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Abstract

We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian
EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the
large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor
asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial
correlations. Spin correlations between the two dipoles appear only when one internal face is present
in the foam. We compute them within a mini-superspace description, finding positive correlations,
decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing
Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms
of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion
to partially limit the proliferation of diagrams. We systematically compare the results with the simplified
EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of
the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial
spin foams and their resummation.
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1 Introduction

The spin foam formalism offers a covariant approach to the dynamics of loop quantum gravity, see [1] for
an introduction. The state of the art is well described by the EPRL model [2, 3, 4, 5], which includes the
Immirzi parameter, can be extended to provide transition amplitudes to all spin network states [6, 7], and
admits a quantum group deformation conjectured to describe the case of non-vanishing cosmological constant
[8]; Most importantly, the large spin asymptotics of the 4-simplex vertex amplitude contains exponentials
of the Regge action [9, 10]. On the other hand, a systematic evaluation of spin foam transition amplitudes
for given boundary data is hindered by their sheer complexity. For instance, numerical calculations of spin
correlations have been performed so far only with a single 4-simplex and with the old Barrett-Crane model
[11, 12]. The situation is even worse for Lorentzian signature, because of the unbounded group integrations
in the vertex amplitude. Testing the EPRL Regge asymptotics is numerically very hard [13, 14], and spin
correlations are out of reach for the time being.1 In this respect, the extension of the EPRL model to
arbitrary vertices [6, 7] can be used to simplify the problem of explicit evaluations, by considering foams
which are combinatorially simpler than the simplicial ones. For instance, one can consider boundary graphs
in the form of a ‘flower’ (a single node with links starting and ending on it), or of a ‘dipole’ (two nodes and
all links connecting one node to the other): the lowest-order spin foams are then much simpler than the
simplicial ones, and one can hope to evaluate them explicitly with analytic and numerical methods. This
is what we do in this paper: we choose a simple boundary given by two dipoles with 4-links, and study a
dozen different spin foam amplitudes with up to two vertices and one internal face.

Schematically, we compute amplitudes for the following spin foam expansion:

+ λ + λ2 + λ2 (1)

Here λ is a bookkeeping ‘coupling constant’ of the vertex expansion. The method we use to evaluate the
Lorentzian amplitudes is the factorization introduced in [18], together with Wolfram’s Mathematica and
C++ codes to compute the boost integrals and SU(2) Clebsch-Gordan coefficients. The explicit evaluations
are very costly, and we limited detailed computations to those foams that we identified as the most interesting
ones.

Non-simplicial transition amplitudes have been used in preliminary work in spin foam quantum cosmology
based on a dipole boundary graph [19, 20, 21, 22, 23, 24] or on a flower one [25]. Similar simple graphs
appear also in symmetry-reduced models of quantum cosmology using the canonical framework [26, 27, 28].2

Apart from mini-superspace applications, simpler graphs also provide a case study to gain control over

1There is on the other hand a growing literature on results using approximate numerical methods for toy models or symmetry
reduced models, e.g. [15, 16, 17].

2These canonical models are different from the main loop quantum cosmology approach (see e.g. [29] for a review), in which
the graph structure effectively disappears; and from [30, 31], where a regular 6-valent graph is used.
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the structure of the spin foam expansion. Being able to compute the explicit value of the amplitudes, or
even just the large spin scaling or the divergence structure, are crucial ingredients to understand how to
organize them, be it for resumming them or taking their continuum limit. To begin with, we are interested
in questions of the following type: (i) at fixed boundary graph, how do the different foams scale in a large
spin expansion? (ii) which foams dominate at large spins? (iii) what correlations between initial and final
states are introduced by the foam? In the case of (1) we found the following answers: The foams become
quickly sub-dominant as their complexity increases; The large spin scaling is not simply a function of the
number of vertices, edges and faces of the foam. There are non-trivial correlations even in the absence of
the Regge asymptotic behaviour; Only in the presence of an internal face (but not always) the correlations
couple spins on the two dipoles, otherwise the amplitudes factorize and only spins and intertwiners within
each connected part of the graph are correlated.

The paper is organized as follows. First, we provide a summary of our main results and the consequences
that can be drawn from them in Section 1.1 at the end of the Introduction, for the benefit of the reader
already familiar with spin foams, and who wants to quickly identify the methods and results closest to
her interests. In the main body of the paper we provide an explicit guide on how to compute the EPRL
Lorentzian amplitudes for generalized (non-simplicial) foams. In Section 2 we briefly recall the definition
of the vertex amplitude; We discuss the existence of non-integrable graphs, and introduce a face criterion
to partially limit the proliferation of diagrams, the hardest issue in using non-simplicial spin foams. The
criterion we use, of faces as minimal cycles only, basically makes the 2-complex rigidly determined by its
1-skeleton. The exclusion of non-integrable graphs and non-minimal faces significantly reduce the number
of foams to be computed. For instance at one vertex, graph integrability eliminates 16 of the 20 possible
vertex graphs listed in [24] for the Euclidean theory; our face criterion eliminates 3 more, leaving only one,
which is the one considered in [20]. With two vertices and one edge we have again a single admissible type of
vertex graph. With two edges and an internal face we have seven topologically distinct vertex graphs. The
graphs and associated foams are presented in Section 3. A complementary Appendix C contains the complete
list relaxing our face criterion. In Section 4.1 we review the factorization property introduced in [18], and
explain how we use it to provide analytical and numerical studies of the amplitudes. It provides us also
with a simplified version of the amplitude (denoted EPRLs in [18]), which provides a good approximation in
certain cases, and can be used to compute some analytic estimates and much faster numerical evaluations.
One of the results of this paper is that we tested that for most foams of (1) the simplified model gives correct
estimates of both scaling and correlations. This result and all exact numerical evaluations and approximate
analytic estimates we performed of the EPRL amplitudes are reported in Section 5. In Section 5.4 we focus
on the dominant non-factorized foam with one internal face, and discuss and compute in some details the spin
correlations it induces. The final Section contains our conclusions with the implications of our results, and
a perspective on future work, explaining the limits we face at the moment at the numerical level, and what
could be improved. Two additional Appendices contain the recoupling theory rules used for the evaluations
of the spin foams, a summary of scaling properties of the booster functions, and the results of evaluating
the 3 one-vertex foams left out by our face criterion.

We follow the conventions of [32] for SU(2) and its recoupling theory, and those summarised in [18] for
SL(2,C). We refer to the nomenclature of [33] for spin foams: the boundary graph is characterised by nodes
connected by links, and as the boundary of a 2-complex, each node is the boundary of an edge (and one
only), each link the boundary of a face (and one only).

1.1 Summary of the main results

The notation for (1) is as follows: we use thin lines for the links of the boundary dipole graphs, and round
dots for their nodes; thick lines for the edges of the foams and (red) crosses for their vertices; we call ja
the spins of the lower dipole (a = 1 . . . 4) and (i, t) its left and right intertwiners, and similarly but with
primed letters for the upper dipole. Then (1) is a function W (ja, j

′
a; i, t; i

′, t′) (ignoring the dependence on
λ) determined by the Lorentzian EPRL model.

• Aware of the risk of an uncontrollable proliferation of non-simplicial spin foams, we introduced a strong
criterion to select the 2-complexes: we admit only faces corresponding to minimal cycles. With this
choice, to be motivated and detailed below, there is only one admissible vertex graph at one vertex;
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only one at two vertices and one edge; seven topologically distinct vertex graphs for foams with one
internal face.

• As shown already in [23], the one-vertex foam factorizes in two contributions each depending only
on lower or upper spins. There are thus no correlations between lower and upper graphs, but only
within each connected component. We find that also the two-vertex-one-edge foam factorizes in the
same manner. Non-factorized amplitudes appear only in the presence of an internal face, and thus
lower-upper spin correlations.

• The spin correlations we found do not have an immediate geometric interpretation. In fact, most of the
foams considered do not contain non-trivial nj-symbols, but only (generalized) θ-graphs, and Regge
actions do not appear in the asymptotics. We numerically computed the spin correlations, using for
cost sustainability the simplest non-factorized amplitude and a mini-superspace approach with all spins
fixed to be equal. We found positive correlations between lower and upper spins, with a monotonical
decrease in γ. We also considered spin correlations in the general boundary framework with a unit-
width Gaussian state peaked on a background geometry j0. The resulting correlations peak near the
Planck scale at γ-dependent value, and have a γ-dependent power-law tail in j0.

• The large-spin leading order of each foam decreases as the complexity of the foam increases. The
power of the large spin scaling depends on the explicit combinatorics of the faces, and it is not simply a
function of the number of vertices V , edges E and faces F of the 2-complex. This is unsurprising given
the non-topological nature of the EPRL model, however one could have still hoped for a dependence
on the three numbers (V,E, F ) alone. We discuss this point and what we can learn for power counting
of scalings from the foams here considered.

• Numerical estimates show that the foam with one vertex (DVD, for dipole-vertex-dipole) scales like
N−3 in the homogeneously large spin limit; the foam with two vertices and one edge (DED, for
dipole-edge-dipole) scales like N−6; the simplest non-factorized foam with an internal face (DLD, for
dipole-loop-dipole) scales like N−9. Using both analytical and numerical methods, we found that the
large spin behaviour of (1) has the following structure:

W (Nja, Nj′a; i, i
′; t, t′) = δja,j′aδi,i′δt,t′ + λ

f(ja)f(j
′
a)

N3
δitδi′t′

+ λ2 g
2(ja)g

2(j′a)

N6
δitδi′t′ + λ2h(ja, j

′
a, i, t, i

′, t′)

N9
, (2)

where the functions f, g and h will be presented below.

• We systematically compared the EPRL evaluations with those of the simplified EPRLs model intro-
duced in [18], corresponding to additional impositions of the primary simplicity constraints (via the
Y -map): this is much faster to evaluate, and furthermore analytic estimates of the scalings are known.

For the first two foams (DVD and DED) the EPRLs provides an exact evaluation of the full model; for
the simplest foam with an internal face it does not, but it still captures the right large spin scaling and
the spin correlations, hence providing a valid approximation for most questions. There are 3 additional
foams of the 7 with an internal face that have non-factorized amplitudes. For these the simplified model
amplitudes differ significantly from the complete EPRL model. They could have slower decay behaviour
than N−9 (by one or two powers, a priori) because of the presence of unbounded summations, and
may thus dominate the correlations in the large spin limit; but we do not know at present.

• Our results can also be immediately applied to a nothing-to-dipole expansion,

WD = λ + λ2 · · · (3)

There are three principal lessons that can be drawn from these results. The first is that Lorentzian amplitudes
are explicitly computable, in spite of their complexity. We were limited to small foams, but with improved
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codes for the booster functions and the guidance from the simplified model here learned to estimate the
scalings, the analysis can be pushed significantly further. The second is that large spin decays speed up with
the complexity of the foam, allowing a naive hierarchical organization of the expansion. The power of the
decay depends explicitly on the routing of the faces and not just on their number. This complicates power-
counting arguments even with our criterion to restrict the faces, and show the dominance of disconnected
vertex graphs. The third is that there are non-trivial spin correlations even in absence of asymptotic Regge
actions. Such correlations do not show a squared-inverse power law as in the 4-simplex graviton calculations
(see e.g. [34, 11, 12, 35]), but a non-trivial dependence on the Immirzi parameter. It is a priori possible
to compute spin correlations on larger graphs and study whether they fall off with the graph distance or
background distance, but that would definitively require much more numerical power than currently available
to us, or find better approximation schemes.

