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ABSTRACT
We propose a multiscale edge-detection algorithm to search for the Gott–Kaiser–Stebbins
imprints of a cosmic string (CS) network on the cosmic microwave background (CMB)
anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the
string detectability. Various statistical tools are then applied to quantify the deviation of CMB
maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin.
These statistical measures include the one-point probability density function, the weighted two-
point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and
of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred
of simulated Nambu–Goto CMB flat sky maps, covering approximately 10 per cent of the sky,
and for different string tensions Gμ. On noiseless sky maps with an angular resolution of
0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ � 4.3 × 10−10.
At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the
detection threshold would be to Gμ � 1.2 × 10−7.

Key words: methods: data analysis – methods: statistical – techniques: image processing –
cosmic background radiation – early Universe.

1 IN T RO D U C T I O N

The inflationary � cold dark matter (�CDM) model with nearly
Gaussian and scale-invariant primordial density perturbations has
been confirmed with high precision as a robust cosmological
model thanks in particular to the observations of the cosmic mi-
crowave background (CMB) radiation (Hinshaw et al. 2013; Planck
Collaboration XIII 2016). The initial conditions for the large-scale
structure of the Universe, determined by primordial cosmologi-
cal perturbations are seeded by quantum fluctuations of a scalar
field during the so-called inflationary epoch (Guth 1981; Liddle &
Lyth 1993; Steinhardt 1995; Liddle 1999). Despite the outstanding
agreement between the standard model and the cosmic data, there
is some limited room for alternative scenarios as well. One such
scenario is to consider topological defects as minor contributors to
the primordial perturbations. Many quantum filed theories typically
predict these defects as a result of phase transition caused by sponta-
neous breaking of their symmetries due to the expansion and cooling
of the Universe (Kibble 1976, 1980; Hindmarsh & Kibble 1995;

� E-mail: vafaei_ar@yahoo.com (AVS); m.s.movahed@ipm.ir (SMSM);
m_farhang@sbu.ac.ir (MF)

Vilenkin & Shellard 2000; Polchinski 2005; Copeland & Kib-
ble 2010).

The line-like version of topological defects are called cosmic
strings (CSs) and are commonly present in theories of hybrid infla-
tion, brane-world models, and superstring theory (Kibble 1976;
Zeldovich 1980; Vilenkin 1981a; Vachaspati & Vilenkin 1984;
Vilenkin 1985; Shellard 1987; Copeland et al. 1994; Hindmarsh
& Kibble 1995; Sakellariadou 1997; Vilenkin & Shellard 2000;
Majumdar & Christine-Davis 2002; Sarangi & Tye 2002; Pogosian
et al. 2003; Copeland, Myers & Polchinski 2004; Dvali &
Vilenkin 2004; Kibble 2004; Sakellariadou 2007; Bevis et al. 2008;
Henry Tye 2008; Depies 2009; Bevis et al. 2010). They represent
lines of trapped energy density parametrized by Gμ. G is Newton’s
constant and μ represents the mass per unit length of the string,
also equal to its tension. The string tension is closely related to the
energy of the symmetry breaking scale, � , as

Gμ

c2
= O

(
� 2

M2
Planck

)
, (1)

here MPlanck ≡ √
�c/G represents the Planck’s mass and c is the

speed of light. In this paper we choose to work in natural units
with � = c = 1. Symmetry breaking at energies around the GUT
scale would thus correspond to production of CSs with Gμ ∼ 10−6
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(Kibble 1976; Zeldovich 1980; Vilenkin 1981a; Vilenkin &
Shellard 2000; Firouzjahi & Tye 2005). Therefore, CS studies pro-
vide a unique path to the physics of extremely high energies far
beyond the access of our Earth-bound laboratories.

The evolution of a network of CSs, containing loops, long strings,
and their junctions, depends not only on the string tension, but also
on the equation of motion of the strings, the initial conditions and
the string inter-commutation probability, that represents the prob-
ability of their collisions (Vachaspati & Vilenkin 1984; Ringeval,
Sakellariadou & Bouchet 2007; Blanco-Pillado, Olum & Shlaer
2011).

The search for CSs takes different theoretical, statistical, and ob-
servational routes, thanks to their diverse imprints on cosmological
data sets. These searches have led to constraints on Gμ, which is the
main free parameter characterizing CSs. For example, recent results
from the gravitational wave (GW) emission of Nambu–Goto CS
loops constrain the CS tension to be 10−14 ≤ Gμ ≤ 1.5 × 10−10 de-
pending on the string microstructure (Blanco-Pillado & Olum 2017;
Blanco-Pillado, Olum & Siemens 2017; Ringeval & Suyama 2017).

The fact that very strong bounds have recently been obtained
from GW relies entirely on the fact that Nambu–Goto networks
produce a large number of CS loops, as shown in the numerical
simulations (Albrecht & Turok 1989; Bennett & Bouchet 1989;
Allen & Shellard 1990; Bennett & Bouchet 1990). Moreover, GW
emission by loops is quite sensitive to the string microstructure
(Vilenkin 1981b; Ringeval & Suyama 2017). On the contrary, CMB
signatures are essentially generated by the long strings such that both
CMB and GW constraints are complementary for probing all objects
belonging to a string network. For instance, GW bounds do not
apply to global strings (e.g. see Planck Collaboration XXV 2014),
and more importantly, the possibility that Abelian Higgs string
networks do not produce loop at all remains (Vincent et al. 1998;
Moore et al. 2002; Hindmarsh et al. 2009a, 2017). For these, there is
no GW constraint and only their CMB signature would be relevant.
It is therefore more proper to compare the constraints based on long
string models with each other, than to those from string loops.

Pulsar timing and photometry, based on gravitational microlens-
ing, constrain CS’s tension to 10−15 < Gμ < 10−8 (Blinnikov &
Khlopov 1982; Gasilov & Khlopov 1985; Sazhin & Khlopov 1989;
Oknyanskij 2002; Damour & Vilenkin 2005; Jenet et al. 2006;
Battye & Moss 2010; Pshirkov & Tuntsov 2010; Tuntsov &
Pshirkov 2010; Kuroyanagi et al. 2013). The upper bound of
Gμ < 3 × 10−7 has also been reported by the COSMOS survey
(Christiansen et al. 2011).

The 21-cm signature of CS wakes has also been theoretically ex-
plored in Brandenberger et al. (2010), Hernandez et al. (2011),
Hernandez & Brandenberger (2012), Pagano & Brandenberger
(2012), Hernandez (2014) and forecasts have been made on how
strongly these near-future surveys would measure Gμ. On the other
hand, Shlaer, Vilenkin & Loeb (2012) have studied signature of CSs
on high-redshift large-scale structure surveys and on the ionization
history of the Universe.

The CS network, if it exists, should have also left imprints,
through different mechanisms, on CMB anisotropies. These in-
clude contribution to the ordinary and integrated Sachs–Wolfe
(ISW) effect (Kaiser & Stebbins 1984; Gott 1985; Ringeval &
Bouchet 2012), lensing [in particular, in the small-scale B-mode
polarization (Benabed & Bernardeau 2000), extra polarization pro-
duced due the CS wakes (Danos, Brandenberger & Holder 2010)],
direct B-mode polarization due to a scale-invariant spectrum of
GWs (Brandenberger 2011). Power spectrums of CMB tempera-
ture and polarization are proper measures to search imprint of CS

(Bevis et al. 2007b). Probable dipole modulation by CSs network
on CMB map is another topic (Ringeval et al. 2016).

