fisher
information matrix, compression to the score exactly preserves the
(expected) uncertainties on the inferred parameters. In this sense,
compression to the score can be said to be asymptotically optimal.

We note that a new approach to data compression is emerg-
ing that does not require the compression to be performed under
an approximate-likelihood function; Charnock, Lavaux & Wandelt
(2018) develop information maximizing neural networks trained on
forward simulations that can learn optimal compression schemes
without specifying a likelihood function.

3 LI K E L I H O O D - F R E E IN F E R E N C E

In this section, we discuss likelihood-free inference. In Section 3.1,
we discuss ABC methods, highlighting some of their limitations
in the context of cosmological data analysis. In Section 3.2, we
present DELFI, which overcomes many of the key shortcomings of
ABC methods.

3.1 Approximate Bayesian Computation

In its simplest incarnation, rejection ABC works as follows (Rubin
et al. 1984):

(i) Draw parameters from the prior θ ← P (θ);
(ii) Simulate mock data d ← P (d|θ );
(iii) If distance between observed and mock data is smaller than

some threshold, ρ(d, do) < ε, accept, else reject;

(iv) Repeat until desired number of samples are obtained.

In the limit where ε → 0, the accepted samples are drawn from the
true posterior, whilst for any non-zero ε, the samples drawn are from
an approximate posterior that is by construction broader than the true
posterior density. The distance metric ρ for comparing simulated
and observed data needs to be specified (with many options existing,
McKinley, Cook & Deardon 2009), as does the distance threshold
ε. Since the acceptance rate becomes vanishingly small as ε → 0,
ABC posteriors are always broader than the true posterior, but are
unbiased; provided one can make ε small enough, good posterior
approximations can be recovered.

Proposing parameters from the prior in rejection ABC is typically
inefficient when the posterior density occupies a small portion of
the total prior volume (see e.g. Toni et al. 2009; Toni & Stumpf
2009). In this case, drawing parameters from a proposal distribu-
tion that preferentially samples the relevant portion of parameter
space (followed by importance reweighting) leads to more efficient
ABC sampling. PMC and Sequential Monte Carlo (SMC) ABC methods
(Del Moral, Doucet & Jasra 2006; Sisson, Fan & Tanaka 2007;
Beaumont et al. 2009; Toni et al. 2009; Bonassi et al. 2015) are
popular advancements on rejection ABC that adaptively learn a more
intelligent proposal distribution, whilst at the same time imple-
menting a ‘cooling’ scheme for ε, gradually lowering the distance
threshold as the proposal distribution becomes more optimized (see
Ishida et al. 2015; Akeret et al. 2015; Jennings et al. 2016 for
applications in the astronomy literature).

ABC methods have been applied successfully to a number of
problems in cosmological data analysis (Schafer & Freeman 2012;
Cameron & Pettitt 2012; Weyant et al. 2013; Robin et al. 2014;
Lin & Kilbinger 2015; Hahn et al. 2017; Kacprzak et al. 2017;
Davies et al. 2017). However, even sophisticated ABC algorithms
suffer from vanishingly small acceptance rates as ε → 0 by con-
struction, scaling poorly with the number of parameters of inter-
est, so for high-fidelity posterior inference this usually means run-
ning very large numbers of forward simulations. For many ap-
plications in cosmology where simulations are expensive, this is
impractical.

In the next section, we describe a totally different approach to
likelihood-free inference that is ‘ε-free’, circumventing the need to
do direct comparisons in data space and ultimately making much
more efficient use of forward simulations.

3.2 Density Estimation Likelihood-Free Inference

DELFI works by learning a parametrized model for the joint density
P (θ , d), from a set of samples drawn from that density (Bonassi
et al. 2011; Fan et al. 2013; Papamakarios & Murray 2016). In
its simplest form, we start by generating a set of samples {θ, d}
from P (θ , d) by drawing parameters from the prior and forward
simulating mock data:

θ ← P (θ)

d ← P (d|θ ). (4)

We then write down a model for the joint density P (θ , d; η),
parametrized by η, and fit this model to the samples {θ , d}. The
estimated2 posterior density and Bayesian evidence can then be

2 Recall that widely used MCMC methods also produce estimates of the pos-
terior density (and its properties) and/or the model evidence, from a set of
posterior samples.
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easily extracted from the fit to the joint density as follows:

P̂ (θ |do) ∝ P (θ , d = do; η)

P̂ (do) =
∫

P (θ , d = do; η) dθ, (5)

i.e. taking a slice through the joint distribution evaluated at the
observed data d = do, and subsequently integrating over the pa-
rameters for the Bayesian evidence. For many practical choices of
parametrized models for the joint density, e.g. Gaussian mixture
models (GMM, see below), the evidence integral in equation (5) is
analytically tractable. This means that the evidence comes for free,
and if the parametrized model for the joint density is fit to the sam-
ples in a principled way, the uncertainties on the fit parameters can
be propagated through to a principled uncertainty on the estimated
Bayesian evidence.