2 Lorentzian EPRL model for general complexes

In this Section we briefly review the definition of the Lorentzian EPRL model [3], its factorization introduced
in [18], and discuss its extension to non-simplicial complexes. The two aspects that require attention are the
presence of non-integrable graphs and the proliferation of foams. We assume the reader to be familiar with
the basics of loop quantum gravity and the spin foam model, and refer to the cited literature [2, 3, 4, 5] and
to the monographs [1, 33] for details. Conventions and notations follow [18].

2.1 Boundary states, spin foam amplitudes and correlations

We work with abstract oriented graphs colored by spins jl on every link l, and a set of intertwiner labels ~ın
on every node n: these are vn − 3 half-integers for a node of valence vn, corresponding to the spins along
virtual links once a recoupling scheme is chosen. We define an SU(2) spin network state by

〈gl|Γ, jl,~ın〉 =
∏

l

D(jl)
ms(l)mt(l)

(gl)
∏

n

(

jl
ml

)(~ın)

, (4)

with s(l) and t(l) the source and target nodes of the link l, and summations over magnetic indices m
implicitly assumed. Here D(j)(g) are Wigner matrices, and the right-most symbol a short-hand notation for
generalized Clebsch-Gordan coefficients, see Appendix A for definitions. These functions provide a basis of
the Hilbert space of square-integrable gauge-invariant functions with respect to the SU(2) Haar measure,
schematically

HΓ = L2
[

SU(2)L/SU(2)N , dµHaar

]

,

where we denoted by L and N the total number of links and nodes of the graph. Because of standard
conventions in the definition of the Wigner matrices and {nj}-symbols, the basis (4) is not normalized.
That requires multiplying each state by (

∏

l djl
∏

n d~ın)
1/2, where dj := 2j+1 is the dimension of the SU(2)

irrep j, and d~ı = (2i(1) + 1)...(2i(ve−3) + 1) is the dimension of the virtual links irreps.
Consider next an open 2-complex C whose boundary is Γ: it consists of vertices, edges and faces, such that

to each node and link of Γ there correspond a unique edge and face of the boundary of C. We color it with
spins jf on the faces and intertwiners~ıe on the edges, such that jf = jl and~ıe = ~ın for each face and edge on
the boundary. The spin foam formalism [36, 37, 1, 33] assigns an amplitude to each pair (|s〉 = |Γ, jl,~ın〉 , C)
in the form of a state sum model,

〈WC |Γ, jl,~ın〉 =
∑

{jf ,~ıe}

∏

f

djf
∏

e

d~ıe
∏

v

Av(jf ,~ıe) , (5)

where the summations are at fixed boundary values, and face and edge weights are internal only.3 The vertex
amplitude Av is model-dependent and carries the core of the dynamics of the theory.

3In other words, the weight for a boundary face and edge is 1. This is a consequence of our choice of basis (4). If we work
instead with normalized boundary spin networks, the boundary face and edge weights would be the square roots of the internal
ones. Notice also that in the literature the edge weights are often absorbed in the definition of the vertex amplitude. We choose
not to do so, so that the vertex amplitudes are given by the conventional {nj}-symbols.
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The physical interpretation of WC is to provide a dynamical amplitude for the (quantum) 3-geometry |s〉.
The total transition amplitude was historically defined as the sum over all possible 2-complexes compatible
with the boundary graph, and conjectured to implement the projector over physical states in the kernel of
the Hamiltonian constraint [36, 37]. Hopes to control the sum and make sense of it mathematically were put
on the group field theory approach [38, 39], and work of the last few years (see e.g. [40, 41, 42]) is starting to
bear fruits: for simplicial complexes and simpler models at least (typically topological BF theory) it is now
possible to establish convergence or renormalizability of the sum. Extending these results to the Lorentizan
EPRL is a key open question. The study presented in this paper contributes by evaluating individual foams
and assessing their relative scaling weights in the non-simplicial case.4

To give physical content to the amplitudes at fixed foam, one can define dynamical expectation values
following the general boundary framework [34]. For an observable Ô and a state |Ψ〉 ∈ HΓ, we consider the
quantity

〈WC | Ô |Ψ〉
〈WC |Ψ〉 (6)

as the ‘C-representative’ of the dynamical projection on |Ψ〉. In this construction, |Ψ〉 is required to be
a semiclassical state peaked on a classical discrete geometry qΓ associated to the boundary. One often
works with Gaussian states (see however [44]), with width kept as a free parameter or fixed by dynamical
requirements [45]. In special circumstances, the linear map 〈WC | is normalizable; or alternatively it can be
suitably regularized. Then it is also possible to look at the spin foam expectation values

〈WC | Ô |WC〉
〈WC |WC〉

. (7)

In both cases, a simple choice of observables are those diagonalized by the spin network basis (4), for
which

〈WC | Ô |Ψ〉 =
∑

jl,~ın

WC(jl,~ın)O(jl,~ın)Ψ(jl,~ın). (8)

In particular, we will compute below correlations among spins, defined as

〈jljl′ 〉(C,Ψ) :=
〈WC | ĴlĴl′ |Ψ〉

〈WC |Ψ〉 − 〈WC | Ĵl |Ψ〉
〈WC |Ψ〉

〈WC | Ĵl′ |Ψ〉
〈WC |Ψ〉 . (9)

2.2 EPRL vertex amplitude

For the EPRL model in Lorentzian signature [3], the vertex amplitude Av is built from SL(2,C) unitary
irreducible representations (irreps) of the principal series, see [46]. These are labelled by a pair (ρ ∈ R, k ∈
Z/2), and Naimark’s canonical basis is chosen diagonalizing the operators L2 and Lz of the matrix subgroup
SU(2), with eigenvalues j(j + 1) and m. The group elements in this basis are represented by infinite-
dimensional unitary matrices

D
(ρ,k)
jmln(g), (j, l) ≥ k, −j ≤ m ≤ j, −l ≤ n ≤ l, g ∈ SL(2,C). (10)

Only a certain subset of irreps is used, that we refer to as γ-simple representations; they satisfy

ρ = γk, k = j. (11)

This restriction defines an embedding of SU(2) irreps in unitary SL(2,C) ones called Y -map.
The explicit form of the vertex amplitude Av depends on both the valence of the vertex (i.e. the number

of edges attached to it) and the combinatorics of the faces. The combinatorics can be most easily visualized
if we draw a sphere around the vertex: each edge projects to a point on the sphere, each face to a line
connecting two points. The spherical graph so obtained is referred to as the vertex graph, see Fig. 1 for an
example. Points and lines of the vertex graph are in 1-to-1 correspondence with edges and faces of the spin
foams, and we adapt the labelling accordingly.

4An alternative definition of the dynamics is to view spin foams as amplitudes cut-off at a finite number of degrees of
freedom, to be studied in the continuum limit instead of being summed over. See e.g. [43] and [15, 16] for recent results in this
directions.
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a

b

c
v

de

a

b

c

de

Figure 1: On the left the complex for a single 4-simplex together with a little sphere surrounding the vertex v. On

the right the vertex graph associated to it (the pentagon graph) as explained in the text.

The amplitude is then defined by the evaluation of a γ-simple SL(2,C) spin network on the vertex graph,
namely

Av(jf ,~ıe) :=

∫

SL(2,C)Ev−1

Ev−#
∏

e=1

dge
∏

f

D
(γjf ,jf )
jfms(e)jfmt(e)

(g−1
s(e)gt(e))

∏

e

(

jf
mf

)(~ıe)

, (12)

with the summation over magnetic indices implicitly assumed as in (4). Here Ev is the valence of the vertex
graph and # the number of connected components of the vertex graph. Although in the definition we assign
a group element to each node of the vertex graph, we need to remove one integration per connected part of
the graph: left-right invariance of the Haar measure makes it redundant, and it would lead to a diverging
amplitude because of the non-compactness of the group. This is an important difference from Euclidean
models where removing or not the redundant integration does not affect the amplitude. However, even once
the redundancy has been taken care of, not all vertex graphs are integrable. Examples of graphs for which
(12) is not well-defined are reported in Fig. 2. The amplitude of a graph with a uni-valent node diverges

Figure 2: Left: Vertex graph with uni-valent or bi-valent nodes: divergent amplitudes. Right: Vertex graph with a

petal: the associated amplitude diverges in the case of two legs, and converges for three or more legs.

trivially because it contains the integration

∫ ∞

0

dr (sinh r)2 dρ,kjlm(r) = ∞. (13)

For a graph with a bi-valent node, the amplitude contains the integration

∫

dg D
(ρ1,k1)
j1m1l1n1

(g)D
(ρ2,k2)
j2m2l2n2

(ḡ) =
δ(ρ1 − ρ2)δk1k2

4(ρ21 + k21)
δj1j2δl1l2δm1m2δn1n2 . (14)

The right-hand side, a consequence of the orthogonality of the matrix representations, gives a distributional
divergence for general irreps; and gives always infinite for the simple ones (11) used in the EPRL model. A
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related example is a vertex graph containing a closed loop, or ‘petal’. Using the following ‘sliding’ identity
from graphical calculus (see Appendix A),

=

petals factorize in the evaluation of the amplitude, leaving behind an intertwiner with two lesser links. For a
petal with two legs, or tadpole, this gives (14) and the same divergence as before; whereas for higher-valence
petals with three or more legs the amplitude is finite.

The existence of divergent graph introduces a necessary restriction on the admissible foams unlike in the
Euclidean case. We are not aware of a necessary condition for graph integrability. A sufficient condition
is 3-link-connectivity, meaning any bi-partition of the nodes cannot be disjointed by cutting only two links
[47, 48]. One could then decide to restrict attention to such vertex graphs, for which convergence of (12) is
guaranteed. The criterion is however based on very loose bounds, and one can find many vertex graphs that
are not 3-link-connected and yet finite: We will encounter some examples below. For this reason, we will
remove in our analysis only vertex graphs with uni- and bi-valent nodes, and two-legged petals, and keep
non-3-link-connected ones – at least a priori.5

The fact that not all vertex graphs are integrable reduces the number of admissible foams with respect
to Euclidean amplitudes. For instance, out of the 20 possible vertex graphs considered in [24], only 4 do not
contain tadpoles, and only 3 satisfy the triple-connectivity criterion. See Appendix C for details. Nonetheless,
the proliferation of generalized spin foams remains a severe problem of this approach, as compared for instance
to the use of simplicial ones. To have any hope of taming it, it is quite likely that one needs to supplement
the definition of the theory with some notion of class of complexes to be considered.6 For the purposes of
this paper, we work with a single but strong restriction on the assignment of the faces in the 2-complex:

Definition: The faces of the 2-complex are defined as all minimal cycles of its 1-skeleton, namely minimal
closed sequences of edges (for internal faces), or edges and links (for external faces).

This definition means that the 2-complex is uniquely specified by its 1-skeleton and the boundary graph, thus
imposing a strong restriction on the foams to be considered. Two important consequences are the following:

• There are no minimal cycles without a face assigned; nor multiple faces can be assigned to the same
minimal cycle. The latter forbids trivial infinite proliferations like adding ad libitum rolled-up faces
or ‘pillow-like’ faces to the bulk edges, which corresponds to adding petals or additional links between
the same two nodes to vertex graphs.

• It also forbids the ‘intermediate static foam’ construction used in [49] to freely associate arbitrary
vertex graphs to a given boundary graph. It implies in particular that petals in vertex graphs can only
appear if induced by petals in the boundary graph.

This definition appears to us natural in order not to be irremediably swamped by the problem of prolif-
eration of non-simplicial foams. Whether it is sufficient to truly tame the combinatorics, and whether it can
be relaxed is an interesting but also very difficult question. With the ensuing restriction imposed, there are
still two additional configurations unusual from the simplicial setting worth to be pointed out:

1. Disconnected vertex graphs: these can lead to factorizations of the transition amplitudes that limit
their relevance.

2. Spin foam faces with two or more boundary links in them: these force the boundary spins on the
shared links to match, leading to trivial pieces in the amplitudes. Such ‘face-rigidity’ limits as well the
relevance of such amplitudes.