The ISW contribution from the CS network, also known as the
Gott–Kaiser–Stebbins effect (Kaiser & Stebbins 1984; Gott 1985;
Bouchet, Bennett & Stebbins 1988; Stebbins 1988; Allen et al. 1997;
Pen, Seljak & Turok 1997), is primarily caused by the transverse
motion of the CSs with respect to the observer. The resulting energy
shift of CMB photons produces line-like discontinuities on CMB
anisotropies at the string location such that, in the light-cone gauge,
one has (Kaiser & Stebbins 1984; Gott 1985; Hindmarsh 1994;
Stebbins & Veeraraghavan 1995)

δT

T
∼ 8πGμvs, (2)

where vs is the transverse velocity of the string.
Simulating the impact of the CS network on CMB anisotropies

requires various simplifying assumptions. The models used in the
literature generally fall in one of the following:

(i) Nambu–Goto simulations (Bennett & Bouchet 1988, 1989;
Bouchet et al. 1988; Fraisse et al. 2008; Landriau & Shellard
2003, 2004; Ringeval & Bouchet 2012), (ii) using stochastic ensem-
ble of unconnected segments (Albrecht, Battye & Robinson 1997;
Allen et al. 1997; Contaldi, Hindmarsh & Magueijo 1999; Pogosian
& Vachaspati 1999; Pogosian, Wasserman & Wyman 2006; Av-
goustidis et al. 2012), (iii) Abelian Higgs model on a lattice,
with the evolution of the network determined by the correspond-
ing fields (Vincent et al. 1998; Kasuya & Kawasaki 2000; Moore
et al. 2002; Bevis et al. 2007a; Hindmarsh et al. 2017), and (iv)
the so-called statistical approach, explained below (Perivolaropou-
los 1993a,b; Moessner, Perivolaropoulos & Brandenberger 1994;
Jeong & Smoot 2005; Amsel, Berger & Brandenberger 2008; Stew-
art & Brandenberger 2009; Danos & Brandenberger 2010; Movahed
& Khosravi 2011).

The (i)–(iii) approaches solve the photon propagation at linear
order within a CS simulation network to get CMB fluctuations. Pre-
vious results from these models showed that at intermediate and
small scales, topological defects and inflationary models lead to
completely different results, while at large enough scales both sce-
narios result in similar features in the CMB power spectrum. The
fourth method uses the number of random kicks on photon trajec-
tories by CSs network between the time of recombination and the
present era. This approach requires dealing with analytical and nu-
merical tools and is explained in detail in Stewart & Brandenberger
(2009), Danos & Brandenberger (2010), and Movahed & Khosravi
(2011).

To measure the contribution of CSs to the CMB power spec-
trum, the standard parameter estimation techniques are extended to
include a new parameter, usually denoted by f10, quantifying the
fraction of the power at � = 10 due to strings. The incoherency of
the perturbations produced by the strings as active sources leads
to a significantly broad peak compared to the relatively sharp peak
from the standard acoustic oscillations. The measurements of the
CMB power spectrum leave limited space for contribution from
CS-induced perturbations (Pen et al. 1997; Bevis et al. 2007a, 2010;
Lazanu & Shellard 2015). The Planck data (Planck Collaboration
XXV 2014) constrain this contribution to be f10 < 0.024 (corre-
sponding to Gμ < 3.0 × 10−7) for Abelian Higgs strings and
f10 < 0.010 (corresponding to Gμ < 1.3 × 10−7) for unconnected
segments. Adding CMB polarization improves the upper bound
to Gμ < 1.1 × 10−7 (Charnock et al. 2016). Latest results for
Nambu–Goto strings give an upper bound of Gμ < 1.5 × 10−7

from the Planck data with polarization (Lazanu & Shellard 2015).
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1012 A. Vafaei Sadr et al.

One should note though that Planck 15 polarization data is prelimi-
nary at large multipoles due to residual systematics at the O(1μK2)
level. Lizarraga et al. (2016) got a revised constraint on the CS ten-
sion for the Abelian Higgs model of Gμ = 2.0 × 10−7 at 95 per cent
level of confidence.

An alternative approach to constrain Gμ is based on the non-
Gaussianity of CS-induced fluctuations (Ringeval 2010; Ducout
et al. 2013). For example, bispectrum measurement of the observed
CMB anisotropies, wavelet-based data analysis methods, and mea-
surements of the Minkowski functionals of the CMB data have
set the upper bounds of Gμ < 8.8 × 10−7, Gμ < 7 × 10−7

and Gμ < 7.8 × 10−7, respectively (Hindmarsh, Ringeval &
Suyama 2009b, 2010; Planck Collaboration XXV 2014; Regan &
Hindmarsh 2015).

On the other hand, the discontinuities on the CMB anisotropy
maps produced by the CS network most clearly manifest them-
selves in the real-space approaches. These methods are expected
to be less time consuming compared to Fourier-based approaches.
Among the real-space methods with strings modelled as random
kicks (Movahed & Khosravi 2011) used the crossing statistics of
simulated ideal CMB fluctuations and claimed detectability of CSs
with Gμ � 4.0 × 10−9. Using the unweighted two-point correlation
function (TPCF) of CMB peaks instead increases the detectability
threshold to Gμ � 1.2 × 10−8 for noiseless, 1-arcmin-resolution
maps (Movahed, Javanmardi & Sheth 2012).

Another potentially powerful method in real-space analysis is
to exploit our knowledge of the anisotropy patterns from CSs, i.e.
the line-like edges. Stewart & Brandenberger (2009) applied edge-
detection algorithms on ideal random-kick maps to get a detec-
tion threshold of Gμ � 5.5 × 10−8 for a South Pole Telescope
(SPT)-like scenario. Using wavelet and curvelet methods, Hergt
et al. (2016) found a sensitivity of Gμ � 1.4 × 10−7 for the SPT
third generation. Recently, neural network-based approaches have
been applied by Ciuca & Hernandez (2017) on noiseless arcminute-
resolution random-kick maps to reach a detection threshold of Gμ

� 2.3 × 10−9. According to a convolutional neural network, the
lower detectable tension is Gμ � 5 × 10−9 (Ciuca, Hernandez &
Wolman 2017).

The different values reported above are, in part, the results of the
crude assumptions made to model the strings. For this reason, in the
following, we will be using small angle CMB maps directly com-
puted from Nambu–Goto simulations (Ringeval et al. 2007; Fraisse
et al. 2008; Ringeval & Bouchet 2012). In particular, these maps are
the flat version of the ones recently used by McEwen et al. (2017)
which reported a Bayesian detection threshold of Gμ ∼ 5 × 10−7

for a Planck-like CMB experiment. This allows a fair comparison
with our results for the Planck-like CMB maps (see Section 4).
For forthcoming arcminute-resolution experiments Hammond,
Wiaux & Vandergheynst (2009) used wavelet-domain Bayesian de-
noising on two of the maps we have used to obtain the detection
lower bound of Gμ ≥ 1.0 × 10−7.

In this work, we develop a new pipeline to search for the CS
signals. Taking the CMB map as the input, the pipeline follows
several image processing steps to enhance the detectability of the
CS trace. More specifically, the CMB map is decomposed into
various curvelet components, with different scales, so that only
components with the highest contribution from CSs are kept for
further analysis. These components are then passed through certain
filters to produce gradient maps thereby boosting the CS-induced
discontinuities. At the last step of the pipeline, various statistical
measures are applied on the gradient maps to quantify possible
deviations from inflation-induced anisotropies.

Our proposed pipeline has certain degrees of freedom which set
its adjustable parameters such as the curvelet component to be used,
the filter type in the edge-detection step, and the kind of the statistical
measure to be applied on the gradient maps. For each experimental
setup, the pipeline automatically searches for the optimum sequence
of parameters yielding the tightest constraint on the CS contribution.