In contrast to ABC, DELFI uses all of the available forward simula-
tions {θ , d} to inform the inference of the joint density P (θ , d), and
hence the posterior density and evidence estimation. In practice,
this means that far fewer forward simulations may be needed to
obtain high-fidelity posterior inferences (compared to ABC that has
a vanishingly small acceptance rate as ε → 0), as demonstrated by
Papamakarios & Murray (2016).

3.2.1 Gaussian mixture density estimation

In this work, we parametrize the joint density with a GMM,

P (θ, d; η) =
K∑

i=1

wiN (μi,Ci), (6)

where N (·) denotes the Gaussian density, and the mixture
model is parametrized by the weights, means, and covariances
η = {{w}, {μ}, {C}} of each of the K components, with

∑
w = 1.

GMMs are capable of representing any probability density arbitrarily
accurately, provided the number of components K is sufficiently
large, and are straightforward to fit to data using expectation-
maximization or other methods (see e.g. Bishop 2006). They also
have the appeal that the evidence integrals appearing in equation
(5) are analytically tractable, so the Bayesian evidence comes for
free:

P̂ (do) =
∫

P (θ , d = do; η) dθ =
K∑

i=1

wiN (μd i,Cdd i), (7)

where μd i and Cdd i are the component means and co-
variances corresponding to the data dimensions in the joint
density.

3.2.2 Data compression

The need for data compression for DELFI is still clear: the joint den-
sity of the data and parameters has dimensionality N + n, which
presents an intimidating density estimation task for even modestly
large data sets. However, implementing the two-step compression
scheme described in Section 2 means we only have to estimate the
joint density of the parameters and compressed statistics P (t, θ ),
whose dimensionality is just 2n. For many cosmological ap-
plications, the number of parameters of interest is typically
n � 10.

When using DELFI with a data compression scheme, samples {θ , t}
are generated from P (θ , t) as before by drawing parameters from
the prior and forward simulating mock data, with the addition of

the subsequent compression step:

θ ← P (θ),

d ← P (d|θ ),

t = t(d). (8)

These samples {θ , t} are then fitted with a mixture density model
in the usual way as described above. Note that when the Bayesian
evidence is estimated from the joint density P (θ , t), this will be
the evidence for the compressed statistics P (to) and not for the
original data vector P (do); whilst these are not numerically equiv-
alent, the evidence under compressed statistics can still be readily
used for model comparison purposes provided alternative models
are compared under the same set of compressed summaries.

Importantly, the complexity of the inference problem stays as a
2n-dimensional density estimation task irrespective of the size of
the data set (or the number of first-level summaries used), once the
compression scheme has been prescribed. Therefore, the inference
step scales easily to large data sets.

3.2.3 Implementation

We run forward simulations to generate a set of samples {θ , t} and
fit a GMM using PYGMMIS (Melchior & Goulding 2016), which uses
expectation-maximization whilst properly taking into account any
hard prior boundaries.

Gaussian mixture density estimation with a large number of com-
ponents can fall foul to overfitting. One simple way to mitigate
overfitting is to set a minimum threshold for the diagonals of the
mixture component covariances (we adopt this approach). For a
more sophisticated implementation that avoids overfitting without
having to specify thresholds by hand, see Papamakarios & Murray
(2016).

Note that when there are hard prior boundaries, the evidence
integral in equation (7) is no longer analytically tractable. In these
cases, one can estimate the evidence as follows: fit a GMM to the
samples of {t} alone, ignoring {θ} (this effectively pre-marginalizes
over θ ). Then the evidence can be estimated by simply evaluating
at the observed data, i.e. P̂ (t = to).