With these considerations in mind, we discuss next our choice of boundary graphs.

5A related open question is whether the simplified model, see below, allows one to sharpen this sufficient condition. At first
sight it looks like removing uni- and bi-valent nodes may be enough for this model, which sits at an intermediate place between
the complete EPRL and a pure SU(2) theory. We leave it as an open question for future work.

6A radically opposite philosophy has been proposed in [49, 24], whereby one tries to accommodate all possible vertex graphs

to all boundaries. This removes combinatorial constraints on the vertex graph, thus simplifying the problem of listing all
admissible foams with a given boundary graph; but at the price of largely increasing their number.
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3 Minimal boundary graphs and lowest-order interpolating foams

In its original formulation, the EPRL model was defined on simplicial foams, i.e. 2-complexes dual to
simplicial decompositions of spacetime. Since the boundary of a simplicial manifold is again a simplicial
manifold of co-dimension one, these can be used to compute transition amplitudes only for spin networks
with 4-valent graphs dual to a 3d simplicial manifold. A reason to be interested in non-simplicial foams is that
one can then look at simpler boundary graphs, and interpolate them with simpler foams. The computational
advantage of simpler foams is immediate from (15): we get simpler {nj} symbols whose evaluation is faster.
In the context of abstract spin networks, the simplest possible boundary graphs are flower graphs with a
single node, or a dipole graph with two nodes, see Fig. 3. Between these two types, dipole graphs have

Figure 3: The 4-petal graphs and the 4-link dipole.

simpler interesting lowest-order spin foams, and have a more intuitive geometric interpretation that makes
them preferable for applications.

3.1 Flower Graphs

Flower graphs appear often in the discussion of gauge fixing, see e.g. [50]. By gauge-invariance, the algebra
of observables on any abstract closed graph is isomorphic to that associated with a flower graph, were the
number of ‘petals’ matches the number L−N+1 of independent loops of the initial graph. The isomorphism
depends on a choice of maximal tree on the initial graph, along which all holonomies can be gauge-fixed to
the identity. Although flower graphs are very simple, they are not so natural as boundaries of spin foams:
each face touching the boundary is rolled-up on itself, meaning it touches twice the same edge. This does not
forbid the definition of (non-simplicial) spin foam amplitudes, however it leads to peculiar combinatorics:
either a rolled-up face shares both boundaries, or one of the spin foam vertices must have at least one
petal in its vertex graph, to absorb the ‘rolling-up’. This is for instance the case of [51]: there the authors
considered a three-petal flower boundary graph, and a single-vertex foam in the bulk. The vertex graph is
identical to the boundary graph, and the contribution of the spin foam amplitude is trivial. Considering two
disconnected flowers for transitions, it is easy to see that our face criterion leads to factorized amplitudes
for simple 2-complexes. Using flower boundary graphs leads to subtle combinatorics and not particularly
rewarding from the perspective of simplifying the analysis. In the exploratory spirit of this paper, we find it
more suitable to work with less peculiar foam structures.

3.2 Dipole Graphs

The next simplest graph is a ‘dipole’, namely two nodes connected by a set of L links. It can be associated to
a partially gauge-fixed abstract extended graph, where one fixes to the identity all but one of the holonomies
on a maximal tree, and it admits a more intuitive geometric interpretation as two atoms of space connected
by all faces: the dual graph to a (degenerate) tessellation of the 3-sphere by two L-faced polyhedra. For the
sake of concreteness and simplicity, we restrict attention to 4-valent dipoles, as in Fig. 3. We can consider
two different types of transition amplitudes: ‘nothing-to-dipole’ or ‘dipole-to-dipole’. If Γ has a single closed
connected component, it is a ‘nothing-to-Γ’ amplitude similar in spirit to the Hartle-Hawking ‘no-boundary’
proposal [52, 53]. If the boundary graph has two closed disconnected components, WC provides a transition
amplitude between two 3-geometries associated with the two S3 boundaries of a 4d hyper-spherical shell.
This set-up was proposed in [20], and it is the one we focus on. It shows very neatly the advantage of
working with non-simplicial spin foams: were we to use a simplicial discretization, the minimal configuration
would be five tetrahedra for each boundary S3 and a 2-complex with 30 vertices! Whereas with the dipole,
one can get transitions with as little as a single vertex. We list here all possible vertex graphs associated
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with the expansion (1) and the restrictions given by finiteness and our face criterion. For completeness, we
report in Appendix C the complete list of vertex graphs relaxing our face criterion. With reference to (1),
we refer to foams with one vertex as DVD (for dipole-vertex-dipole), two vertices and one edge as DED
(for dipole-edge-dipole), two vertices and two edges as DLD (for dipole-loop-dipole).

DD complex

The first term in (1) is a foam with no vertices, and corresponds to the trivial transition amplitude.

DVD complex

Using our definition of faces, we only have 1 admissible vertex graph, see Fig.4, which is the one originally
considered in [20, 23]. It is disconnected, and thus manifestly leads to a factorized amplitude between initial
and final states.

a
0

b
0

a
0 b

0

a b

a b

Figure 4: DVD complex and the admissible vertex graph.

Vertex graph for DED

The smallest foam with two vertices has a single edge connecting them, and the two vertex graphs are
necessarily equal and specular from our definition of faces. There is again a single admissible choice, shown
in Fig. 5: all other routings of the strands would produce faces corresponding to non-minimal cycles.

a b

a
0 b

0

c

d

a
0

a

c

Figure 5: DED complex and the admissible vertex graph.

Although the vertex graph is not disconnected, it still leads to a factorized amplitude. As we will show
explicitly below, this simply comes from the fact that we can remove the SL(2,C) integration at the middle
vertex, thus effectively ‘disconnecting’ the evaluation in two pieces.

Vertex graphs for DLD

With two internal edges we have more than just one admissible foam. By our criterion, we can have one
internal face only; but the boundary links can be routed in topologically distinct ways without violating the
minimal-cycle rule for the faces. This leads to seven different possibilities compatible with our definition of
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faces, shown in Fig. 6. Again the two vertex graphs must be equal and specular, so we show only one of
them.

1 2 3

4 5 6 7

Figure 6: DLD complex with the seven topologically distinct admissible vertex graphs. Each can give different foams
by permutations of the spin labels or by flipping the two internal edges; The graphs 2, 3, 5, and 6 are not symmetric
if we flip the internal edges, thus both configurations give two independent spin foam amplitudes. Graphs 1, 2 and 3
lead to factorized amplitudes, altough 1 and 2 are not 3-link-connected, so their amplitude are not guaranteed to be
finite. Graph 6 is the non-factorized amplitude easiest to evaluate, and the one we will study in more details below.

Anticipating on the results presented below, the first three diagrams factorize, but not the remaining
four. These are thus the first ones with non-trivial bulk dynamics, and correlations between initial and final
spins.

If we were to allow for faces corresponding to non-minimal cycles, we would have 4 topologically distinct
vertex graphs for DVD, 3 for DED, and 13 for DLD, see Appendix C.

4 Evaluation of Lorentzian diagrams

4.1 Amplitude factorization and booster functions

Having listed the foams we are interested in, we now move to their explicit evaluation. The key to do so
is the factorization of the amplitudes introduced in [18]. We observe that the vertex amplitude defined in
(12) is an SL(2,C) tensor invariant, and as such can be represented in terms of Clebsch-Gordan coefficients.
For the unitary irreps of the principal series, these can be written as (infinite) sums of Clebsch-Gordan
coefficients for the canonical SU(2) matrix subgroup weighted by 1-dimensional boost integrals. See [18] for
details. The result gives

Av(jf , ie) =
∑

lf ,ke

{nj}(lf , ke)
Ev−#
∏

e=1

Bγ
ve(jf ; lf ;~ıe,

~ke), (15)

where {nj}(lf , ke) is the SU(2) nj-symbol associated to the vertex graph, labelled by spins lf and ke; ve is
the valence of the edge e (namely the number of faces it bounds), and

Bγ
n(ja, la;~ı,

~k) =
1

4π

∫ ∞

0

dr sinh2 r
∑

pa

(

ja
pa

)(~ı) (
la
pa

)(~k) n
∏

a=1

d
(γja,ja)
jalapa

(r). (16)
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The boost matrix elements d(ρ,k)(r) for simple irreps are reported in Appendix A. The summations over ke
in (15) are bounded by Clebsch-Gordan conditions, and those over lf by lf ≥ jf .

The factorization result (15) has the neat effect of minimizing the number of unbounded integrations over
boost directions, and reduce the evaluation of the Lorentzian amplitude to an exercise in recoupling theory
of SU(2), with the boost contributions as weights localised on the edges, see Fig. A.12. The fact that only
Ev −# boosters appear per vertex reflects the redundancy of one group integration in (12). The freedom to
arbitrarily choose the redundant integration can be used at one’s advantage to eliminate the booster function
with the highest valence ne, a simplification that we will use systematically below.

For the purposes of using graphical calculus for the recoupling theory, we follow the conventions of [32]
for the SU(2) part (briefly summarized in Appendix A), and the following graphical representations for (16),

Bγ
3 (ja; la) =

j1

j2

j3

l1

l2

l3

Bγ
4 (ja; la; i, k) =

j1 j2 j3 j4

l1 l2 l3 l4

i

k

(17)

Bγ
5 (ja; la; i1, i2, k1, k2) =

j1 j2j3 j4 j5

l1 l2 l3 l4 l5

i1 i2

k1 k2 .

(18)

and so on for higher n. Here the convention is that both lower and upper sets of spins are assigned from left
to right in the 4jm symbols.7 Because of this diagrammatic expression, the boost integrals were referred to
as ‘dipole amplitudes’ in [18]. We refrain from using this expression here to avoid confusion with the dipole
spin network graph, and call them booster functions instead.

In spite of the simplicity achieved by (15), the explicit evaluation is still a very complex task: first of all,
only for n = 3 there exist a closed expression for (16) in terms of finite sums of Γ functions, see [54, 18]; for
n ≥ 4 one has to rely on numerical methods to perform the integrals.8 The difference is important, since
using Mathematica we are able to reliably evaluate Bγ

3 for spins up to 100 within few seconds, whereas for
B4 we are limited to spins of order 30 by numerical instabilities on hypergeometric functions, and at those
spins each value of B4 can take hours to compute. Some numerical calculation times are reported in Fig. 15
in the Appendix, based on a standard laptop computer with core speed of 2.5 GHz and 8 Gb of RAM. To
perform the calculations of spin foam amplitudes in this paper we used the server maintained by our lab,
featuring 32 processors with 3.4 GHz CPU and 24 Gb of RAM.

Secondly, the factorization has introduced infinite sums over the l’s, which play the role of ‘magnetic
numbers’ from the SL(2,C) viewpoint. These can be very slow to converge and hinder the numerical
efficiency. This is for instance the reason why it is difficult to test Barrett’s asymptotic formula [10] with
Lorentzian boundary data [14]. For some of the foams considered in this paper, the sums turn out to be
quickly converging, in which case they can be handled with a controllable cutoff.

Hence, exact evaluations of Lorentzian EPRL amplitudes are possible but limited, and very costly. One
important information that we are interested in is the large spin scaling of the amplitudes. For such estimates
the factorization (15) is very useful because we can use known results from the asymptotics of SU(2) nj-
symbols [55, 56] and combine them with scalings of the booster functions and estimates for the sums. To that
end, let us briefly review some scaling properties of the booster functions. Plots showing the behaviours and

7This means that all lower (upper) nodes have clockwise (anticlockwise) orientation, see Appendix A. As shown in Ap-
pendix B, the booster functions are independent of orientation of the strands. For this reason we omit the arrows on the
strands in the picture.