The outline of this paper is as follows. In Section 2, we intro-
duce the different components of our CMB simulations. Section 3
describes in details our proposed pipeline for CS detection, and in
Section 4, we present the performance of the pipeline by applying
it on simulated CMB data with various noise levels. We conclude
in Section 5.

2 SI MULATI ON O F C MB MAPS

In this section, we describe the details of our simulations for making
CMB sky maps, used in Section 4 to investigate the detectability
of the string contribution to the CMB anisotropies. The simulations
consist of three components: (1) the Gaussian inflation-induced
contribution denoted by G, as well as the secondary lensing signal
(Section 2.1), (2) the CS contribution, Gμ × S, where S represents
the normalized simulated template for the string signal and Gμ sets
its amplitude (Section 2.2), and (3) the experimental noise indicated
by N (Section 2.3).

The full simulated map T(x, y), with x and y representing pixel
coordinates, would then be

T (x, y) = B [G(x, y) + Gμ × S(x, y)] + N (x, y), (3)

where B characterizes the beam function (Section 2.4). In the fig-
ures throughout this paper, we use G for Gaussian simulated map,
S for the CS-induced anisotropy map, and N for the noise map.
For example, GSBN refers to simulations with all components in-
cluded, with B representing the beam effect. We work in the flat
sky limit (Heavens & Sheth 1999) with 100 square maps of side
� = 7.2◦, with 1024 × 1024 pixels. This corresponds to a resolution
of R = 0.42 arcmin before convolution with an experimental beam.
We also assume statistical isotropy in all our simulations.

2.1 Gaussian CMB simulation

The Gaussian component of CMB temperature anisotropies is
assumed to be seeded by adiabatic scale-invariant slow-roll-
inflationary fluctuations. The only secondary contribution consid-
ered here is due to lensing. To this end, we use the CAMB software1

(Lewis, Challinor & Lasenby 2000) to calculate the temperature
power spectrum for the parameter set of the �CDM model consis-
tent with Planck 15, Supernova type Ia and the Sloan Digital Sky
Survey data sets (Planck Collaboration XI 2016). The computed
C� will be used to generate 2D Gaussian random fields following
Bond & Efstathiou (1987). The maps G(x, y) are generated by
Fourier-transforming Gaussian random realizations G(k) of CMB
temperature power spectrum in the flat sky limit PTT(k):

G(k) =
√

PTT(k)

2
(R1 + iR2), (4)

where R1 and R2 are two mean-less unit variance normal ran-
dom fields, and k = |k|. For the flat power spectrum PTT(k) one
has 〈δT (k)δT

∗(k′)〉 = (2π )2PTT(k)δd(k − k′), where δd denotes the
Dirac delta function. PTT(k) is related to the full sky power

1 http://camb.info
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A Multiscale pipeline for cosmic string 1013

Figure 1. The CMB power spectrum: the black solid line shows the fiducial
power spectrum for the �CDM model compatible with Planck 15 (Planck
Collaboration XI 2016) (computed by CAMB). The red filled circles represent
the measured power spectrum of simulated Gaussian maps seeded only by
inflationary fluctuations, with pixel resolution of R = 0.42 arcmin and map
size of � = 7.2◦. The red long-dashed line shows the contribution to the
power spectrum from CS network characterized by Gμ = 2.0 × 10−7. The
dashed–dot–dot curve corresponds to the measured power spectrum of CMB
maps including both inflationary and CS-induced anisotropies. The dotted
curve corresponds to the measured power spectrum of maps smeared by
the beam (Section 2.4). One sees that, in the absence of noise and other
small-scale contaminations, the CS component is most easily detected at �

� 4000.

spectrum through �(� + 1)CTT
� ∼ k2PTT(k) (White, Carlstrom &

Dragovan 1999; Fraisse et al. 2008; Hindmarsh, Ringeval &
Suyama 2009b).

Fig. 1 compares the fiducial power spectrum as produced by
CAMB (the solid black line) with the measured power spectrum from
the simulated Gaussian maps (the filled circle symbols). Fig. 2
illustrates various contributions to the simulations and their combi-
nations.

2.2 Cosmic string simulation

For the CS-induced CMB anisotropies, we use 100 high-resolution
flat-sky CMB maps identical to the ones discussed by Fraisse et al.
(2008). They are obtained from numerical simulations of Nambu–
Goto string networks using the Bennett–Bouchet–Ringeval code
(Bennett & Bouchet 1990; Ringeval et al. 2007) together with
a direct computation of the ISW effect generated by each string
along the line of sight. Unlike other numerical methods which
are restricted to a short redshift span, typically 	z ≈ 102,
and are thus only reliable on large angular scales, these simulations
are produced by stacking maps from various redshifts (outlined in
Bouchet et al. 1988; Ringeval & Bouchet 2012), a valid approach for
small-scale simulations. Among the main simplifying assumptions
used in these simulations is the small-angle approximation used
in the computation of the ISW effect from CSs (Stebbins 1988;
Hindmarsh 1994; Stebbins & Veeraraghavan 1995).

The CS-induced anisotropies with the desired amplitude and
the inflationary Gaussian anisotropies are then combined to form
our CMB sky, without yet the instrumental effects being taken

Figure 2. Different components of our simulated maps. The map size is
7.2◦ × 7.2◦ at resolution R = 0.42 arcmin. The upper left plot is a Gaussian
CMB map, named by G in the text, simulated based on Planck 15 �CDM
parameters. The upper right plot shows the CS-induced anisotropies, i.e. the
S component, with Gμ = 2.0 × 10−7. The lower left panel is the combination
of the two, i.e. the GS map, smeared by the beam (Section 2.4) in the lower
right panel, making the GSB map.

into account. The CS tensions used in this work are in the range
2.6 × 10−11 ≤ Gμ ≤ 5.0 × 10−7. One can therefore ignore the effect
of string contribution on the CMB power spectrum in the scales of
interest in our analysis, without losing much precision. This can
be seen from Fig. 1. The long-dashed line represents the power
spectrum Cs

� of CS contribution to the fluctuations, expected to be-
have as �(� + 1)Cs

� ∼ �−ε with ε = 0.90 ± 0.05 for � � 1 (Fraisse
et al. 2008). A map of CMB anisotropies generated by a CS net-
work with Gμ = 2.0 × 10−7 is illustrated in the upper right panel
of Fig. 2, compared to the GS-realization (lower left panel). Careful
visual investigation of the plots reveals noticeable sharp edges from
string anisotropies.

2.3 Instrumental noise

Our model of the instrumental noise is a white Gaussian random
field characterized by the signal-to-noise ratio (SNR), taken to be
10, 15, and 20. These noise levels are close to the instrumental noise
of the Atacama Cosmology Telescope (ACT), CMB-S4 phase I, and
CMB-S4 phase II, respectively. The goal here is to see the overall
impact of noise contamination on the CS detectability. It is obvious
that making realistics forecast of the capability of any experiment in
the search for the CSs would require more realistic noise modelling.

2.4 Beam

Due to the finite resolution of the telescopes, observed CMB tem-
perature anisotropies are the result of the convolution of underlying
temperature distribution on the sky with the instrumental beam. In
the following, we consider two types of experiment. The first is a
Planck-like experiment in which the beam is modelled as a Gaussian
with FWHM = 5 arcmin. This is the beam used for the Planck-like
observational setup in this work. Based on the specification of the
Millimeter Biometric Array Camera generation of CMB detectors

MNRAS 475, 1010–1022 (2018)
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1014 A. Vafaei Sadr et al.

used in ACT, a second type of beam is used for any other experi-
mental strategy (i.e. the ACT-like, the CMB-S4 phase I- and II-like
and the ideal, noise-free experiments). We select the effective band
centre 274 GHz with FWHM = 0.9 arcmin.