3.2.4 Sophistications

Papamakarios & Murray (2016) developed a sophisticated imple-
mentation of DELFI with two key advancements on the vanilla set-up
described above. First, they parametrize the joint distribution with a
mixture density network (MDN) – a neural network parametrization
of a GMM – which is fit to the samples using stochastic variational
inference (SVI; see Bishop 2006 for a review of MDN and Hoffman
et al. 2013 for SVI methods). Secondly, rather than drawing samples
from the prior, they adaptively learn a proposal distribution that
preferentially samples regions of high posterior density, and sub-
sequently importance reweight the samples (in the same spirit as
PMC-ABC methods). They find that this set-up is highly resistant to
overfitting even for small numbers of samples, enabling the number
of forward simulations to be reduced further. We leave implemen-
tation of these sophistications to future work.

3.2.5 Scaling with number of parameters and dealing with
nuisances

With the compression scheme employed, the inference task is re-
duced to learning a 2n-dimensional density from a set of forward
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Scalable likelihood-free inference for cosmology 2879

simulations, irrespective of the size of the data set. The complexity
of the inference problem will increase with the number of parame-
ters n.

For typical cosmological applications, the number of parame-
ters of interest θ (i.e. the cosmological parameters) will be � 10.
However, in many situations, there will be additionally a number of
nuisance parameters ξ , capturing observational and astrophysical
systematics, selection effects, etc., which need inferring simultane-
ously and subsequently marginalizing over. If there are n parame-
ters of interest and m nuisance parameters, DELFI involves learning a
2(n + m)-dimensional probability density over the parameters, nui-
sances, and their respective compressed summaries, P (θ , ξ , tθ , tξ ).
However, if the goal is the posterior marginalized over the nuisance
parameters, it may be possible to keep the complexity of the in-
ference task as a 2n-dimensional density estimation problem. This
can be achieved by choosing compressed summaries tθ ∈ R

n that
contain as much information as possible about the parameters of
interest, whilst being as insensitive as possible to the nuisance pa-
rameters. Then, draw samples {θ , ξ , tθ } by drawing from the prior
and forward simulating as usual, but only attempt to fit the density
P (θ, tθ ), i.e. a 2n-dimensional density pre-marginalized over the
nuisances.

Data compression for marginalized parameter subsets (under
Gaussian likelihoods) is treated in Zablocki & Dodelson (2016).
We leave a more general treatment of optimal compression in the
presence of nuisances and learning the nuisance-marginalized pos-
terior density to future work.

4 VALIDATION CASE STUDY: J LA
SUPERNOVA DATA ANALYSIS

To demonstrate the use of DELFI (Section 3) with massive optimal
data compression (Section 2), in this section, we perform an analysis
of the JLA supernova data set (Betoule et al. 2014). For the purposes
of validating the likelihood-free approach, we perform a simple
analysis assuming a Gaussian likelihood for the JLA data so that
we can compare to an exact likelihood-based analysis, allowing us
to demonstrate the fidelity of the likelihood-free posterior inference
against a ground truth.3 We will compare DELFI and PMC-ABC against
a long-run Markov Chain Monte Carlo (MCMC) analysis of the exact
(assumed) posterior distribution.

In Sections 4.1–4.3, we describe the JLA data, model, and Gaus-
sian likelihood assumptions under which we validate the likelihood-
free approach. In Section 4.6, we discuss the implementation of the
likelihood-free inference, and in Section 4.7, we show the results.

4.1 JLA supernova data

We use the JLA sample comprised of observations of 740 type Ia
supernovae, as analysed in Betoule et al. (2014). The sample is a
compilation of supernova observations from a number of surveys –
see Betoule et al. (2014) and references therein for details.

The full data set comprises multicolour light curves and spectro-
scopic (or sometimes photometric) observations of each supernova.
These light curves and spectra are then used to estimate apparent
magnitudes mB and redshifts z, as well as colour at maximum-
brightness C and stretch X1 parameters characterizing the light

3 Note that this simple validation case study is for method-validation pur-
poses only. It is not intended to incorporate new physics or systematics
over-and-above the standard JLA analysis of Betoule et al. (2014).

curves (see e.g. Tripp 1998). In the data analysis (see Section 4.3,
also Betoule et al. 2014), the data vector will be assumed to be the
vector of estimated apparent magnitudes d = (m̂1

B, m̂2
B, . . . , m̂M

B ),
where uncertainties in the redshift, colour, and stretch parameters
are propagated through to the covariance matrix of the observed
apparent magnitudes. This compression of the multicolour light
curves and spectra down to a set of estimated apparent magnitudes
can be thought of as step (I) of the data compression described in
Section 2.