8Also for n ≥ 4 it is possible to analytically perform the r integrals, see [18]; however the results involves new integrations
which at present are still of comparable numerical complexity.
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claims of this section, as well as more details and expressions for the booster functions and their numerical
evaluations can be found in Appendix B.

4.2 Boosters’ scalings

1. Minimal spins, homogeneous large spin asymptotics (see [18] and Fig. 16.):

Bγ
3 (Nja;Nja) ∼

{

N−3/2 if
∑

a ja odd
N−1 if

∑

a ja even
, Bγ

n≥4(Nja;Nja;~ı,~k) ∼ N−3/2. (19)

In the second expression, the leading order scaling is the same irrespectively of the intertwiners. How-
ever, seen as a function of the intertwiners at fixed spins, it is strongly peaked at equal values. The
precise shape and width of the peak depends on the spins considered, but the drop is measured in or-
ders of magnitude already one step away from equal values. Hence, it is qualitatively fair to complete
the estimate with a Kronecker delta δ~ı~k. There exist also an analytic estimate for the leading order,
given by [57]:

Bγ
n(Nja;Nja; i, k) ∼

1

(4π)2

[

6π

(1 + γ2)N
∑

a ja

]3/2 δ~ı~k
d~ı

. (20)

This correctly reproduce the power law decay, and numerical tests (see e.g. [18] or App. (B)) confirm
also the γ and

∑

a ja dependence. On the other hand, the numerical factor is not very accurate (the
error is of order 1), nor the dependence on the intertwiners. Indeed as mentioned above configurations
with non-equal intertwiners also decay like N−3/2 and not faster as (20) would suggest.

2. Minimal spins, inhomogeneous large spin asymptotics with one spin small (see Fig. 17):

Bγ
3 (Njā, j3;Njb, j3) ∼ N−1, Bγ

4 (Njā, j4;Njb, j4;Ni,Nk) ∼ N−5/2, (21a)

Bγ
5 (Njā, j5;Njb, j5;Ni1, Nk1, Ni2, Nk2) ∼ N−7/2, (21b)

where in the above ā = 1, . . . , n− 1.

3. Non-minimal spin decay, homogeneous (see [18] and Fig. 18):

Bγ
3 (ja; ja +∆l) ∼ 1√

∆l
, Bγ

4 (ja; ja +∆l; i, k) ∼ 1

∆l
(22)

4. Non-minimal spin decay, inhomogeneous: an exponential decay if we rescale a single l label, see Fig. 19.

4.3 Simplified model and scaling estimates

The non-minimal spin decays described in points 3 and 4 just above suggest that for some configurations
good estimates of the EPRL model can be obtained looking at the minimal configurations only, la = ja.
This restriction defines a simplified version of the EPRL model, called EPRLs in [18], s for simplified. Since
the EPRLs amplitudes are much faster to evaluate, it is useful to get a hand on when the simplification gives
a good approximation of the full EPRL model. There are three possibilities, depending on the foam:

(i) The summations over l’s are truncated to the minimal value by Clebsch-Gordan inequalities: this
can happen for particular configurations, and if it happens for all ls, we refer to such amplitudes as
EPRLs-exact.

(ii) The summations are bounded, or unbounded but quickly converging: EPRLs gives different numerical
values than EPRL, nonetheless it provides precise estimates of the large spin scalings and of correlations’
properties.

(iii) The summations are unbounded and slowly converging: the EPRLs differs strongly from the EPRL,
and does not provide good estimates.

Because of the intricate structure of the amplitudes, it is not easy to give a general criterion to identify a
priori which ones are well approximated by the simplified model. One of the results of this paper is to show
for which of the considered foams it happens. The interest in this is that the simplified model is much faster
to evaluate, and furthermore, it allows us to use the analytic estimate (20).
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5 Dipole-to-dipole spin foam amplitudes

In this Section we present the explicit form of the amplitudes for the foams listed in Section 3. For an
SU(2) BF theory, the evaluation of the various spin foam amplitudes associated to the above diagrams is a
straightforward, if somewhat tedious, exercise in recoupling theory. It is very similar for the EPRL model,
using the factorization reviewed above. We use graphical calculus for SU(2) with the conventions of [32],
briefly reported in Appendix A, and the notation (17) for the booster functions. In the diagrams below,
every strand represents a face and every box an integration over SL(2,C) assigned for each half-edge. One
has to choose a face orientation, but the result is independent of this choice (not of the orientation of the
boundary links, on the other hand).

5.1 DD foam

The first term of (1) is a trivial foam, with no internal vertices and faces bounded by a lower and an upper
link. The corresponding ‘face-rigid’ amplitude is the identity,

WDD(ja, j
′
a; i, t, i

′, t′) = δja,j′aδi,i′ δt,t′ . (23)

5.2 DVD foam

The vertex graph is disconnected (see Fig. 4), leading to an exact factorization of the amplitude into lower
and upper contributions. Each connected component has a single SL(2,C) integration after gauge-fixing,
and the amplitude reads

WDVD(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

∫

dg1dg2

4
∏

a=1

Dγja,ja
jamajana

(g1)D
γj′a,j

′

a

j′am
′

i
j′an

′

i
(g2)

(

ja
ma

)(i) (
ja
na

)(t) (
j′a
m′

a

)(i′) (
j′a
n′
a

)(t′)

= didi′dtdt′

+−

− +

j′1j′1
j′2

j′2

j′3j′3 j′4j′4
j1j1

j2j2

j3j3
j4j4

i′ t′

i tg1

g2

I

I

where in the graphical notation we used a box with an identity I to flag the group integrations we removed.
The arrows on the box keep track of the edge orientations, and the signs of the spin ordering chosen for the
4jm symbols, see Appendix A.9.

To proceed with the graphical evaluation we use (A.12) to split the boxes in terms of intertwiners. This
results in one booster function and one SU(2) 4-valent θ graphs per edge. The θ graph gives a dimensional
factor, see (A.5), and we get

WDVD(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

j1 j2 j3 j4

j1 j2 j3 j4

i

t

j′1 j′2 j
′
3 j′4

j′1 j′1 j
′
3 j′4

i′

t′

. (24)

9In the literature the signs in the graphical calculus are often discarder under the assumption of fixing a convention once
and for all, say anticlockwise. We prefer to keep track of them so that we can use an unique algebraic 4jm symbol and have a
easier mnemonic rule for the boundary spins (ja goes to j′a with the same a)
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The amplitude factorizes as anticipated, and we see that there are no summations over the magnetic spins l:
In the DVD case the simplified model coincides with the complete model, or in other words, this diagram
is EPRLs-exact. We can then use the estimate (20) for the large spin scaling, finding

WDV D(Nja, Nj′a; i, t, i
′, t′) ∼ 1

N3

27

32π

1

(1 + γ2)3
didi′δitδi′t′

(
∑

a ja)
3/2(

∑

a j
′
a)

3/2
. (25)

We have an N−3 power law, peaked on configurations with equal intertwiners for each connected component
of the boundary graph. The only correlations introduced by the amplitude are within spins and intertwiners
within each connected component of the boundary graph.

In Appendix C we study the other 3 integrable vertex graphs with non-minimal faces. We do so to get a
first understanding of what is excluded by our face criterion, but also because they provide simple examples
of some interesting features: diagrams non 3-link-connected yet integrable; diagrams with unbounded l
summations but which are nonetheless well approximated by the simplified model; presence of non-trivial 6j
symbols and thus oscillation in the large spin limit.

5.3 DED foam

For the vertex graph in Fig. 5, the associated spin foam amplitude is (here and in the following we omit the
first, trivial step of listing the matrix elements, and use directly the graphical calculus)

WDED(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

+−

− +

j′1j′1
j′2

j′2

j′3j′3 j′4j′4
j1j1

j2j2

j3j3
j4j4

i′ t′

i tg1

g2

g3

g4

II

Notice that, by choosing judiciously the integration to be removed, we can avoid the presence of booster
functions with 8 legs. This choice further shows manifestly that the vertex graph reduces to two connected
components, although this would be true with any other gauge-fixing chosen. Hence, the amplitude is again
factorized, and no mixing of lower and upper spins occurs.

Proceeding as before with (A.12) and the normalization of the SU(2) generalized θ graphs we get

WDED(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′
∑

k

dk

j1 j2 j3 j4

j1 j2 j3 j4

i

k

j1 j2 j3 j4

j1 j2 j3 j4

t

k

×
∑

k′

dk′

j′1 j′2 j
′
3 j′4

j′1 j′1 j
′
3 j′4

i′

k′

j′1 j′2 j
′
3 j′4

j′1 j′1 j
′
3 j′4

t′

k′

.

(26)

Again only minimal spins enter, and the diagram is EPRLs-exact. The estimate (20) gives the asymptotic
behaviour

WDED(ja, j
′
a; i, t, i

′, t′) ∼ 1

N6

1

(4π)8

[

6π

(1 + γ2)

]6
δitδi′,t′

(
∑

a ja)
3(
∑

a j
′
a)

3
. (27)
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This foam order λ2 is thus suppressed with respect to the one of order λ by three powers in the large spin
limit. As for correlations, the situation is identical to the previous one: the amplitude factorizes, and the
only non-trivial correlations are within each connected component of the graph.

5.4 DLD foams

Foams with an internal face give more interesting amplitudes. First of all, these foams turn out to contain
sums over the magnetic l’s, hence the EPRL amplitudes differ from the simplified ones. Secondly, the
presence of an internal face can couple lower and upper spins. This does not happen for all foams: the first
three vertex graphs of Fig. 22 still give factorized amplitudes: to see this, notice that all spins of a connected
part of the boundary go through the same internal edge. If we choose to remove the group integral associated
with that edge on both vertices, we immediately see that those spins completely decouple from the rest of
the diagram. The remaining four are all coupled. Among them, the simplest to evaluate is number 6: it
has a six-valent node, whose integration can be removed by gauge-fixing, leaving only 3-valent and 4-valent
strands behind. We study this one first and in more details, and report some properties of the others in
the next Section. Unless otherwise stated, the reference value for the Immirzi parameter in the numerical
calculations is γ = 6/5.

The amplitude of DLD6 is given by

WDLD6(ja, j
′
a; i, t; i

′, t′) = didi′dtdt′

+

− +

−

j1j1
j2j2

j3j3
j4j4

j′1j′1
j′2

j′2

j′3j′3 j′4j′4

jf

i′ t′

i tg1

g2

g3

g4

g5g6

II

where we used the internal SU(2) gauge invariance to route the faces within each boxes in a convenient way.
Permuting spin labels or flipping the internal edges gives trivially related amplitudes. We further use the
freedom to remove one group integral by vertex to remove the highest valent ones, marked with I in the
picture. The internal lines without the Y -map are magnetic l’s. However those that hit an I-box are also
projected by the Y -map to their minimal value. This leaves us with four free l’s only, those going through
the g5 and g6 boxes. Splitting the boxes as in (A.12) and using the orthogonality (A.6), the l’s must be
pairwise equal and the SU(2) symbols reduce to generalized θ graphs. The amplitude is then equivalent to

WDLD6(ja, j
′
a; i, t; i

′, t′) = didtdi′dt′
∑

l,l′k,k′

dkdk′

dldl′

[

∑

jf

djf

( j4

j′4

jf

l

l′
jf

)2 ]

×

j1 j2 j3 j4

j1 j2 j3 l

i

k

j1 j2 j3 j4

j1 j2 j3 l

t

k

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′

i′

k′

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′

t′

k′

.