Following the notation of Fraisse et al. (2008), the Fourier com-
ponents of the observed CMB map, V(k), will be described by

V(k) = ∂Bν(T )

∂T
TCMB

∫
δT (r)A(r)e−ik·r d2r. (5)

Here, k is the wavenumber and r is the coordinate of a point on
the telescope. Also δT(r), Bν(T), and A(r) represent respectively the
CMB temperature anisotropy on the sky, the Planck function, and
the primary beam function, here taken to have an Airy pattern. In
the simulations, we use the Fourier transform of the beam per unit
area, Ã(u), related to the beam itself through

A(r) = 1

(2π )2

∫
Ã(u)e2π i(u·r) d2u. (6)

with

Ã(u) = A
⎡
⎣arccos

u

uc
− u

uc

√
1 −

(
u

uc

)2
⎤
⎦ , (7)

and A = 2/(π4d2), u ≡ k
2π

. The diameter of the telescope, d, is
taken to be 6 m. If the characteristic maximum opening of the
telescope is θ (set to be 70◦), then uc = θ/λ with λ being the
wavelength of the observation. Equation (7) defines Ã(u) only for u
≤ uc and Ã(u) is zero elsewhere. The normalization guarantees that
A(0) = 1. In the small-scale regime, the multipole representation of
equation (7) is

Ã(�) = A
⎡
⎣arccos

�

�c
− �

�c

√
1 −

(
�

�c

)2
⎤
⎦ , (8)

where �c = 2πd/(λθ ). The suppressing effect of the beam on large
multipoles is evident from Fig. 1. The dotted line represents the
beamed power spectrum of CMB fluctuations whereas the dashed–
dot–dot line corresponds to the underlying temperature distribution
on the sky. This smearing effect is also recognizable on the map
itself for small scales (see Fig. 2).

3 C OSMIC STRING D ETECTION PIPELINE

Our goal in this work is to evaluate the performance of various
sequences of image-processing and statistical tools in the detec-
tion of the trace of a possible CS network on CMB temperature
anisotropies. We are interested in detecting line-like discontinu-
ities in temperature maps produced by the strings and curvelets are
an adequate tool for this purpose. Indeed, the basis functions of
curvelets are localized in both Fourier and position spaces. These
elongated basis functions enable curvelets to track well the CS
footprints on CMB maps (Fadili & Starck 2009). The maps are then
passed through a chain of filters to magnify their edge discontinu-
ities. Statistical measures and a P-value analysis are applied to these
curvelet-decomposed and gradient maps to assess the capability of
the methods in detecting CSs contribution for the various beam and
noise levels associated with each experiment. In brief, our proposed
pipeline comprises two major steps:

1 – Processing CMB maps: here we apply several image-
processors with the aim to isolate or/and enhance the CSs imprint
on CMB maps (see Section 3.1). The two pillars of this step are a
multiscaling analysis through curvelet-decomposition of the input

maps (Section 3.1.1) and the generation of filtered maps through
extended Canny algorithm (ECA) (Section 3.1.2).

2 – Analysis of processed CMB maps: here we use various sta-
tistical measures to quantify the detectability of CSs signature on
the filtered maps from the first step (see Section 3.2).

The efficiency of the method can be summarized by the minimum
detectable value of Gμ for each sequence of steps.

3.1 Processing CMB maps

In this section, we develop the image-processing part of our CS
detection pipeline with the aim to increase the chances of the CS
signal detectability.

3.1.1 Multiscaling analysis: curvelet decomposition of CMB maps

The expansion of a field or function in a complete set of basis
functions has a long history in various fields of study, with the
most familiar one known as the Fourier transformation. The basis
functions for Fourier transformation are maximally localized in
wavenumber (frequency) space. Therefore, the individual Fourier
components have no information about local events in position
(time) space. To resolve this limitation, generalizations of Fourier
transformations, such as wavelet and ridgelet transforms, have been
developed.

Wavelets are developed with localized basis functions in both
position (time) and wavenumber (frequency) spaces. They provide
an excellent mathematical architecture for sparse representation of
data with transient or local features, where too many Fourier modes
would otherwise be required. Wavelets accomplish this by using
multiscale, local basis functions which are isotropically extended.
In order to assess anisotropic features embedded in the underlying
field, additional modification are required. More specifically, the
orientation selectivity of wavelet is weak and, in two or three di-
mensions, cannot efficiently represent curve-like singularities. For
example, the basic 2D wavelet is not able to identify elongated
features such as signature of the CSs as discontinuities along the
edges.

Alternative transformations, which are capable of overcoming
this limitation, are ridgelets and curvelets, first introduced and de-
veloped by Candes & Donoho (2000), Donoho & Duncan (2000),
and Candes & Donoho (2001). They are relatively new in the wavelet
family and are already widely used in various fields from medicine
to physics [see Fadili & Starck (2009) for a comprehensive in-
troduction]. Ridgelet transformations take into account scales and
positions as well as orientations, and are ideal for straight line de-
tection.

Curvelets, on the other hand, are commonly used when some
sort of smooth curve detection is required. Intuitively, the curvelet
transform is a multiscale pyramid with enough directions and posi-
tions at each given length scale, and needle-shaped elements at fine
scales. Therefore, curvelets decompose two- and three-dimensional
images and data sets into contributions from different scales, lo-
cations, and directions. They are different from other directional
wavelets, such as countourlets and directionlets, in that the degree
of directional localization is scale-dependent. This characteristic
makes curvelets ideal for spare representation of images which
are smooth except for curve-like discontinuities or edges. The first
generation of curvelets (curveletG1), based on local ridgelet trans-
forms, could extract edges in suppressed backgrounds (Donoho &
Duncan 2000; Candes & Donoho 2001), with significant improve-
ment in the next version (curveletG2) where a mother (prototype)
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curvelet function is used for computing the expansion coefficients
(Candes & Guo 2002; Candes & Donoho 2004). Using unequally
Spaced Fast Fourier Transform (FFT), Candes et al. (2006) devel-
oped two fast discrete curvelet transforms which are simpler, faster,
and more efficient compared to other approaches, and have both
discrete and continuous versions

The general curvelet transformation of a square integrable two-
dimensional map T ∈ L2(R2) is given by

T (x, y) =
∑
j,k,l

〈T , φjkl〉φjkl, (9)

where the φjkl’s are the curvelet basis functions. The curvelet coef-
ficients, represented by 〈T, φjkl〉, are given by the L2-scalar product
of the map T and the φjkl’s.

The three indices j, k, and l represent scale, orientation, and loca-
tion (in position space), respectively. In this work we use CURVELAB2,
the 2D discrete version of the curvelet transform. We wrapped the
original package in PYTHON, called PYCURVELET, which is available
upon request.

CURVELAB applies the FFT on the data. The resulting 2D Fourier
map is then divided into wedges through slicing by concentric cir-
cles and angular divisions. This procedure decomposes the map into
multiple scales and different orientations. Each wedge, produced
this way, corresponds to a certain curvelet component, associated
with a particular scale and orientation. Applying inverse FFT on a
given wedge leads to the corresponding curvelet coefficient for the
associated scale and orientation at a given point.

Among the adjustable parameters used in the decomposition are
the number of scales nscales and orientations nangles. Higher values of
these parameters correspond to more components and higher res-
olutions. In the trade-off between the computational cost and the
desired accuracy of the results, we found the appropriate parameters
for our work to be nscales = 7 and nangles = 10. Fig. 3 illustrates the
seven curvelet components of a simulated CMB sky with contribu-
tion from the CS network with Gμ = 1.0 × 10−7, compared to the
full map itself (the leftmost bar). The trace of the CS network is
visually distinguishable for components with high mode number.