4.2 wCDM and light-curve calibration model

As standardizable candles, we assume that the apparent magnitudes
of type Ia supernovae depend on the luminosity distance to the
source at a given redshift D∗

L(z) (which is a function of the cos-
mological model and parameters), a reference absolute magnitude
for type Ia supernovae (as a function of host-galaxy mass), and
calibration corrections for the light-curve stretch X1 and colour at
maximum-brightness C,

mB = 5log10

[
D∗

L(z)

10pc

]
+ M̃B(Mstellar; MB, δM) − αX1 + βC (9)

where α and β are calibration parameters for the stretch and colour,
respectively. The absolute magnitude M̃B is assumed to be de-
pendent on the properties of the host galaxy; following Betoule
et al. (2014), we model the dependence of the reference abso-
lute magnitude on the stellar mass of the host as M̃B = MB +
δM 
(Mstellar − 1010M�), where 
 is the Heaviside function.

The cosmological model enters in the luminosity distance–
redshift relation. We will assume a flat universe with cold dark
matter and dark energy characterized by equation-of-state p/ρ = w0

(hereafter, wCDM). In a wCDM universe, the luminosity distance
is given by,

D∗
L(z)=(1 + z)c

100

∫ z

0

dz′√
�m(1 + z′)3+(1 − �m)(1 + z′)3(w0+1)

, (10)

where �m is the matter density parameter, c is the speed of light (in
vacuum), and w0 is the equation-of-state of dark energy.

The resulting wCDM model with colour and stretch calibration
and host-mass dependent absolute magnitude has six free parame-
ters of interest: θ = (�m, w0, α, β, MB, δM).

4.3 Likelihood

Following Betoule et al. (2014), for this validation case, we will
assume the data d = (m̂1

B, m̂2
B, . . . , m̂M

B ) are Gaussian distributed,

L = −1

2
(d − μ(θ ))T C−1(d − μ(θ )) − 1

2
ln|C|, (11)

where the mean depends on the parameters and is given by equation
(9), and we will assume a fixed covariance matrix,4 shown in Fig. 1,
that is assumed to have already accounted for the uncertainties in

4 Betoule et al. (2014) constructed a covariance matrix that depends on α and
β, and also dropped the |C| term from the likelihood (equation 11) following
March et al. (2011). However, since α and β are very well constrained by the
data, the covariance dependence has a small impact on the final parameter
inference. For this study, we compute the covariance described in Betoule
et al. (2014), but with α and β fixed to their maximum likelihood values:
α = 0.1257 and β = 2.644. This also avoids issues arising from dropping
the |C| term from the Gaussian likelihood.
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2880 J. Alsing, B. Wandelt and S. Feeney

Figure 1. Left: measured apparent magnitudes with their associated uncertainties (from the diagonal of the covariance matrix) for the sample of 740 supernovae
in the JLA sample. Right: covariance matrix of the measured apparent magnitudes, having taken into account redshift and light-curve calibration uncertainties
– see Betoule et al. (2014) for details of the covariance-matrix construction.

the colour, stretch, and redshift of each measured supernova (see
Betoule et al. 2014 for details of the covariance matrix construction).

4.4 Priors

We assume broad Gaussian priors on the parameters
θ = (�m, w0, α, β, MB, δM) with the following mean and covari-
ance:

μP = (0.3, −0.75, −19.05, 0.125, 2.6, −0.05),

CP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.42 −0.24 0 0 0 0

−0.24 0.752 0 0 0 0

0 0 0.12 0 0 0

0 0 0 0.0252 0 0

0 0 0 0 0.252 0

0 0 0 0 0 0.052

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

In addition to the Gaussian prior, we impose hard prior boundaries
on �m ∈ [0, 0.6] and w0 ∈ [ − 1.5, 0]. The (truncated) Gaussian prior
is much broader than the resulting posterior, having a negligible
impact on the posterior inference relative to (infinite) uniform priors.

