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The numerical solution process for complex, time-dependent non-linear problems (material stamping, cyclic viscoplasticity, crashes, etc.) requires, even with the most powerful computers, a computation time which turns out to be prohibitive. Moreover, with respect to those structural analyses involving multiple solution sequences (parametric studies, probabilistic analyses, flawed structures, etc.), each series of data necessitates performing a full calculation, even if the problems to be solved do resemble one another.

The goal of the work presented herein is to develop a strategy that is well-suited to multiple-solution problems. Such a strategy is to be based on the LATIN method and, more specifically, on its capacity to reuse the solution to a given problem in order to solve similar problems. The goal then is both to assess the major obstacles encountered during this computational procedure and to define and apply a strategy that enables minimizing total computing costs with respect to multiple-solution problems.

INTRODUCTION

Whenever the analysis of a structure involves multiple solutions (parametric studies, probabilistic analyses, flawed structures, etc.), each set of data utilized necessitates a separate, full-scale calculation. As such, a good number of similar types of problems wind up getting solved. The choice of an efficient and welladapted computational method is thus of vital importance. The LATIN method [5],

[6] is non-incremental in nature and, consequently, would appear to represent a more promising approach, inasmuch as the set of principles inherent in this method tend to be more applicable than are the majority of conventional incremental algorithms (stochastic finite element approaches, perturbation-related methods

[1], [7], and Monte Carlo simulations [8]).

The objective of the work presented herein is to demonstrate the potential of the LATIN method with respect to multiple-solution problems. For the special case of buckling, a strategy adapted to multiple solutions has been developed which relies on the LATIN method and, more specifically, on its capacity to reuse the solution to a given problem in order to solve similar problems.

A full presentation of the LATIN method can be found in [5], [6]. The solution process for buckling problems, along with a set of pertinent examples, is provided in [2], [3].

REVIEW OF THE LATIN METHOD

Notation

The structure being studied occupies a domain Ω of the ordinary three-dimensional Euclidean space, whose corresponding vectorial space is denoted by E 3 . The vectors of E 3 , displacement for instance, are denoted by U _ . The current point of Ω is noted M _ . The linear operators of E 3 , strain and stress, are denoted by ε ε and σ σ , respectively. These quantities, in a given base, are represented by a matrix (3,3); this notation is also used for the internal variables. For more complex operators, such as Hooke's elasticity tensor, they are written as: K. To define the work, one uses the trace operator denoted by "Tr", thus:

Tr[σ σ ε ε] = ∑ i =1,2,3 j =1,2,3 [σ σ] ij [ε ε] ij
where [σ σ ] i j and [ε ε ] i j are the components of the operators σ σ and ε ε, respectively.

Reference problem

For the whole time interval, denoted by [0, T], the structure being studied is subjected to surface loading F _d on a part ∂ 2 Ω of the boundary, ∂Ω, of Ω, and to volume loading f _d . On the complementary part, ∂ 1 Ω, to ∂Ω, the displacement U _ d is assigned. The method is carried out by means of small perturbations in order to simplify the presentation of the concept. This method has been conducted in [5] for large transformations and has been developed in [2], [3] for the analysis of both buckling and post-buckling.

Let us consider small displacement problems and quasi-static loading. U [0,T] , 

S
U 0 = { U _ (M _ ) ; U _ (M _ ) ∂ 1 Ω = 0} U [0,T] 0 = { U _ (M _ ,t) ∈ U [0,T] ; ∀ t ∈[0,T] U _ (M _ ,t) ∈ U 0 }
The material state is completely determined by the values of strain, the inelastic strain ε ε p and additional internal variables X X _ . In general, X X _ is a column of R m . The conjugate quantity of X X _ is denoted by Y Y _ ; it is also a column of R m .

Then, the structure's evolution is described by the following problem: Find U _ (M _ ,t)) and σ σ(M _ ,t) M _ ∈Ω, t ∈[0,T] such that:

• kinematic constraints: U _ (M _ ,t) ∈ U [0,T] , U _ ∂ 1 Ω = U _ d • equilibrium equation: σ σ ∈ S [0,T] , ∀ U _ * ∈ U [0,T] 0 ∫Ω dΩ Tr[ σ σ ε ε( U _ * ) ] = ∫Ω dΩ f _d . . . . U _ * + ∫∂ 2Ω d S F _d . . . . U _ * • state laws ε ε • = ε ε • p + ε ε • e , σ σ = Kε ε e Y Y _ = G(X X _ ) • evolution laws d dt       ε ε p -X X _ = B       σ σ Y Y _ ε ε p (t=0) = 0 Y Y _ (t=0) = 0
K, G are given material characteristics. B is a given positive operator which depends on the material.

Principles of the method

Let us introduce S = ( ε ε . p , X X To derive a formulation of the normal material (linear state laws, Y Y _ = Λ Λ Λ Λ X X _ ), the only non-linear relations are the evolution laws; moreover, these laws are local in space variable.

In the case of normal material models, the splitting used is the following:

(i)     kinematic constraints equilibrium equations (∀t ∈ [0, T]) σ σ = K (ε ε -ε ε p ), Y Y _ = Λ Λ Λ Λ X X _ (ii)     d dt       ε ε p -X X _ = B       σ σ Y Y _ ε ε p (t=0) = 0 and X X _ (t=0) = 0
The first group is associated with the free energy and the second one with the 

• local stage: find S ^n+1/2 ∈ Γ Γ Γ Γ such that S ^n+1/2 = (Γ Γ Γ Γ) ∩ ( S n + E + )
• linear global stage: find S n+1 ∈ A d such that

S n+1 = (A d ) ∩ ( S ^n+1/2 + E -)
Where E + and Eare parameters.