3.1.2 Filtering the maps: extended Canny algorithm

The imprint of the CS network on CMB anisotropies can be thought
of as (the superposition of) line-like structures, conveniently charac-
terized by sharp discontinuities known as edges. Among the widely
used algorithms developed to identify edges in 2D images is the
Canny edge detector (Canny 1986) which is a multistage method.
The image is initially smoothed by a Gaussian kernel to reduce
the intrinsic noisiness due to the stochastic nature of the field. The
edges are defined as points with large gradients. Therefore, the
central piece of the algorithm is to find the image gradient.

The edge-identification step of our CS-detection pipeline is based
on the Canny algorithm, but is extended in certain ways, and is
therefore called the ECA. The extensions include using kernels
other than the Gaussian to smooth the maps, including Boxcar and
Hanning (Blackman & Tukey 1958). We also apply various filters,
including Derivative (der), Laplacian (lap), Sobel (sob) (Jähne,
Haussecker & Geissler 1999), and Schaar (sch) (Jain et al. 1995),
to produce gradient maps. Fig. 4 illustrates how these filters act on
the neighbouring pixels to construct the gradient map.

2 Available at http://www.curvelet.org/. It contains the Matlab and C++ im-
plementations of both the USFFT-based and the wrapping-based transforms.

Figure 3. Filtered GSB maps generated from different curvelet components
of CMB anisotropies (beam of 0.9 arcmin). From left to right, the first panel is
the full map, and the rest are the first to the seventh curvelet components. The
filter used for edge extraction is Scharr (Jain, Kasturi & Schunck 1995). The
CS network contribution to the fluctuations corresponds to Gμ= 1.0 × 10−7.
The visual detectability of the string-induced discontinuities, especially in
the panels with finer scales (i.e. in the higher curvelet modes) is striking.
The colour scale is logarithmic.

Figure 4. Different filters for edge recovery applied on the anisotropy maps
after curvelet decomposition. Left to right: the standard unit neighbourhood
derivative in the x direction, the Laplacian operator, the Sobel operator in
the x direction and the Scharr operator in x direction. The ‘y-axis’ operators
are made similar to ‘x-axis’ with proper rotations.

Our ultimate goal is to perform the ECA on curvelet components
of the CMB anisotropy maps and evaluate their performance in
identifying the CS-induced edge-like features. Fig. 5 neatly demon-
strates how these two successive steps isolate/enhance the sought-
after CS signature on the original CMB maps, and thus prepare it
to undergo the next step, i.e. statistical analysis. The rows in Fig. 5
represent simulations of GB, GSB (with Gμ = 1.0 × 10−7), and
GSBN (with Gμ = 1.0 × 10−7 and SNR = 20) cases, from top to
bottom, respectively. The columns on the other hand illustrate the
image processing steps: the leftmost panel shows the input maps,
the middle represents their (forth to seventh) curvelet components,
and the rightmost corresponds to the gradient maps produced from
these components, using Scharr as the ECA filter. The footprints
of the CS network are evident in the curvelet components and
more vividly in the filtered maps. Adding noise smears out these
footprints, making them no longer visually distinguishable. This
necessitates developing proper statistical tools for their detection,
as we do in the next section. We will also assess the sensitivity of
our detection procedure to various filters for different input maps in
Section 4.
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Figure 5. Visual evaluation of the image-processing steps of the proposed CS-detection pipeline. The top, middle, and bottom rows correspond respectively
to GB maps, GSB maps with Gμ = 1.0 × 10−7, and GSBN maps with Gμ = 1.0 × 10−7 and SNR = 20 (similar to the noise level of a CMB-S4 phase II
experiment). From left to right, the panels are the full maps, the fourth to the seventh curvelet components and their edge maps produced by Scharr filter. The
CS trace, not visually distinguishable in the map, is clearly detectable in the last two components, with significantly boosted detectability after filtering.

3.2 Analysis of the processed CMB maps

Applying the pre-processing steps of Section 3.1 on CMB maps in-
creases the detectability of their possible CS signature, first, through
keeping only components with the largest contribution from strings,
and secondly, by locating the edges, assumed to be induced by the
CS network. Equipped with filtered CMB temperature maps, we
now turn to the last step of our pipeline, i.e. measuring certain sta-
tistical properties of the maps to quantify the detectability of their
CS imprint.

3.2.1 Notation

Here we outline some definitions and introduce our notation, used
in the rest of the paper. The CMB temperature anisotropies is a
stochastic field, represented by a 2D map T ∈ L2(R2) which is
obtained according to equation (3). One can construct a vector A at
each spatial point as

{A} ≡ {δT , ηx, ηy, ξxx, ξyy, ξxy},
where δT is the density contrast of the stochastic field. For the
CMB anisotropies here δT ≡ T (temperature fluctuation). We have
also defined ηx ≡ ∂δT /∂x, ηy ≡ ∂δT /∂y and ξxy ≡ ∂2δT /∂x∂y. In
general, A can be expanded to include higher order derivatives. On
the other hand, in certain cases, the first-order derivative may suffice

to explore the statistical feature one is interested in. For example,
studying the crossing statistics only requires the knowledge of the
first-order derivatives while peak analysis requires the second order
as well.

The characteristic function of A, intimately related to its free
energy, is defined by

Z(λ) =
∫ +∞

−∞
d6AP(A)eiλ·A, (10)

where λ is an array with the same dimension as A. Z can be
expanded as (Matsubara 2003)

Z(λ) = exp

(
−1

2
λT · C · λ

)

× exp

⎡
⎣ ∞∑

j=3

i j

j !

⎛
⎝ N∑

μ1

N∑
μ2

. . .

N∑
μj

K(j )
μ1,μ2,...,μj

λμ1λμ2 . . . λμj

⎞
⎠

⎤
⎦,

(11)

where K(n)
μ1,μ2,...,μn

≡ 〈Aμ1 Aμ2 . . . Aμn 〉c are the cumulants and 〈〉c

stresses that only connected cumulants are taken into account. Here
N is the dimension of A and throughout this paper N = 6. Also
C ≡ 〈A ⊗ A〉 represents the 6 × 6 covariance matrix of A at each
spatial point. Note that with the zero-mean CMB fluctuations the
cumulants are the same as moments. Various spectral parameters
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for the CMB field are defined by

σ 2
m ≡ 〈∇mδT ∇mδT 〉

= 1

(2π )2

∫
dkk2mPTT(k)W̃ 2(kL), (12)

for small sky coverage. In this expression, W̃ stands for any smooth-
ing function, such as the beam, and L is the smoothing scale.

3.2.2 Statistical measures

Here we introduce the statistical tools used in this work to quantify
the detectability of the imprints left by the CS network on CMB
anisotropies.

1–The one-point PDF. The one-point probability density function
(hereafter, the PDF) of a distribution describes the statistical abun-
dance of the field values and can be calculated from the inverse
Fourier transform of the characteristic function. For the joint prob-
ability density function of A we have

P(A) = 1

(2π )6

∫ +∞

−∞
d6λZ(λ)e−iλ·A. (13)

Plugging equation (11) in (13) gives

P(A) = exp

[ ∞∑
j=3

(−1)j

j !

(
6∑

μ1=1

. . .