The correlations in the Gaussian prior are chosen to roughly
follow the correlation structure of the inverse Fisher matrix for
the parameters; this allows us to form a broad, weakly informative
prior whilst improving the volume ratio of the posterior and prior
(i.e. giving low prior weight to regions of parameter space that are
anticipated to be strongly disfavoured by the likelihood, based on the
Fisher matrix). We find this has negligible impact on the parameter
inferences whilst improving the performance of the likelihood-free
inference methods.5

4.5 Massive asymptotically optimal compression

For step (II) of the data compression, from N = 740 estimated
apparent magnitudes down to n = 6 numbers (one per parameter,

5 Note that PMC ABC and similar PMC approaches to DELFI (Papamakarios
& Murray 2016) will be less sensitive to the posterior-prior volume ratio,
since they adaptively learn a proposal density rather than blindly proposing
parameters from the prior.

following Section 2), we assume a Gaussian likelihood as in equa-
tion (11) where only the mean depends on the parameters. In this
case, following equation (3) (Alsing & Wandelt 2018; Heavens et al.
2000), the optimally compressed statistics are given by:6

t = ∇θμ
T
∗C

−1
∗ (d − μ∗) + C−1

P (μP − θ∗), (13)

where the mean, its derivative, and the covariance matrix are eval-
uated at some fiducial point θ∗ and the second term includes the
impact of the Gaussian prior.7 To choose an optimal fiducial pa-
rameter set for the compression, we iterate the parameters using the
Fisher scoring method (Alsing & Wandelt 2018):

θk+1 = θk + F−1
k tk, (14)

where F = ∇μTC−1∇Tμ is the Fisher information matrix
(Tegmark et al. 1997), and tk are the compressed statistics com-
puted about the fiducial point θk. We find that equation (14)
converges very quickly and gives the following expansion point:
θ∗ = (0.202, −0.748, −19.04, 0.126, 2.644, −0.0525).

The derivatives of the mean with respect to the parameters can
be written down analytically for α, β, MB, and δM (see equation 9),
whilst we use a simple leap-frog approximation for the derivatives
with respect to �m and w0.

4.6 Likelihood-free inference implementation

For this validation case, we are assuming that the data are Gaussian
distributed, with mean given by equation (9) and fixed covariance as
shown in Fig. 1. Forward simulating data realizations given param-
eters is hence as simple as drawing Gaussian random variates, and
samples from the joint data-parameter density {θ , t} are generated
as follows:

θ ← N (μP,CP),

d = μ(θ ) + n, where n ← N (0,C∗)

6 Note that under the assumptions of Gaussian data where the only parameter
dependence is in the mean, the compressed statistics are equivalent to the
MOPED linear data compression of Heavens et al. (2000).
7 This is a minor extension of the derivation in Alsing & Wandelt (2018), re-
placing the log-likelihood in t = ∇θLwith the sum of the log-likelihood and
log prior, to incorporate the impact of the prior into the optimal compression.
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Scalable likelihood-free inference for cosmology 2881

Figure 2. Log-likelihood of the samples {t, θ} under the GMM fits to the
joint density P (t, θ), as a function of the number of Gaussian mixture
components K. The log-likelihood converges with respect to the number
of mixture components, where regularization of the mixture component
covariances protects against overfitting (see Section 4.6).

t = ∇θμ
T
∗C

−1
∗ (d − μ∗) + C−1

P (μP − θ∗), (15)

We generated a set of 20000 samples {θ , t} from the joint distri-
bution and fit them with GMM. The GMM fits are performed using
expectation-maximization (implemented using PYGMMIS; Melchior
& Goulding 2016) as described in Section 3.2, with K = 1 through
to 18 mixture components. The mixture component covariances are
regularized by setting a minimum threshold value of 10−6 for the
diagonal values, to avoid overfitting. We assess convergence with
respect to the number of mixture components by looking at the
total log-likelihood of the samples under the GMM, as a function
of the number of mixture components (see Fig. 2, discussion in
Section 4.7). Convergence with respect to the number of samples
fed to the GMM is assessed by looking for convergence in the re-
covered posterior means and covariances (see Fig. 3, discussion in
Section 4.7).

Since the prior in this case has hard boundaries, the Bayesian
evidence integral from the GMM (equation 7) is no longer analytically
tractable. We estimate the evidence by fitting a GMM directly to the
samples {t} to obtain an estimate of the density P (t), and then
evaluating at the observed data to estimate the evidence P (to).
We use the same GMM set-up (i.e. number of components) for the
evidence as was used for the final posterior inference (discussion in
Section 4.7).