(28)

With respect to the previous diagrams, we have two new features: the first is a coupling of lower and upper
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labels, thanks to the internal face function

Cl,l′(j4, j
′
4) :=

min{j4+j′4|,l+l′}
∑

jf=max{|j4−j′4,|l−l′|}

djf

(

Bγ
3 (j4, j

′
4, jf ; l, l

′, jf )
)2

, (29)

where we made the extremes of the sum explicit with respect to (28). The second is the summations over
the magnetic-l numbers: this amplitude differs then from the one computed with the simplified model.

In order to study the large spin beahviour of (28), we begin within the simplified model: namely we cut
the two l-summations to their first contribution: l = j4, l

′ = j′4, and define in this way the EPRLs amplitude
WDLD6

s (ja, j
′
a; i, t; i

′, t′) and its internal face correlation as

Cs(j, j
′) := Cj,j′(j, j

′). (30)

Using the inhomogeneous scaling Bγ
3 (Nj1, Nj2, j3) ∼ N−1, see (17), and the boundness of the summation

in jf , we can infer the power laws

Cs(Nj, j′) ∼ N−1, Cs(Nj,Nj′) ∼ N−1. (31)

Both are confirmed with good accuracy by numerical analysis, see Fig. 7.

Figure 7: Numerical confirmation of the asymptotics (31) of the face correlation function for the simplified model.
The dots are the numerical data, the lines fits obtained assuming a power law N−1.

Using this result and (19) for the scaling of Bγ
4 , we estimate the EPRLs contribution to (28) to be

WDLD6
s (Nj,Nj′; i, t; i′, t′) ∼ N−9. (32)

We further expect peakedness on equal intertwiners as before, δitδi′t′ .
From the simplified to the full EPRL model there are only a finite number of extra terms: the sum over

l is bounded by j3 and k, which in turn is bounded by j1 and j2; and similarly for l′. We thus expect the
same scaling,

WDLD6(Nj,Nj′; i, t; i′, t′) ∼ N−9. (33)

We performed numerical tests of both estimates (32) and (33) at spins of order 10, finding a qualitative
agreement, see Fig.8. This could be made sharper pushing to higher spins, since at such low spins, even the
individual Bγ

4 is still not precisely at its asymptotic power law behaviour, see Fig. 16. However we lack at
present the numerical power to do so, because Mathematica has instabilities in evaluating and integrating
hypergeometric functions starting from around spins j = 30. Given the extremes of (29), this puts our
numerical limits at spins of order 10.10

10We can go beyond only for diagrams having only three-valent booster functions, since for these we can use a finite sum
expression without hypergeometric functions [18].
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WDLD6(N,N;i,t,i',t')

● i=1,t=3,i '=1,t'=3; ● i=1,t=1,i '=1,t'=1

Figure 8: Left panel: Large spin scaling of WDLD6(N,N ; i, t; i′, t′) in (28) for equal spins and two different config-
urations of intertwiners. The dots are the numerical data, and the continuous lines the expected N−9 decay derived
in (33). The dashed lines are the actual fits at the spins we can access. Using the last 5 points, the fits give N−8.4

and N−8.1 respectively. The discrepancy can be imputed to the slow spins, at which already the indivudal booster
function is not yet at asymptotic behaviour, see Fig. 16 in the Appendix. Data points for the simplified model are
indistinguishable, the difference is in the per thousands and shown in the right panel. Right panel: Numerical studies
of the relative error between the EPRL model and the simplified one, ǫ := |WDLD6 −WDLD6

s |/WDLD6 .

This means that even if this foam is not EPRLs exact, the difference is very small. The simplified model
captures the correct scaling, and also the spin correlations, as we will see in Section 6.

5.5 DLD foams: additional vertex graphs

As we have seen, integrability and our face criterion do not single out a unique amplitude diagram for
the DLD complex. Next to DLD6 studied in the previous Section, there are 3 additional types of vertex
graphs leading to non-factorized amplitudes, those numbered 4,5 and 7. As before, these graphs give raise
to different foams by considering permutations of spin labels, and swapping the routing through the internal
edges. We consider here only one representative of these possible permutations.

In order of numerical complexity, the next non-factorized amplitude is the one with vertex graphs number
5, which only contains 4-stranded boosters. Proceeding as in the previous Section, we have

WDLD5(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

+

− +

−

j1j1
j2j2

j3j3
j4j4

j′1j′1
j′2

j′2

j′3j′3 j′4j′4

jf

i′ t′

i tg1

g2

g3

g4

g5g6

II

= didtdi′dt′
∑

la,l̄a,l′4
k,k′,h

dkdk′dh
dl4dl′4

(

∑

jf

djf

j4 j3 j
′
4 jf

l4 l3 l
′
4 jf

h

k

j4 j3 j
′
4 jf

l̄4 l̄3 l
′
4 jf

h

k′

)

(34)
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×

j1 j2 j3 j4

j1 j2 l3 l4

i

k

j1 j2 j3 j4

j1 j2 l̄3 l̄4

t

k

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′4

i′

k′

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′4

t′

k′

There are five l summations (the SU(2) symbol associated with the internal face identifies two initially
different l′4 and l̄′4), only one bounded. This EPRL amplitude differs thus from the simplified model by
an infinite number of terms, decreasing in magnitude with a power law in the ls. The quantity in round
brackets identifies the face correlation function coupling lower and upper spins. It is again a square of
boosters, 4-stranded this time.

As before, let us first estimate the scaling of the simplified model. The first thing to notice is the
dependence of the face correlation function on the intertwiner labels. If we let the boundary spins grow,
Clebsch-Gordan inequalities quickly reduce to zero the number of terms in the sum over the internal spin,
unless we let the intertwiners also grow. Hence, the dominating contribution comes from large bulk in-
tertwiners. But since in the simplified model the boundary booster functions (in the last line of (34)) are
sharply peaked on equal intertwiners, this means that the whole amplitude scales differently for different
values of the boundary intertwiners, with dominant contribution coming from the largest intertwiners. This
is quite different from the previous foam considered, where the scaling was homogeneous in the intertwiners.
To estimate the power law associated with this dominant scaling, we look at the inhomogeneous scaling of
Bγ

4 with one small spin, see (21a). Then, since the number of terms to be summed over grows linearly with
the spins, we estimate

∑

jf

djfB
γ
4 (Njā, jf ;Njā, jf ;Nh,Nk)Bγ

4 (Njā, jf ;Njā, jf ;Nh,Nk′) ∼ N(N−5/2)2 = N−4, (35)

where the extremes of the summations are

[max{N |j′4 − h|, N |j′4 − k|, N |j4 − k′|},min{N(j′4 + h), N(j′4 + k), N(j4 + k′)}].

This function is hard to evaluate numerically, and we were able to compute it explicitly up to spins of order
10 only. At those value, a numerical fit gives a power law N−3.2. This is in qualitative agreement with the
estimate (35), since at the same values the inhomogeneous Bγ

4 only scales like N−2.1 instead of N−2.5. With
this numerical support, we use (35) to estimate the whole amplitude. The summations over the intertwiners
are all cut down by the Gaussian peak in the boosters. Putting (35) together with the dimensional factors of
the intertwiners and the homogeneous scalings of the boosters in the last line of the amplitude, and taking
into account the fact that also the boundary intertwiners must be rescaled to get the dominant contribution,
we get for the simplified model

WDLD5
s (Nja, Nj′a;Ni,Nt,Ni′, Nt′) ∼ N4NN−4(N−5/2)4 = N−9. (36)

This is the same scaling estimated for the previous foam. At spins of order 10, a linear fit of the exact
numerical data gives N−8.1, same qualitative agreement as expected from (35).

For the complete model, our results are more limited. The numerical evaluation is significantly harder
because of the many l-summations, and out of reach of our current numerical power. This is unfortunate
because unlike for the previous foam, the two scalings could differ this time. Indeed, the presence of un-
bounded summations of slow convergence (the booster functions now have a power-law decay in the ls, as
opposed to the exponential one of the previous foam) means that the complete EPRL model could have a
slower decay. Consider in fact the following example:

f(j) =
1

jx

∞
∑

∆l=0

1

(j +∆l)y
∼ 1

jx+y−1

1

y − 1
(37)

where in the last step we approximated the sum with an integral. This suggests that an unbounded sum
can slow by one power the large spin decay. If this is the case, then this foam dominates and the overall
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expansion (1) should be completed with an intermediate scaling, and spin correlations between the boundary
dipoles would appear at a stronger power than N−9. Since there are only two independent summations, the
boosters decay and the example (37) suggest that the scaling would be at most two powers slower, that is
N−7.

The remaining two non-factorized amplitudes have a more complicated structure, with 5-stranded booster
functions. Their expression is, respectively,

WDLD4(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

+

− +

−

j1j1
j2j2

j3j3
j4j4

j′1j′1
j′2

j′2

j′3j′3 j′4j′4

jf

i′ t′

i tg1

g2

g3

g4

g5g6

II

= didtdi′dt′
∑

la,l̄a,l′a
k,k′,s,h,h′

dkdk′dsdhd
′
h

dldl′

(

∑

jf

djf

j4 j3j2 j′4 jf

l4 l3 l2 l′4 jf

j1 k

h′ h

j4 j3j2 j′4 jf

l4 l̄3 l̄2 l′4 jf

j1 s

h′ h

)

×

j1 j2 j3 j4

j1 l2 l3 l4

i

k

j1 j2 j3 j4

j1 l̄2 l̄3 l̄4

t

k

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′4

i′

k′

j′1 j′2 j
′
3 j′4

j′1 j′2 j
′
3 l′4

t′

k′
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and

WDLD7(ja, j
′
a; i, t, i

′, t′) = didi′dtdt′

+

− +

−

j1j1
j2j2

j3j3
j4j4

j′1j′1
j′2

j′2

j′3j′3 j′4j′4

jf

i′ t′

i tg1

g2

g3

g4

g5g6

II

= didtdi′dt′
∑

la,l̄a,l′a,l̄′a,

k,k′

dhd
′
hdkdk′

dl4dl′4

(

∑

jf

djf

j4 j3j
′
4 j′3 jf

l4 l3 l
′
3 l′4 jf

k k′

h′ h

j4 j3j
′
4 j′3 jf

l4 l̄3 l̄
′
3 l′4 jf

k k′

h′ h

)

×

j1 j2 j3 j4

j1 j3 l3 l4

i

k

j1 j2 j3 j4

j1 j3 l̄3 l̄4

t

k

j′1 j′2 j
′
3 j′4

j′1 j′2 l
′
3 l′4

i′

k′

j′1 j′2 j
′
3 j′4

j′1 j′2 l̄
′
3 l̄′4

t′

k′

The best we can do for these two foams is to give the large spin scaling of the simplified amplitude. Proceeding
in the same way as before, suing this time the inhomogeneous scaling (21a) of the 5-stranded booster, we
obtain the following estimates:

WDLD4
s (Nja, Nj′a;Ni,Nt,Ni′, Nt′) ∼ N4N3N−6(N−5/2)4 = N−9, (38)

WDLD7
s (Nja, Nj′a;Ni,Nt,Ni′, Nt′) ∼ N4N2N−6(N−5/2)4 = N−10. (39)

The presence of unbounded summations means again that the amplitudes for the complete EPRL model
could decay slower.

Finally, we have the three vertex graphs 1,2 and 3 of Fig. 6, corresponding to factorizedDLD amplitudes.
Proceeding as above, we find that the amplitudes for the simplified model scale respectively as N−6, N−7,
N−11. As for the complete model, we did not invest numerical resources to study these diagrams, that give
factorized amplitudes. Since the vertex graphs 1 and 2 are not 3-link-connected, we are not guaranteed that
the associated amplitudes are ill-defined. We present in Appendix C an example with a similar structure in
which the amplitude is finite.