6∑
μj =1

K(j )
μ1,μ2,...,μj

× ∂j

∂Aμ1 . . . ∂Aμj

)]
PG(A), (14)

where

PG(A) = 1√
(2π )6|C| e− 1

2 (AT ·C−1·A). (15)

The anisotropies produced by the CS network are non-Gaussian
(Ringeval 2010). The perturbative form of the one-point PDF of the
temperature fluctuations, PδT

(α), in the presence of CSs, keeping
only terms up to O(σ 3

0 ), is given by

PδT
(α) = 〈δd(δT − α)〉 =

∫
d6Aδd(δT − α)P(A)

= 1√
2πσ0

e−α2/2σ 2
0
[
1 + Aσ0 + Bσ 2

0 + O(σ 3
0 )

]
. (16)

Here A ≡ S0
6 H3

(
α
σ0

)
and B ≡ K0

24 H4

(
α
σ0

)
+ S2

0
72 H6

(
α
σ0

)
. Also

S0 ≡ 〈δ3
T 〉c/σ

4
0 and K0 ≡ 〈δ4

T 〉c/σ
6
0 are the modified skewness and

kurtosis quantities, respectively. The Hn(δT/σ 0) represents the prob-
abilistic’s Hermite polynomial of order n.

Note that the Gμ levels we are interested in have tiny contri-
butions to the CMB fluctuations compared to inflation-induced
anisotropies. However, we show that proper sequences of image-
processing and statistical steps can explore these regimes and pos-
sibly detect the tiny imprints.
2 –The (weighted) TPCF. The (weighted) TPCF is defined as CTT =
〈δT (r1)δT (r2)〉, where r1 and r2 represent the coordinates of the
points. CTT is another statistical measure we employ in this work to
search for possible deviation from the CTT produced by inflationary
anisotropies.
3 –The unweighted TPCF of peaks. Topological and geometrical
criteria to characterize morphology of cosmological stochastic fields
in one, two, and three dimensions have been considered in various
researches (see e.g. Matsubara 2003; Pogosyan et al. 2009; Gay,

Pichon & Pogosyan 2012; Codis et al. 2013; Ducout et al. 2013).
The clustering of these measures based on their TPCF also provides
a useful statistical framework. Here we focus on the local maxima
clustering. The unweighted TPCF of a certain feature of a stochastic
field, also referred to as its excess probability, is a robust measure of
the clustering of that feature. From the statistical-mechanics point of
view, the information about an interacting system is encoded in the
excess probability of finding certain features of the stochastic field
representing that system. In this paper we compare the clustering
of the local maxima of CMB maps for Gaussian-only fluctuations
with those including contributions from the CS network as well.
The excess probability of finding peak pairs �pk−pk separated by
distance r = |r1 − r2|, at thresholds ϑ1 ≡ α1/σ 0 and ϑ2 ≡ α2/σ 0

is defined as

�pk−pk(r; ϑ1, ϑ2) =
〈
npk(r1, ϑ1)npk(r2, ϑ2)

〉
n̄pk(ϑ1)n̄pk(ϑ2)

− 1, (17)

where n̄pk(ϑ) is the number density of peaks and is mathematically
given by

n̄pk(ϑ) = 〈δd(δT − ϑσ0)δd(η) |det(ξ )|〉 . (18)

The second derivative tensor of the CMB field (ξ ij) should be neg-
ative definite at peak position. Its analytical expression for a 2D
homogenous Gaussian field was calculated in Bardeen et al. (1986)
and Bond & Efstathiou (1987). An estimator for this excess proba-
bility, �̃pk−pk(r; ϑ), is given by

�̃pk−pk(r; ϑ) =
[

DD(r, ϑ)

RR(r, ϑ)

]
NR(NR − 1)

ND(ND − 1)
− 1, (19)

which usually reduces the boundary effect (Landy & Szalay 1993).
Here, RR(r, ϑ) and DD(r, ϑ) are the number of peak pairs in random
and data catalogues, respectively, separated by distance r from each
other. Similarly, ND and NR are the total number of peaks in data
and random catalogues, respectively.
4 –The unweighted TPCF of up-crossings. The crossing statistics
was first introduced by Rice (1944). Since then, it has been used to
study the geometry of stochastic fields in various disciplines, e.g. in
complex systems (Peppin 1994; Brill 2000; Jafari et al. 2006; Va-
habi, Jafari & Movahed 2011), material sciences (Nezhadhaghighi
et al. 2017), optics (Goodman 2008; Yura & Hanson 2010; Pirlar
et al. 2017), and cosmology and early Universe (Ryden 1988; Ry-
den et al. 1989; Matsubara 1996, 2003; Movahed & Khosravi 2011;
Musso & Sheth 2014a,b). Crossing statistics can be introduced for
1D, 2D, and 3D stochastic fields. For 1D it corresponds to crossing
at a given threshold. Length or contour statistics corresponds to
crossing statistics for a typical 2D field, while for 3D, area statistics
is representative of crossing statistics. To be more specific, to up-
cross a given threshold refers to when the field at a point crosses the
threshold with a positive slope (in a certain direction in a 2D field).
In an isotropic stochastic field, up-crossing and down-crossing (i.e.
crossing with a negative slope) are statistically equivalent. The prob-
abilistic framework of the mean number of up-crossings of a 2D
field δT at a threshold ϑ for an arbitrary 1D slice denoted by ⊗ is
given by

n̄⊗
up(ϑ) = 〈

δd(δT − ϑσ0)�(η⊗)
∣∣η⊗∣∣〉 , (20)

where �(η) is the unit step function and |η⊗| is the absolute value
of the first derivative of temperature fluctuations in direction ⊗ (e.g.
see Matsubara 2003). For statistically isotropic CMB map, one can
choose any direction ⊗ on the map, and work in that direction
with the one-dimensional notion of the up-crossing, without loss of
generality.

MNRAS 475, 1010–1022 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/475/1/1010/4743743 by guest on 31 D
ecem

ber 2024



1018 A. Vafaei Sadr et al.

For a pure Gaussian CMB stochastic field, we have

n̄⊗
up(ϑ) = 1

2π
√

2

σ1

σ0
e−ϑ2/2, (21)

where σ 0 and σ 1 are spectral parameters defined by equation (12).
In this work, we go beyond the one-point statistics of up-crossings,
n̄⊗

up(ϑ), and investigate their clustering as well, characterized by the
excess probability of finding a pair of up-crossings separated by
distance r = |r1 − r2|, at thresholds ϑ1 and ϑ2

�up−up(r; ϑ1, ϑ2) =
〈
nup(r1, ϑ1)nup(r2, ϑ2)

〉
n̄up(ϑ1)n̄up(ϑ2)

− 1, (22)

where n̄up(ϑ) = 〈n̄⊗
up(ϑ)〉 and the averaging is over all available

directions.
5–The unweighted cross-correlation of up-crossings and peaks. We
define the cross-correlation of peaks and up-crossings as

�up−pk(r; ϑ1, ϑ2) =
〈
nup(r1, ϑ1)npk(r2, ϑ2)

〉
n̄up(ϑ1)n̄pk(ϑ2)

− 1. (23)

3.2.3 Quantifying the CS-induced deviation

In the following, we apply the five statistical measures introduced
above on the ECA gradient maps. These are generated through
applying various filters on different curvelet components of sim-
ulated CMB maps. In order to investigate the detectability of the
(enhanced) CS footprints on these gradient maps, we define the
following 	�’s. This quantity enables us to quantify the deviation
from pure-inflationary simulations of a certain measure (labelled by
�) calculated for maps with different Gμ’s.

To avoid bias in 	�, CTT(r), ��(r, ϑ ; ×), and P(α) are generated
by averaging over 1000 null cases, i.e. with Gμ = 0, simulations.

For the PDF and the weighted TPCF, we define

	×
PDF(Gμ) ≡

∫
dα |P(α; ×; Gμ) − P(α; ×; Gμ = 0)| ,

	×
TT(Gμ) ≡

∫
dr |CTT(r; ×; Gμ) − CTT(r; ×; Gμ = 0)| . (24)

The symbol × represents the specific sequence of curvelet compo-
nent and ECA filter being used. Also α ≡ ϑσ 0. For the TPCF we
define

	×
� (Gμ)≡

∑
ϑ

∫
dr |��(r, ϑ ; ×; Gμ)−��(r, ϑ ; ×; Gμ=0)| .