4.7 Results

To assess convergence with respect to the number of mixture com-
ponents, Fig. 2 shows the log-likelihood of the samples under the
GMM model fits to the joint density, as a function of the number of
mixture components K (using the full 20 000 samples; see below).
The log-likelihood of the samples clearly converges with the num-
ber of components, reaching a point where adding more components
does not improve the fit further. The regularization of the mixture-
component covariances has ostensibly protected against overfitting
successfully (cf., Section 4.6). We use the K = 12 component GMM

model moving forward, which appears to be well into the regime
where the log-likelihood of the fit has converged.

Fig. 3 shows convergence of the posterior means and standard
deviations (for each parameter) as a function of the number of
samples N that are fed to the GMM model fit to the joint den-
sity. The posterior means and standard deviations converge after
N ≈ 8000, with some residual scatter of �0.05σ for each parameter
in the means, and a few per cent in the standard deviations. This
gives confidence that a reasonable posterior approximation may be
obtained from just a few thousand forward simulations. However,
if we are interested in high-fidelity posterior inference capturing
the detailed shape of the posterior, a most sophisticated conver-
gence diagnostic may be required and we leave this to future work.
We proceed using the GMM fit to 20 000 forward simulations to
ensure excellent convergence, but note that in practice perfectly ad-
equate posterior inferences may be made with far fewer simulations.

Fig. 4 shows the GMM fit (blue) to the samples (red). The mixture
model with 12 components is a remarkably good representation
of the samples, successfully capturing the substantial and varied
non-Gaussianity, degeneracies between parameters and hard prior
boundaries.

Fig. 5 shows the posterior reconstruction from a long MCMC run
on the exact posterior8 (red), and the posterior recovered from DELFI

(blue), following equation (5) applied to the GMM fit shown in Fig. 4.
The posterior recovered from DELFI, using only 20 000 forward sim-
ulations, is an excellent representation of the true posterior. This
is not surprising given the fidelity of the GMM fit to the joint data-
parameter density (Fig. 4). Crucially, this also demonstrates that

8 106 posterior samples drawn using the affine-invariant MCMC code EMCEE

(Foreman-Mackey et al. 2013).

Figure 3. Top row: convergence in the estimated posterior mean as a function of the number of forward simulations fed to the GMM fit to the joint density
P̂ (θ , t). The panels show 
μ̂/σ̂ = (μ̂N − μ̂N=20 000)/σ̂N=20 000, where μ̂N and σ̂N are the estimated posterior mean and standard deviation from a Gaussian
mixture fit to N forward simulated samples {t, θ}. The posterior mean converges after a few thousand simulations, with some residual scatter of �0.05σ for
each parameter. Bottom row: similarly, convergence of the estimated posterior standard deviation for each parameter as a function of the number of simulations
fed to the GMM. The standard deviations also converge after a few thousand forward simulations, with some residual scatter at the level of a few per cent. Much
of the residual scatter in the posterior means and standard deviations is due to small residual GMM fitting uncertainties.
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2882 J. Alsing, B. Wandelt and S. Feeney

Figure 4. Samples from the joint density P (t, θ) (red) against the GMM fit to the samples (blue) for a K = 12 component mixture model. The GMM model fit
provides an excellent representation of the joint density P (t, θ ).

the massive optimal compression step – compressing the 740 su-
pernovae apparent magnitudes down to just six numbers – is for all
intents and purposes, lossless; we find no perceptible increase in
width of the DELFI posteriors computed from the compressed statis-
tics compared to the exact (MCMC sampled) posterior computed on
the full data set. In this validation case, since we are comparing to a
ground truth with an assumed likelihood function, the compression
is indeed optimal (and in this case, effectively lossless).

For comparison against the state of the art in ABC, in Fig. 6
we show the recovered posterior from a long PMC-ABC run.9 The

9 The PMC-ABC implementation used here follows the algorithm described in
Ishida et al. (2015). We also tested modified PMC-ABC algorithms following
Jennings et al. (2016), Akeret et al. (2015), and Bonassi et al. (2015); our
conclusions are unchanged by these modifications to the PMC-ABC set-up.