The results of our estimates and comparisons with the simplified model are summarized in the following
Table 1:
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Foam Factorization LOs scaling EPRLs=EPRL Numerics

DVD Y N−3 Y X

DED Y N−6 Y X

DLD1 Y N−6 N
DLD2 Y N−7 N
DLD3 Y N−11 N
DLD4 N N−9 N
DLD5 N N−9 N
DLD6 N N−9 N X

DLD7 N N−10 N

Table 1: Summary of scalings and properties of the foams. The column Factorization refers to whether the amplitude
factorizes in two terms associated with each connected part of the boundary graph; LOs scaling gives the scaling of the
simplified model; the next column marks the foams for which EPRL and EPRLs give the amplitude (so in particular
the scaling is the same); Numerics lists those foams for which we have numerical evaluations. In the three cases
considered, the numerics confirm the scaling of the simplified model. For the other foams, we notice in particular that
DLD4, DLD5 and DLD7 contain slowly converging unbounded summations over ls and could likely give slower fall
offs. The summary of different scalings shows manifestly that already for the simplified EPRLs model the large spin
scaling is not a simple function of V,E and F .

It goes without saying that we would have liked to perform numerical studies of (at least) the large spin
scaling of all foams, especially for those like DLD4, DLD5 and DLD7 that have non-factorized amplitudes
and may have a slower power law decrease than the simplified model. This lays however beyond our current
numerical means: Evaluating the booster functions is very slow and limited at spins of order 30, and the
slow convergence of the sums over l makes it impossible to deduce any meaningful behaviour from our data.

One thing that can be nonetheless fruitfully learned from the estimates for the EPRLs is that the power
of the leading scaling is not a simple function of the number of vertices, edges and faces. A priori, one has
the following structure:

• Number of vertices and their valence = Number and type of SU(2) symbols;

• Number of half-edges = Number of booster function;

• Number of faces per half-edge = Valence of booster functions.

Using (20) and the scalings of the SU(2) symbols one can use this structure to estimate the scaling of the
amplitudes, at least for the simplified model. This works for simplicial foams, as explained in [18].11 However
for non-simplicial foams the situation is made more complicated by the large freedom in the routing of the
faces and the valence of the edges. The routing in particular turns out to strongly influence the scaling, as
shown in the Table above. As a particular example, the routing can lead to disconnected vertex graphs,
which are always the dominant ones for given V,E, F : this is because gauge-invariance implies to remove
one integral per connected component, and thus an additional booster power-law decay with it. Only if
the routing of the faces is rigidly fixed, one can hope to find easy rules to estimates the power-law decay
without writing down the explicit form of the amplitude. For the complete EPRL model we have two
possibilities: either the same scaling of the simplified model, or a slower scaling. The first situation occurs
for simple foams with no unbounded l summations, like DVD and DED above, or with fast convergent
unbounded summations, like DLD6 and the additional examples in Appendix C. The second situation is
however more general, and to estimate the difference one can look at how many independent unbounded
l-summations are present, see discussion around (37) for an example. The slower decays impact also the
analysis of the amplitude divergences associated to internal bubbles, like for the self-energy spin foam or the
Pachner 1-5 move, see [58]. The actual details on the behaviour of the complete EPRL model depend on the
structure of the booster functions for non-minimal spins, and an improved analytic understanding of their
large spin behaviour is certainly necessary if one wants to make progress in the evaluation of Lorentzian
EPRL amplitudes. See [59] for work in this direction.

11The actual estimate there given does not take into account the removal of one integration per node and should accordingly
be amended.
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5.6 Higher vertices and Regge asymptotics

The next foams in the vertex expansion have two vertices with three internal edges and, according to our
criterion, three internal faces, see Fig. 9. The vertices are now 5-valent: one may wonder whether {15j}
symbols appear in the amplitudes, and allow us to make some contact with simplicial spin foams and their
geometric interpretation. The answer is in the negative, due to the combinatorial structure of the faces:
a 4-simplex vertex graph would require one of the faces to have two external links (one upper and one
lower). But for this specific foam that would mean a non-minimal cycle, thus violating our face criterion.
15j symbols will certainly appear with a high enough number of vertices, however it is hard to anticipate
without a detailed analysis how much of their potential Regge-like behaviour will survive in the presence of
so many non-simplicial symbols around them.

Although lacking a relation to Regge actions, the simple foams considered so far carry nonetheless non-
trivial correlations, and we will look at some of them in the next Section.

Figure 9: An example of 2-complex with two pentavalent vertices, on the left, and two of its possible vertex graphs,
on the right. The requirement of avoiding faces corresponding to non-minimal cycles excludes vertex graphs with the
combinatorics of a {15j} symbol.

6 Spin Correlations

One of the most important properties of spin foam amplitudes is to introduce dynamical correlations among
spin network states. These correlations have played an important role in the study of the 2-point function
for simplicial foams [34], and the relation with the graviton propagator in the linearized expansion (see
e.g. [45]).12 For non-simplicial foams, we do not have a geometric interpretation of the correlations, but it
is nonetheless important to study their structure if such amplitudes have to play a dynamical role in the
theory. We focus here on the most interesting correlations encountered in our dipole-to-dipole transitions,
those between spins associated with disconnected parts of the boundary graph. We have seen in the previous
Section that such correlations appear only in the presence of an internal face and a routing mixing the
boundary faces. The simplest foam for which this happens is DLD6, and in this Section we present a
more detailed analysis of the spin correlations. Our analysis will however be only indicative in nature, for
the following reason: we do not have sufficient computer power and time to evaluate the twelve sums over
boundary spins and intertwiners. We resorted to a strong simplification provided by a ‘mini-superspace’
model: we assume all lower and all upper spins to be equal, ja ≡ j, j′a ≡ j′, and study the amplitudes
as probability distributions WDLD6

mini (j, j′) in this two-dimensional space, at fixed γ and intertwiners. This
enormously reduces the contributions we need to sum over and makes numerical calculations an easy task.
We hope that it still captures, at least qualitatively, the nature of the spin correlations of the true model.
Using a Gaussian boundary state |Ψ〉 =

∑

j,j′ exp{−(j − j0)
2 − (j′ − j0)

2} |j, j′〉 as in the general boundary
framework, we evaluate

〈jj′〉γ,j0 :=
〈WDLD6

mini | ĴlĴl′ |Ψ〉
〈WDLD6

mini |Ψ〉
− 〈WDLD6

mini | Ĵl |Ψ〉
〈WDLD6

mini |Ψ〉
〈WDLD6

mini | Ĵl′ |Ψ〉
〈WDLD6

mini |Ψ〉
. (40)

12For recent alternative ideas based on entanglement to select physically correlated states, see e.g. [60, 61, 62, 63].
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The results are reported in Fig. 10.

Figure 10: Correlations (40) as functions of the background spin j0 introduced by the boundary state. The value of
the peak and of the power-law tail depend on γ, here taken to be 6/5. The intertwiners labels are all equal to 1.

We see a peak and a power-law large j0 decay. These two features are qualitatively reminiscent of the
simplicial spin correlations (see e.g. [11]), although the details differ, notably the power law and the width
of the Gaussian.

An important consequence of the minisuperspace model is that the amplitude is normalizable:

〈WDLD6

mini |WDLD6

mini 〉 =
∑

j,j′

WDLD6

mini (j, j′)2 < ∞. (41)

Furthermore, convergence is achieved almost immediately, see Fig. 11. Hence, we can define the correlations

Figure 11: Normalizability of the minisuperspace amplitude. The plot shows the convergence of (41) as a cut-off Λ
on the summations is increased. Here we fixed all intertwiner labels to 1, and γ = 1.2.

for this mini-superspace model also as in (7),

〈jj′〉DLD6 :=

∑Λ
j,j′ jj

′WDLD6

mini (j, j′)2

∑Λ
j,j′ W

DLD6

mini (j, j′)2
−

∑Λ
j,j′ jW

DLD6

mini (j, j′)2

∑Λ
j,j′ W

DLD6

mini (j, j′)2

∑Λ
j,j′ j

′WDLD6

mini (j, j′)2

∑Λ
j,j′ W

DLD6

mini (j, j′)2
, (42)

where, since the sums over j and j′ are infinite, we put an homogeneous cut-off Λ on them. The convergence
in Λ is very fast, see left panel of Fig. 12, as it was for the normalization alone. The same plot shows that
the EPRL and simplified model give basically the same correlations: the difference is of order 10−4. Hence
for this diagram the simplified model correctly captures both the scaling and the spin correlations.

Finally, we studied the dependence of (42) on the Immirzi parameter γ, see left panel of Fig. 12. The
correlations are positive, and decrease as γ increases.
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Figure 12: Left panel: Spin correlation (42) for the complete and the simplified models, showing that convergence of
the sum is achieved at small values of the cut-off Λ. The models give indistinguishable data points, the relative error
being of order 10−4. The same fast convergence is seen for all values of γ considered. Right panel: Spin correlation
(42) as a function of the Immirzi parameter, using the simplified model and cut-off Λ = 10.

Let us now look at the origin of the correlations, namely the internal face function (29) responsible for
the coupling of upper and lower spins. The main contribution is the one for the simplified model, (30). As
a distribution in the spins this function has an interesting behaviour, with a principal peak for equal spins
and symmetric sub-leading peaks, see Fig. 13.

Figure 13: Numerical studies of the internal face correlation function, for the simplified model and γ = 6/5. Upper
panel: 3d plot of Cs(j, j

′), showing a power-law decay superimposed with a peak for equal spins and symmetric sub-
leading peaks. Lower panels: 2d sections of Cs(j, j

′), showing more details about the peaks. The peak in the fixed-j
cut may amusingly remind the reader of a resonance in particles scattering, like the famous Higgs-diphoton bump,
however the background typically has opposite concavity.

Adding the l contributions of the complete EPRL model gives stronger correlations, although by a very
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small amount. For the internal face function, we can look at a cut-off summation,

C∆l(j, j
′) =

j+∆l
∑

l=j

j+∆l
∑

l′=j′

Cl,l′(j, j
′). (43)

Each new term added enhances the peak, as shown in Fig. 14. However, the l, l′ to be summed over in (28)
are convoluted with booster functions, that has seen previously decrease as we increase the l labels. This
has the effect of damping the peak enhancement, and as anticipated above, the final correlations only differ
by an order 10−4.

The resummed C∆l only gives a qualitative picture of the effect in the complete model, in particular it
overestimate it since the B4 convoluted over are also decaying functions in ∆l. Indeed, the correct result
can be seen by looking at the complete amplitude as a function of final (say all equal) spins at fixed initial
(all equal) spins. That is the reason why, also for the correlation of the present foam and not only for the
scaling behaviour, the simplified model offers a good approximation.

Figure 14: Peak enhancement for the cut-offed sums (43).

As a final comment, let us point out that the simplicity constraints play an important role in generating
the correlations. Had Had we worked with SU(2) BF theory alone, in fact, the internal face function would
simply be

CBF (j, j
′) =

j+j′
∑

jf=|j−j′|

djf . (44)

There is no more coupling of the spins in the summand, and the only almost-trivial correlations come from
the extremes of the sum. Hence these correlation are a good test of the dynamics of the EPRL model, within
the limit of the simple foams and mini-superspace setup here considered.