(25)

Here ‘�’ can be ‘pk–pk’, ‘up–up’, or ‘up–pk’.
Finally we can compare simulations with string-induced fluctu-

ations with null sets. In the next section we will present our results
by reporting the minimum detectable value of Gμ in CMB obser-
vations for various noise levels, using different parameter settings
in the proposed pipeline.

4 R ESULTS

In this section, we present the results of the above pipeline ap-
plied to CMB simulations with varying levels of CS contribution,
different beam resolutions, and various experimental noise levels.
Sections 4.1 and 4.2 investigate noise-free and more realistic cases,
respectively.

The curvelet decomposition step of our algorithm (Section 3.1.1)
provides us with four maps, ncurvelet = 4: the map itself, and the

last three (i.e. the fifth to the seventh) curvelet components. In
the ECA step (Section 3.1.2) we use nfilter = 5 filters for edge
extraction, corresponding to four differentiation schemes and a
case with no filtering at all. Finally, applying different statistical
tools (Section 3.2.1) on a single gradient map for a given curvelet
component gives nstatistics = 5 measures 	×

� (Gμ). Thus, there are
ncurvelet × nfilter × nstatistics = 100 different combinations of image-
processing and statistical settings to be used in our pipeline.

In order to quantify the capability of the pipeline in detecting CSs,
we estimate the statistical difference of 	×(Gμ) and 	×(Gμ = 0)
(corresponds to a map with no CS network). The significance of
this deviation is systematically checked by computing the Student’s
t-test for equal sample sizes and unequal means and variances as

t×
PDF(Gμ) =

[
	×

PDF(Gμ) − 	×
PDF(Gμ = 0)

]

×
√

Nsim[
σ×

PDF(Gμ)
]2 + [

σ×
PDF(Gμ = 0)

]2 , (26)

t×
TT(Gμ) =

[
	×

TT(Gμ) − 	×
TT(Gμ = 0)

]

×
√

Nsim[
σ×

TT(Gμ)
]2 + [

σ×
TT(Gμ = 0)

]2 , (27)

t×
� (Gμ) =

[
	×� (Gμ) − 	×� (Gμ = 0)

]

×
√

Nsim[
σ×� (Gμ)

]2 + [
σ×� (Gμ = 0)

]2 , (28)

where σ is the standard deviation, Nsim is the number of simulations,
and 	× denotes the mean value of 	× over the Nsim maps.

We finally calculate the P-value statistics for the above Student’s
t-test and determine the P-value as a function of Gμ for all parame-
ter settings in the pipeline. In the following, the minimum detectable
Gμ, denoted by Gμmin, refers to the Gμ whose P-value is smaller
than a given threshold. We take this threshold to be 0.0027, corre-
sponding to the 3σ frequentist level.

4.1 Ideal case

We apply our proposed CS-detection pipeline in all its different
parameter settings, explained in Section 3, to noise-free simulated
CMB skies with various levels of CS contributions. Our ideal ex-
periment corresponds to a noise free CMB sky convolved with the
beam of an ACT-like telescope.

More specifically, we construct different gradient maps of various
curvelet components of the GB and GSB maps, and then compare
some of their statistical properties using the measures outlined ear-
lier. In the following we report, for any given statistical measure, the
lowest Gμmin and its corresponding parameter setting (i.e. curvelet
component and ECA filter). Table 1 summarizes the results.

1) With 	PDF as the measure, we find that applying the Laplacian
filter in the ECA step on the seventh curvelet component gives the
best detection of the CS signature. We conclude that, in the absence
of instrumental noise and foreground contamination, our proposed
method is basically capable of robustly detecting the imprints of CSs
with string tension Gμ � 4.3 × 10−10 using the c7-Laplacian-	PDF

sequence.
2) With 	TT as the measure, we find that applying the Sobel

filter on the seventh curvelet component results in the best CS
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Table 1. Lowest detectable Gμ, labelled as Gμmin, of the CSs network
superimposed on the CMB map, using various statistical measures. The first
column, ‘Measure’, contains the PDF, the correlation function of temper-
ature fluctuations versus angle separation (TT), the unweighted TPCF of
local maxima (pk–pk), the unweighted TPCF of up-crossings (up–up) and
the unweighted cross-correlation of up-crossings and peaks (up–pk). The
‘Method’ corresponds to the sequence of curvelet and ECA filters lead-
ing to the best CS detection for the given statistical measure. The ‘Map’
and ‘FWHM’ characterize the experimental setup. CMB-S4-like (I) and (II)
represent the phases I and II of a CMB-S4-like experiment, respectively.

Measure Method Map FWHM (arcmin) Gμmin

c7-lap No noise 0.9 4.3 × 10−10

c5-sch CMB-S4-like (II) 0.9 1.2 × 10−7

PDF map-sch CMB-S4-like (I) 0.9 1.2 × 10−7

map-sch ACT-like 0.9 1.3 × 10−7

c6-sch Planck 5 4.8 × 10−7

c7-sob No noise 0.9 2.3 × 10−9

c5-none CMB-S4-like (II) 0.9 4.9 × 10−7

TT c5-sob CMB-S4-like (I) 0.9 5.0 × 10−7

c5-sob Planck 5 9.4 × 10−7

c5-lap No noise 0.9 8.7 × 10−10

c6-sob CMB-S4-like (II) 0.9 4.8 × 10−7

pk–pk c5-sob CMB-S4-like (I) 0.9 5.0 × 10−7

map-lap Planck 5 8.9 × 10−7

c7-der No noise 0.9 8.5 × 10−10

c5-sob CMB-S4-like (II) 0.9 2.4 × 10−7

up–up map-sob CMB-S4-like (I) 0.9 4.9 × 10−7

c5-sch ACT-like 0.9 4.9 × 10−7

c5-sob Planck 5 8.4 × 10−7

c7-der No noise 0.9 8.7 × 10−10

up–pk c5-sob CMB-S4-like (II) 0.9 2.4 × 10−7

map-sch CMB-S4-like (I) 0.9 5.0 × 10−7

detection. This sequence of steps is able to discriminate maps with
contributions from CSs with Gμ � 2.3 × 10−9 from null sky maps.

3) With 	pk−pk as the measure, we find that applying the Lapla-
cian filter on the fifth component yields the best detection of
the CS contribution, setting the lower detection bound of Gμ �
8.7 × 10−10.

4) With 	up−up as the measure, we find that the seventh curvelet
component and the Derivative filter are most sensitive to the CS
signature, giving Gμ � 8.5 × 10−10.

5) Finally with 	up−pk as the measure, we conclude that applying
the Derivative filter on the seventh curvelet component gives the
best detection for CSs, able to detect strings with tensions Gμ �
8.7 × 10−10.

In the next section, we investigate the performance of the pipeline
in more realistic scenarios by including both the instrumental noise
and beam resolution of current and future CMB experiments.

4.2 Realistic case

In the previous section, we investigated the performance of our
proposed CS-detection pipeline for simulations of ideal CMB ob-
servations.

Now we take into account noise contamination as explained in
Section 2.3. It turns out that, unlike the ideal case, the role of the
curvelet decomposition becomes less significant as the noise level
increases. Also, the scale of the best curvelet component for CS
detection depends on the noise level. Table 1 summarizes the results

of our search for Gμmin in these experimental setups, and presents
the optimum pipeline settings for best CS signal recovery using
various statistical measures. One may note that some experimental
setups are not present in the table, e.g. the ACT-like case with 	TT.
This is because for these cases, and for a given beam, the minimum
detectable value of Gμ is weaker than the explored range. For an
ACT-like telescope, this corresponds to Gμmin � 5 × 10−7.