PMC-ABC was run through 14 population iterations, generating 20 000
accepted samples in the final iteration. This required >2 × 106 for-
ward simulations in total, since the vast majority of samples are
rejected in the PMC-ABC approach. The posterior approximation ob-
tained from the final set of samples is shown (blue) against the long
run MCMC chain (red). The PMC-ABC run yields a reasonable approx-
imation to the true posterior, which is unbiased but broader than
the exact posterior, as expected for ABC methods. The massive opti-
mal data compression has enabled us to successfully perform ABC,
which would have been unfeasible in the full data space. However,
in comparison to DELFI (Fig. 5), PMC ABC required ∼106 forward
simulations compared to ∼104 for DELFI, for a poorer approxima-
tion to the true posterior in the end. We conclude that whilst current
implementations of ABC have limited applicability for scalable cos-
mological data analyses where forward simulations are expensive,
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Scalable likelihood-free inference for cosmology 2883

Figure 5. The DELFI posterior (blue) obtained from only 20 000 forward simulations matches the exact posterior (red) obtained from a long-run MCMC chain.

DELFI allows us to perform scalable likelihood-free Bayesian infer-
ence with a reasonable number of forward simulations (with scope
for further improvement).

Finally, we estimate the Bayesian evidence using DELFI. We sepa-
rately fit a 12 component GMM to the 20 000 samples {t} (neglecting
the θ samples), and evaluate this estimated density at the observed
data to to obtain the evidence. This gives an evidence estimate of
ln P (to) = 7.38. In this validation case, we can compare to the ev-
idence estimated directly from the known likelihood using nested
sampling (MULTINEST; Feroz & Hobson 2008). Using MULTINEST, we
find ln P (to) = 7.4(1), so the evidence estimates from DELFI and
MULTINEST are in excellent agreement.

5 C O N C L U S I O N S

Likelihood-free inference methods allow us to perform Bayesian
inference using forward simulations only, with no reference to a
likelihood function. This is of particular appeal for cosmological
data analysis problems where complex physical processes and in-

strumental effects can often be simulated, but incorporating them
into a likelihood function and solving the inverse inference problem
is much harder.

Likelihood-free methods generically require large data sets to be
compressed down to a small number of summary statistics in order
to be scalable. We have developed a two-step compression scheme
that has widespread applicability for cosmological data analysis
problems. First, we compress the data down to a list of summary
statistics that are carefully chosen to contain as much information
about the parameters as possible, e.g. compressing galaxy survey
data to power spectra or other summary statistics. This type of com-
pression is already standard practice in the analysis of cosmological
surveys. Secondly, we use the optimal data compression scheme of
Alsing & Wandelt (2018) (following earlier work by Tegmark et al.
1997; Heavens et al. 2000) to compress the list of summary statistics
down to just n numbers – one per parameter – whilst preserving the
Fisher information with respect to the parameters of interest. This
second compression step requires the assumption of an approximate
likelihood function, and will be optimal to the extent that this is a
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2884 J. Alsing, B. Wandelt and S. Feeney

Figure 6. The PMC-ABC posterior (blue) based on 20 000 accepted samples after >2 × 106 forward simulations bounds but does not tightly approximate the
exact posterior (red) obtained from a long-run MCMC chain.

reasonable approximation to the true (unknown) likelihood. Once
the data have been compressed, all subsequent likelihood-free in-
ference based on the massively compressed statistics is genuinely
likelihood-free.

ABC approaches to likelihood-free inference draw parameters
from the prior and forward simulate mock data, accepting points
when the simulated data fall inside some ε-ball around the observed
data. This generates samples from an approximate posterior density
that becomes exact in the limit ε → 0. However, ABC methods suffer
from vanishingly small acceptance rates as ε → 0, leading to either
the need for unfeasibly large numbers of forward simulations, or
poor approximations to the posterior (with undesirably large values
of ε), or both.

We have presented a new approach to likelihood-free inference
for cosmology – DELFI (Bonassi et al. 2011; Fan et al. 2013;
Papamakarios & Murray 2016) – that involves learning a
parametrized model for the joint data-parameter probability den-
sity, from which (analytical models for) the posterior density and
Bayesian evidence can be straightforwardly extracted. We have
shown that when combined with the massive two-step data com-
pression scheme, DELFI is able to recover high-fidelity posterior
inferences for full-scale cosmological data analyses from ∼104 for-
ward simulations (for a six-parameter inference task), with scope
for further improvement. In contrast, current implementations of
ABC methods require orders of magnitude more forward simulations
for approximate posterior inferences.
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Scalable likelihood-free inference for cosmology 2885

Together, massive data compression and DELFI provide a frame-
work for performing scalable likelihood-free inference from large
cosmological data sets, even when forward simulations are com-
putationally expensive. This opens the door to a new paradigm for
principled, simulation-based Bayesian inference in cosmology.
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