7 Conclusions

Numerical calculations of spin foam amplitudes are notoriously difficult, especially for Lorentzian signature.
In this paper we have considered amplitudes for a boundary graph with two 4-link dipoles, originally con-
sidered in [20, 23] for cosmological applications. We have extended that analysis to foams with two vertices,
and showed how the amplitudes can be computed explicitly using the method introduced in [18]. Our results
show that the decoupling of the boundary dipoles present at one vertex [20] is still present at two vertices
with a single connecting edge. In order to couple the spins on the two dipole one needs an internal face. This
is however not sufficient, as some foams with an internal face also can give factorized amplitudes, depending
on the routing of the faces. For the simplest foam with a non-factorized amplitude we performed numerical
studies of its scaling and spin correlations. The amplitude is suppressed by six powers in the large spin limit
with respect to that with a single vertex, and the correlations between lower and upper spins, studied with
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a mini-superspace model, are positive and monotonically decreasing with γ. The origin of the correlations
can be isolated in a specific function associated to the internal face, which features a non-trivial structure
with multiple peaks. This study of correlations can be considered as a first step to understand the dynamics
induced by the spin foam for the two dipoles, and it is relevant for the development of spin foam cosmology.
Indeed, one of our main motivations to undertake the present analysis was to take a look at cosmological
applications using spin foams [19, 20, 21, 22, 23, 24, 25, 17], with the specific question of seeking evidence of
the famous Big Bounce predicted by loop quantum cosmology [64]. We are not there yet with our approach,
partly because the path proved rich and complicated, partly because our current numerical power is signifi-
cantly limited. We thus content ourselves for the time being with presenting the results obtained so far, and
postpone a study of cosmological applications to future work.

For all foams considered, the spin sum over the internal face is convergent, and the amplitudes have
a power law decay in the large spin limit. The power increases with the complexity of the foam, thus
introducing a hierarchical scheme on top of the vertex coupling expansion. However, the exact scaling
depends in a complicated way on the combinatorics of the foam, and cannot be easily established just
looking at the number of vertices, edges and faces of the 2-complex. For instance a routing of faces leading
to a disconnected vertex graphs always gives a dominant amplitude with respect to a connected routing,
because of the extra group integrations to be removed. These results leave us with a mixed feeling. Exposing
the large spin hierarchy of the foams allows one to play around with expansions like (1) as an arena to test
different ideas on how the sum should be organized, or a continuum limit taken, and how different questions
may be sensitive to different orders. On the other hand, the (relative) simplicity of the numerical evaluation
of these non-simplicial spin foams has a payoff in the loose combinatorics of the faces. Even introducing
a very strong criterion as we did, the proliferation is still important, and most unsatisfactorily, the scaling
power law can not be a priori determined simply looking at the number of vertices, edges and faces, not even
for the simplified EPRLs model.

In the course of presenting these results we also discussed detailed aspects of the evaluations, the guiding
role that the simplified model can play, and what are our current numerical limits. In particular, we were
able to numerically evaluate only one – and the simplest – non-factorized foam for the complete EPRL model.
Both types of results, on the scalings and the correlations, concern the very limited setting (1) with at most
two vertices and a single internal face, and it is necessary to push our analysis further before more meaningful
conclusions can be drawn. The numerical evaluations are very costly, and we are furthermore limited by
instabilities of hypergeometric functions in Mathematica to compute the booster functions at spins beyond
30. Our analysis tells us that we need to improve these instabilities and parallelize the code so to speed up
the l summations. Work is currently in progress in this direction, and these improvements will be crucial
to testing the Regge asymptotic of the simplicial amplitude [14]. Once this is achieved, the factorization
method of [18] put the Lorentzian amplitudes on the same tractability level as SU(2) amplitudes. This is
non-trivial progress, but far from saying that the hardest part of the work is done: it is actually at that
point that one can face the true hard problem, namely the summations over internal j spins for many-vertex
foams. So from the numerical perspective our results are both good and bad: good because we were able to
do explicit numerics at two vertices, bad because they showed how much more improvement is needed, in
methods and numerical codes and/or approximation schemes.

Let us conclude with a comment on the dynamical meaning of the amplitudes here considered. Most
of the literature on spin foams focuses on simplicial amplitudes, for their natural geometric interpretation
and relation to Regge calculus. Nonetheless, non-simplicial amplitudes have been put forward as a mean
to provide transition amplitudes to spin networks on arbitrary graphs [6]. One can go out of the simplicial
setting in two opposite directions: on the one, considering simpler foams, with lower-valence vertices and
simple boundary states. This is the set up proposed in [20, 23] for cosmological applications and considered
here. On the other one, considering higher-valence vertices, which could be interesting from a coarse-graining
perspective for instance, and has also been considered for cosmological applications [17]. In the first case,
the connection with Regge calculus and that geometric interpretation of the dynamics is lost, as we have
seen in this paper no Regge actions enter the dynamics of the leading foams in the expansion. In the second
case, the analysis of [13] (which is restricted to SU(2) theory, but already points out what the story is like
for the EPRL model, see also [65] on this) shows that while it is possible in principle to get a Regge-like
dynamics based on flat 4d polytopes instead of 4-simplices, the EPRL model as it is now allows for more
general non-flat polytope configurations at the saddle point, corresponding to 3d data describing a class of
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conformal twisted geometries in which areas and angles match, but not the diagonal of the polygonal faces.
The lack of a simple connection with Regge calculus, and of a simple rule to identify the large spin scaling

of each diagram, are for us indications that more work is needed to assess the viability of non-simplicial EPRL
amplitudes for quantum gravity.
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A SU(2) and SL(2,C) graphical calculus

For the graphical calculus used to explicitly compute the amplitudes, we refer the reader to the monography
[32], whose conventions we use here.

A.1 SU(2) Symbols

We represent Wigner’s 3jm symbol as

(

j1 j2 j3
m1 m2 m3

)

=

j1 j2 j3

−

=

j3 j2 j1

+

, (A.1)

where the signs ± on the nodes keep track of the assignment of spins in the symbol, respectively anticlock-
wise/clockwise.

The contraction of two 3jm symbols via an intertwiner gives

j1 j2 j3 j4

i
− −

=

j1 j2 j3 j4

i

− =
∑

mi

(−1)i−mi

(

j1 j2 i
m1 m2 mi

)(

i j3 j4
−mi m3 m4

)

=:

(

j1 j2 j3 j4
m1 m2 m3 m4

)(i)

(A.2)

which we used to define a 4jm symbol with four external legs. From now on we forget to use dots for
nodes and we discard signes assuming they are always minus if not otherwise stated. These symbols satisfy
orthogonality properties such as

∑

m1,m2

(

j1 j2 j3
m1 m2 m3

)(

j1 j2 l3
m1 m2 n3

)

=
δj3l3δm3n3

dj3
, (A.3)

∑

ma

(

j1 j2 j3 j4
m1 m2 m3 m4

)(j12) ( j1 j2 j3 l4
m1 m2 m3 n4

)(l12)

=
δj12l12
dj12

δj4l4δm4n4

dj4
. (A.4)

Unlike the 3jm symbol, the 4jm symbol we defined is not normalized.13

13A normalised 4jm-symbol is obtained multiplying the right-hand side of (A.2) by
√

dj12 . We chose the non-normalised
convention because it is the one that corresponds to a 4-valent node in the SU(2) graphical calculus, and because it is more
convenient to work with in order to reconstruct the invariants {nj}-symbols associated to graphs.
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In the graphical notation of the 4jm symbol we distinguish one spin, j12, which corresponds to an
intertwiner label in the recoupling channel 12. Graphically, tracing over the free magnetic indices the
orthogonality relations (A.3) and (A.4) we obtain the evaluation of the θ graph and its generalized version
with 4 links,

j1

j2

j3

= 1;

j1

j2

j3

j4

i k =
δi,k
di

. (A.5)

Above and everywhere we implicitly assumed that the Clebsch-Gordan inequalities are satisfied, else the
evaluations vanish.

For the simple foams considered in this paper, the rule that we needed the most is the orthogonality
relation (A.3), namely

j1 j1

j2 j2

j2

j3 j3j4

j4

d−1
j1= (A.6)

Other two useful rules are the node sign change, equation (6) in Section 8.5 of [32], and the 6j graph identity
at the bottom of page 429.

Inverting the orientation of an internal line with spin j gives a (−1)2j phase. Inverting the orientation
of an external line gives a parity map ǫ = iσ2. Depending on whether we are acting on a ket or a bra we get

D(j)
mn(iσ2) = ǫ(j)mn = = (−1)j+mδm,−n

ǫ−1(j)mn
= ǫ(j)nm = (−1)j−mδm,−n

(A.7)

So for instance
j1 j2 j3 j4

i

= (−1)j1−m1

(

j1 j2 j3 j4
−m1 m2 m3 m4

)(i)

. (A.8)

Since
∑

l jl ∈ N at a node, reversing all external lines has no effect:

j1 j2 j3

=

j1 j2 j3

,

j1 j2 j3 j4

i

=

j1 j2 j3 j4

i

. (A.9)
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Changing the orientation of the virtual line gives a phase in agreement with the rule for internal lines:

j1 j2 j3 j

i

=
∑

mi

(

j1 j2 i
m1 m2 mi

)

(−1)i−mi

(

i j3 j
−mi m3 m

)

=
∑

mi

(

j1 j2 j12
m1 m2 −mi

)

(−1)i+mi

(

i j3 j
mi m3 m

)

=
∑

mi

(−1)2(i−mi)

(

j1 j2 i
m1 m2 −mi

)

(−1)i+mi

(

i j3 j
mi m3 m

)

= (−1)2i

j1 j2 j3 j

i

.

A.2 Boxes and Integrations

We refer the reader to [10] for a more detailed description of graphical calculus for SL(2,C). Here we just
need two elements to complement the SU(2) calculus. The SL(2,C) integration boxes, and the booster
functions. We represent every half-edge of a foam with a box, every face with a strand and the Y map with
a blue line orthogonal to the strands. If e.g. four faces touch an half edge the corresponding box will have
four strands. The Y map projects the ‘magnetic spins’ to their minimal value, which we always denote with
a j in this paper. ‘Magnetic spins’ allowed to vary freely above their minimal value are always labeled with
a l. Hence for a 4-stranded half-edge,

+ −

g
=

∫

SL(2,C)

dg

4
⊗

a=1

D
(γja,ja)
jamalana

(g). (A.10)

The arrow under the box is needed to keep track of whether the group element to be integrated over is g or
g−1. For instance, following the same convention as before for outgoing and ingoing lines, we have

j1j1

j2j2

l1

l2

g h =

∫

dh dg
∑

l1,r1,l2,r2

Dγj1,j1
j1m1l1r1

(g)Dγj1,j1
l1r1j1n1

(h−1)Dγj2,j2
j2m2l2r2

(g−1)Dγj2,j2
l2r2j2n2

(h) .

(A.11)
Following [18], the SL(2,C) integrals can be split in two SU(2) Wigner’s njm symbols summed over a booster
function, for instance

−
− −

{ja}{ja} {la}{la}
i k= di

+++

g dk
∑

i,k . (A.12)

The graphical notation for the booster function is the one introduced in the main text. With this choice
the signs of the nodes are alternating. We use this property also in the main text, to avoid keeping track of
the signs on all diagrams: we assign + or - to the boundary states, then the signs of the internal nodes are
implicitly assigned according to this alternate rule.
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The booster functions do not depend on the strand orientations. To see this, notice that in a box with
n lines we can have two possible configurations:

j

l

= Dγj,j
lnjm(g−1)

j

l

= Dγj,j
jmln(g), (A.13)

with g ∈ SL(2,C). On the first case the decomposition reads [18]

Dγj,j
lnjm(g−1) = D

γj,j

jmln(g) = (−1)j−l+m−nDγj,j
j−ml−n(g)

= (−1)j−l+m−nDj
−mp(u)d

γj,j
jlp (r)Dl

p−n(v),
(A.14)

while in the second case

Dγj,j
jmln(g) = Dj

mp(u)d
γj,j
jlp (r)Dl

pn(v). (A.15)

In both cases we can split the SL(2,C) group element without any phase depending on magnetic index p,
thus the booster functions do not get any arrow.