Our results are commented below according to the considered
statistical measure.

1) Using the measure 	PDF. For an ACT-like instrumental noise
level, CSs are detectable with tensions Gμ � 1.3 × 10−7 with
Scharr-filtered maps. For CMB-S4 phase I- and II-like noise levels,
the minimum detectability slightly improves to Gμ � 1.2 × 10−7

for the Scharr-filtered map and the Scharr-filtered fifth component,
respectively. For a Planck-like case one gets Gμ � 4.8 × 10−7 with
the Scharr-filtered sixth component.

2) Using 	TT as the criterion. For a CMB-S4 phase I-like noise
level, we get the lower bound Gμ � 5.0 × 10−7, from the Sobel-
filtered fifth components. For a CMB-S4 phase II-like noise level,
the fifth component itself (with no filtering) yields the best de-
tectability with Gμ � 4.9 × 10−7. The lower bound for a Planck-
like experiment would be Gμ � 9.4 × 10−7, using the Sobel-filtered
fifth component.

3) For 	pk−pk, the results are as follows. For CMB-S4 phase
I- and II-like noise levels, using the Sobel-filtered fifth and sixth
components shows that CSs with tensions Gμ � 5.0 × 10−7 and
Gμ � 4.8 × 10−7 are respectively detectable. While for a Planck-
like experimental setup would reduce this string detectability to Gμ

� 8.9 × 10−7 obtained through applying the Laplacian filter on the
map itself.

4) Using 	up−up as the statistical criterion. For an ACT-like noise
level, the minimum detectability is Gμ � 4.9 × 10−7, correspond-
ing to Scharr-filtered fifth component. With CMB-S4 phase I- and
phase II-like noise levels, using the Sobel-filters on the map and
on the fifth component yields the minimum detectability of Gμ �
4.9 × 10−7 and Gμ � 2.4 × 10−7, respectively. The minimum de-
tectability corresponding to the Planck-like observational scenario
in this case is provided by the Sobel-filtered fifth component to be
Gμ � 8.4 × 10−7.

5) Using the measure 	up−pk. For the CMB-S4 phase I-like noise
level, using the Scharr-filtered map gives Gμ � 5.0 × 10−7, im-
proving to Gμ � 2.4 × 10−7 for the CMB-S4 phase II-like noise
level with the use of the Sobel-filtered fifth component.

5 SU M M A RY A N D C O N C L U S I O N S

Increasing the quantity and quality of observational data provides
the opportunity to search for possible features present in beyond-
the-standard models. A well-motivated example is the CS network,
possibly produced in a series of symmetry breaking phase tran-
sitions in the very early Universe. If such a network exists, CMB
anisotropies are among the powerful observational data sets for their
discovery. However, finite instrumental noise and beam smearing
effect greatly reduce the detectability of their trace.

Our purpose in this work was to exploit the specific anisotropy
patterns, especially the line-like discontinuities, induced by the CSs
on the CMB temperature maps, to enhance the string network de-
tectability. Therefore, we have tested a multistep pipeline which
employs image-processing tools to amplify the string signal as well
as statistical measures to quantify the deviation of the simulated
data from pure Gaussian inflation-induced anisotropies.
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The first image-processing step is a curvelet decomposition, an
appropriate tool for the detection of elongated sharp edges. As a
result, it isolates the components with the highest string contribu-
tion. The second image-processing step is based on the ECA, and
produces gradient (or filtered) maps with magnified string signa-
tures. The gradient maps are then passed to the statistical unit of
the pipeline to investigate the detectability of the strings with dif-
ferent Gμ values, thereby enabling us to compare the efficiency
of the various settings in the pipeline. These settings, or degrees of
freedom, correspond to the various available options for curvelet de-
composition, ECA filtering, and statistical measures. The pipeline
explores the space of these parameters and finds the setting which
best constrains the contribution of the string network to the CMB
anisotropies. This parameter set depends on the experiment charac-
terization, such as beam and noise level.

We have found that, the curvelet components describing the
smaller scales are preferred by the algorithm. This is expected given
the small-scale nature of the kicks produced by the CSs in the data.
In our analysis, this small-scale mode corresponds to the seventh
mode for an ideal experiment. In the presence of instrumental noise,
however, the scale where the CS signal dominates the small-scale
noise contamination depends on the noise level. Therefore, the best
curvelet component also varies according to the experimental set-
up. It also turns out that the two-point statistics, being relatively
powerful for an ideal experiment, get highly contaminated by in-
strumental noise. In these situations, the PDF is the preferred sta-
tistical measure while the results end up being relatively insensitive
to the choice of the filter.

For the most efficient pipelines, we could detect the imprints
of CS network with tensions as low as Gμmin = 4.3 × 10−10 for
a noise-free experiment having a beam of FWHM = 0.9 arcmin.
The sequence of pipeline parameter for this case is the seventh
curvelet component, the Laplacian filter, and the one-point PDF as
the statistical measure (or, c7 − Laplacian-PDF). Including more
realistic noise levels increases this minimum detectable tension to
Gμmin = 1.3 × 10−7 and Gμmin = 1.2 × 10−7 for ACT-like and
CMB-S4-like noise levels, respectively, both with a beam pattern
described in Section 2.3. All results are listed in Table 1.

We have also considered the unweighted TPCF of up–pk. For
noise-free case, we have found Gμ � 8.7 × 10−10 for c7 − Deriva-
tive method. Based on the CMB-S4 phase II observational strategy,
this type of cross-correlation resulted in Gμ � 2.4 × 10−7 for
c5 − Sobel.

To the best of our knowledge, our proposed pipeline is among the
tightest detection threshold for a noise-less experiment, up to about
two orders of magnitude, compared to the other methods in the lit-
erature. For example, applying the crossing statistics on simulated
ideal CMB maps modified by CS network yields Gμ � 4.0 × 10−9

(Movahed & Khosravi 2011). Using the unweighted TPCF of CMB
peaks yields the detection threshold of Gμ � 1.2 × 10−8 for
noiseless, 1-arcmin-resolution maps (Movahed et al. 2012). Neural
network-based approaches have been recently applied on noiseless
arcminute-resolution random-kick maps to reach a detection thresh-
old of Gμ � 2.3 × 10−9 (Ciuca & Hernandez 2017). Edge-detection
algorithms applied on ideal random-kick maps, where strings are
modelled as random kicks, give a detection threshold of Gμ10−8

(Stewart & Brandenberger 2009; Danos & Brandenberger 2010).
According to wavelet domain Bayesian denoising algorithm uti-
lized by Hammond et al. (2009), the minimum value of CS tension is
Gμ � 6.3 × 10−10 in noise-less map. All these detection thresholds
except those using wavelet approach are (in some cases about two
orders of magnitude) larger than the minimum detectable Gμ by our

proposed pipeline here, i.e. to Gμ � 4.3 × 10−10. The last method is
only case that has same order of capability as our proposed pipeline,
and also uses the same underlying maps. For these reasons, it seems
to us that we are very close to what is actually achievable.

As a final remark, let us notice that the free parameters selected
in this work are by no means exclusive, and should be merely
considered as starting points. An obvious extension of the work
would thus be to include other statistical measures, which could be
possibly more sensitive to CS imprints, and explore other filters to
assess their performance in edge detection. One could use deep-
learning approaches towards systematic decision making to choose
most sensitive features for the CS network detection. This work is
in progress. Another possible improvement on our work would be
to perform Bayesian model comparison between the best pipelines
obtained here on Gμ on real data in order to extract the tightest
bound.
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