B Booster functions: numerical results

In this Appendix we collect numerical results for the booster functions (16). For n = 3 there is a fast
and exact formula in terms of finite sums, see [18]. Using this we can go up to spins of order a hundred
within seconds. For larger n we can do much less. A formula based on the finite sums for presented in [18],
and in spite of promising properties, it presents numerical instabilities due to subtractions of ratios of large
numbers. For this paper we then used the basic definition (16) with the boost matrix elements expressed in
terms of hypergeometric functions. This gives reliable evaluations with Mathematica, although slow, up to
spins of order 30 where numerical instabilities appear. Fig. 15 gives an idea of the evaluation times.

Figure 15: Left panel: Time (in seconds) to evaluate a Bγ
4
(Nj,Nj) for minimal and equal spins for all possible

intertwiners, the important contribution is given by numerical integration while, at low spins, 4j symbol calculation
time is negligible using [66] Right panel: Calculation time for Bγ

4
(j, j + N∆l), for all intertwiners and with a

homogeneous rescaling of magnetic spins.

Spins of order 30 are enough to see convincingly the N−3/2 scaling, although it is still a few per cents
away with a fit, see Fig. 16. Experience from the 3-stranded boosters shows in fact that a 1% fit needs spins
of order 60. The same figure also shows that the analytic estimate (20) is off by a numerical factor of order
1. Further studies show also that the decay with unequal intertwiners has the same power law, hence the
Kronecker delta reported in (20) should be more precisely be replaced by a Gaussian.
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Asymptotic formula ● Numerical behaviour

Figure 16: Homogeneous large spin scaling of Bγ
4
, with equal intertwiners i = k = 1 and γ = 6/5. Dots are the

data points, and the continuous line is a numerical fit with power N−3/2. The dashed line is a numerical fit with a
free power, which gives a scaling N−1.4 using the last 5 points. This is compatible with the N−3/2, and suggests that
the asymptotics is reached at spins of order 50 to 100, as it is for the Bγ

3
, see [18]. Finally, the dotted line is the

analytic formula (20), which captures the right scaling but not the numerical factor. Further analysis [18] shows that
also the γ and ji dependences are well captured, but not so well the intertwiner one which is a Gaussian rather than
a Kronecker delta.

Next, we report in Fig. 17 the studies of the inhomogeneous scalings, with a single small spin, and all
other large.

Figure 17: Inhomogeneous large spin scalings of booster functions with a small spin, see (21) in the main text.
The dots are data points, the lines numerical fits. We find a power law N−1 for Bγ

3
(top left), N−5/2 for Bγ

4
with

intertwiners equal and large (top right), N−7/2 for Bγ
5
with both intertwiners equal and large (bottom).

Another important property of the booster functions is the way they decay as we increase the l ‘magnetic
numbers’, starting from their minimal value j. This can be either a power law or an exponential decay.
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Fig. 18 shows non-oscillating and oscillating power laws obtained increasing homogeneously all l’s of Bγ
4 for

different spin configurations.

Figure 18: Non-minimal spin decays, homgeneous. Left panel: Equal spins, equal and non-equal intertwiners.
Numerical fits give a power law N−1 in both cases. Right panel: Configuration with non-equal spins, Bnonequal

4
=

B4(j, j, j + 1, j + 2; j +N, j +N, j + 1 +N, j + 2 +N ; i, k), showing oscillatory behaviour with the same N−1 power
law.

The final Fig. 19 shows that allowing a single l to grow large with respect to its minimal value give an
exponential decay.

Figure 19: Left panel: Decaying at j=10 for a B4 while increasing one l. The difference between the first two points
(N = 0 and N = 1) is one order of magnitude while between the first and the last point nine orders. Right panel:
Decaying at j=10 for a B3 while increasing one l.

C Extended graph analysis

In the main body of the paper, we used two different types of arguments to reduce the number of vertex
graphs to be studied. First, the existence of non-integrable Lorentzian spin networks; second, our criterion
to define the spin foam faces as minimal cycles. In this Appendix we relax the second argument, and show
what it would look like to take into account all possible graphs which are a priori integrable. Accordingly,
we only exclude graphs containing uni-valent and bi-valent nodes, as well as tadpoles. We keep a priori also
non-3-link-connected graphs: as explained in the main text, 3-link connectivity is only a sufficient criterion,
and indeed we will see below examples of integrable non-3-link connected graphs.
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Allowing for faces corresponding to non-minimal cycles, we have 4 possible vertex graphs for DVD, see
Fig. 20, 3 for DED, see Fig. 21, and 13 for DLD, see Fig. 22. We have listed only the topologically distinct
vertex graphs; to list the associated spin foams one has to take into account also label permutations and
alternative but topologically equivalent routings (for these simple graphs, these can be captured by rotating
the graph by π/2 and by flipping it vertically). Many of these diagrams lead to ‘face-rigid’ amplitudes for the
dipole transitions: these can be easily identified as those with a link connecting the top and bottom nodes.
It is also easy to identify those that would lead to factorized amplitudes, by using the criterion explained
in the main text: if all the spins of a single boundary are linked to a unique node of the vertex graph then
decoupling can be immediately seen choosing to remove the group integration at that node. This is the case
for the first graph of (21) and for the first three graphs of (22).

The admissible graph analysis shown in these figures was performed by hand, using rules analogue to
those explained in details in [24]. For more general graphs it is highly recommendable to switch to an
automatic evaluation on Mathematica.

Figure 20: Integrable graphs for a 4-valent vertex with 8 faces. The second is not 3-link-connected, yet it turns out

to be integrable. The last one is the only one to contain a non-trivial symbol, a 6j. When applied to the DVD foam,

all but the first violate the minimal-cycle faces criterion; all non-minimal-cycle faces in this case lead to ‘face-rigid’

amplitudes, meaning one face has two boundary links thus imposing equality of those boundary spins.

Figure 21: Integrable graphs for a 3-valent vertex with 8 faces. When applied to DED the last two give ‘face-rigid’
amplitudes.
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1 2 3 4

5 6 7 8 9

10 11 12 13

Figure 22: Integrable graphs for a 4-valent vertex with 9 faces. Number 1,2 and 8 are not 3-link-connected.
The simplified amplitude is finite, but we do not know whether the complete EPRL amplitude is finite or not.

C.1 Evaluations of the ‘face-rigid’ DVD foams

We report here the explicit evaluation of the three additional vertex graphs of Fig. 20. These calculations,
although not directly relevant to the main goal of the paper, allow us to highlight some properties of the
EPRL model useful for more general evaluations. First, the fact the non-3-link connected graphs can have
integrable Lorentzian amplitudes (in DVD2). Second, the fact that even in the presence of unbounded
‘magnetic l’s’ summations the simplified model can still provide precise leading order approximations of the
EPRL model, if the sums quickly converge (in DVD2 and DVD3). Third, it allows us also to see a diagram
in which a non-trivial 6j symbol appears (in DVD4).
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With reference to Fig. 20, the second vertex graph for DVD gives the following amplitude:

WDV D2(ja, j
′
a; i, t, i

′, t′) = didi′dt
∑

k′,la

dk′(−1)2(k
′+t′)

δj′3,l4
dj′3

δj1,j′1δj2,j′2δj3,j′3

j1 j2 j3 j4

j1 j2 j3 l4

t

t′

j1 j2 j3 j4

l1 l2 l3 l4

i

k′

j′1 j′2 j
′
3 j′4

j′1 l3 l2 l1

i′

k′

(C.16)

We see in the first line above the three ‘face-rigid’ conditions imposing equal spins between the lower and the
upper dipole. The amplitude is not 3-link-connected, thus convergence of the l-summations is not guaranteed.
Of the 4 l summations, 3 are unbounded due to triangular inequalities, and further the l’s enter in 3 or 4 slots
of the (last two) booster functions, whose decay is a slow power-law. Nonetheless, the summations quickly
converge, and the amplitude is finite, see Fig. 23. The quick convergence of the summations indicates also
that the simplified model can give a good scaling estimate, which is also confirmed numerically. Using (19)
we estimate the large spin limit of the EPRLs amplitude to scale as N−11/2, and the numerical fit on the
right panel of Fig. 23 shows that already at spins of order 10 the power approaches this value.

Figure 23: Left panel: Convergence of the sums over l’s in (C.16) with an homogeneous cut off ∆l. Boundary
spins and intertwiner fixed to 1, γ = 6/5. The relative error between the first and the last point is of 35% while
between the seventh and the last one is 0.03% Right panel: Scaling of WDVD2 for different values of the cut off
with all boundary’s intertwiners fixed to 1. The roughly 10% differences are squashed by the scale of the y-axis. The
continuous line is a numerical fit, which gives N−5.01 for all of them, a value compatible with the EPRLs analytic
estimate at this low spins at which the boosters have not yet reached asymptotic scaling.

We have a similar story for DVD3, whose unbounded l summations also quickly converge, making the
EPRLs scaling coincide with the complete evaluations. The amplitude reads

WDVD3(ja, j
′
a; i, t, i

′, t′) = didi′dt
∑

la

δj1,j′1δj2,j′2

j1 j2 j3 j4

j1 j2 l3 l4

t

t′

j1 j2 j3 j4

l1 l2 l3 l4

i

t′

j′1 j′2 j
′
3 j′4

j′1 j′2 l2 l1

i′

t′

(C.17)

with only two l summations unbounded. The simplified scaling is N−9/2, and the numerical studies are
reported in Fig. 24.
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Figure 24: Left panel: Convergence of the sums over l’s in (C.17) with an homogeneous cut off ∆l. Boundary spins
and intertwiner fixed to 1, γ = 6/5. The relative error between the first and the last point is of 50% while between the
seventh and the last one is 0.4%. Right panel: Scaling of (C.17) for different values of the cut off with all boundary’s
intertwiners fixed to 1. The convergence is now slower and we can tell the different cut-offs apart. The numerical fits
in the continuous lines give N−4.1, again compatible with the EPRLs estimates.

These results show that the EPRLs captures well the scaling of the complete model, but with a caveat:
it could happen that the quick convergence of the l summations, exposed in the numerics above at small
spins (left panels of Figs. 23 and 24, is not preserved at high spins. This could result in larger contributions
and slower decays. The fact that the numerical fits (in the right panels of the same figures) are unchanged
shows that this should be true up to j of order 10, but we do not have stronger evidence beyond that.

Finally, DVD4 carries a {6j} symbol due to the crossing of two of the faces:

WDV D4(ja, j
′
a; i, t, i

′, t′) = didi′dt
∑

k,la

dk(−1)2t
′+3l4+j′1δj1,j′1δj2,j′2δj3,j′3

j1 j2 j3 j4

l1 l2 j3 l4

i

k

j1 j2 j3 j4

j1 j2 l3 l4

t

t′

j′1 j′2 j
′
3 j′4

j′1 l3 l2 l1

i′

k

{

k l3 j′4
t′ l3 l4

} (C.18)

For the simplified model with boundary intertwiners fixed, the involved {6j} symbol has only four large
entries, and scales like N−1, see Fig. 25. The estimate for the simplified amplitude gives

WDVD4
s (Nj,Nj; i, t, i′, t′) ∼ (N−3/2)3N−1 = N−11/2. (C.19)

The properties of the DVD foams studied in this Appendix are summarized in the following Table 2:

Foam Factorization LOs scaling EPRLs=EPRL Face-rigidity

DVD1 Y N−3 Y
DVD2 N N−10/2 N 3-face rigid

DVD3 N N−9/2 N 2-face rigid
DVD4 N N−11/2 N 3-face rigid

Table 2: Summary of scaling and some properties of the DVD foams.
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Figure 25: Scaling of a {6j} symbol with 4 large entries. The dots are data points, the continuous line a N−1 fit.
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