Practically, the search directions E + and Eare defined by two linear operators H + and Hsuch that: techniques are necessary in order to limit this particular stage's cost.

E + = {∆S / d dt       ∆ε ε p -∆X X _ + H +       ∆ σ σ ∆Y Y _ = 0 ; ∆S ∈ S [0,T] } E -= {∆S / d dt       ∆ε ε p -∆X X _ -H +       ∆ σ σ ∆Y Y _ = 0 ; ∆S ∈ S [0,T] } H +

Processing of the global stage -Representation of the unknowns

The global stage consists of searching for a new element S n+1 that's better than S n ;

similarly, the difference between these two elements of A d could be chosen as an unknown during this stage. Through working on the corrections of the unknowns, two new quantities naturally get introduced:

∆ S ^ = S ^-S n = (∆ ε ε . ^p, ∆X X . _ ; ∆σ σ ^, ∆Y Y _ )
and

∆S n = S n+1 -S n = (∆ε ε . p n , ∆X X . _ n , ∆σ σ n , ∆Y Y _ n )
It should be pointed out at this juncture that the element The representation for each variable is as follows:

ε ε . p n+1 (M _ , t) -ε ε . p n (M _ , t) = ∑ i = ı m a i (t) A A i (M _ ) X X • _ n+1 (M _ , t) -X X • _ n (M _ , t) = ∑ i = ı m c i (t) C C _ i (M _ ) σ σ n+1 (M _ , t) -σ σ n (M _ , t) = ∑ i = ı m b i (t) B B i (M _ ) Y Y _ n+1 (M _ , t) -Y Y _ n (M _ , t) = ∑ i = ı m d i (t) D D _ i (M _ )
In practice, m is limited to either 1 or 

MULTIPLE-SOLUTION METHOD

The LATIN method makes it possible to obtain a representation of the problem's solution in the form of a product sum of both time and space functions. As such, it could be considered that the method serves to automatically build an optimal basis for representing the solution. The notion herein then is to use this representative basis for determining the solution to a problem that's similar to the one for which this basis was built in the first place. In this context, a similar problem would be one whereby an initial consideration would suggest that both the geometry and the limit conditions are identical (this requirement ensures respecting the "zero-admissibility" condition of the space functions), yet whereby the material characteristics can vary throughout the structure.

This procedure allows utilizing the fact that the algorithm can be initialized by any solution belonging to the set A d (though usually an elastic solution). The notion herein therefore is to initialize the process associated with the similar problem (the "flawed" structure) by the results of the computation carried out on the "flawless" structure. In this manner, a basis of space functions with a strong mechanical content is available immediately as of the first iteration, thereby making it possible to represent the solution.

In this instance, the preliminary stage plays a vital role: it enables both verifying that the basis of the space functions is welladapted to the target problem and searching for new time functions which allow deriving the solution to the "flawed" problem. In the best-case scenario, when the basis is sufficient, no new space function will be generated and the problem's solution will thus be obtained at low cost. The alternative would be the automatic computation of new space functions in order to enhance the initial basis: the number of such functions however must remain less than the number in the initial basis in order to ensure the method's efficiency. Should the solutions to both the "flawed" and "flawless" problems be close enough, the solution to the latter problem can then be derived at a significantly lower cost than that of a fullscale computation.

EXAMPLES

The selected scope of application for testing this method is the buckling of both 
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  [ 0 , T ] denote the spaces where displacement U _ and stress σ σ respectively, defined on Ωx[0, T], are searched. The subspaces of displacement kinematically admissible for homogeneous equations are such that:

•_;

  σ σ , Y Y _ ) for which each component is defined on Ω x[0, T]. The corresponding space is denoted by S [0,T] . S is what we are looking for; it is defined by a set of equations. The principle of the method consists of constructing a sequence of elements S n , defined over Ωx[0,T]. The entire loading is then handled in a single time interval. The method is based on the following three principles: P1: the problem's equations are divided into two groups which serve to define two sets: Γ Γ Γ Γ and A d, where: • A d : linear and ultimately global equations, • Γ Γ Γ Γ : : : : local in space variable and ultimately non-linear equations P2: The method then proceeds by means of a two-stage iterative sequence: One iteration is composed of both a local stage, during which a solution belonging to Γ Γ Γ Γ is built, and a global stage during which a solution belonging to A d is sought. Thus, the solution to the problem being posed lies at the intersection of these two solution sets. In order to resolve these two stages, two search directions E + and E -, parameters of the method, are to be used. P3: The problem's unknowns are represented by a product sum of both time and space functions.
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 1 Figure 1: Iteration scheme

  and Hdepend on the time and space variables. The local stage then leads to a local non-linear, evolution problem in space variables. The resolution of this stage turns out to be rather straightforward. In contrast, the global stage requires the solution to a global linear problem in space variable that's been parametered by the time interval over which specific solution

  S n+1 must belong to A d in order to remain within the framework of the LATIN method. The direct solution to global linear problems which have been parametered by time within the procedure of the global stage can lead to sizable computing times. As a means of lowering these computing times, representations of both time and space unknowns are introduced in order to solve the global stage at a low computing cost. The separation of the functional dependencies in both time and space has yielded satisfactory results for quasi-static loadings [3], [5], [6]. The corrections are then sought by means of superimposing solutions of the simple-loading type. Such solutions are recognized as being good approximations of non-linear, quasi-static problem solutions.
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 2 Figure 2: Insertion of the preliminary stage
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 56 Figure 3 and 4. A similar computation was carried out on a half-embedded bar; the results are presented in Figure 5 and 6. For both of the cases analyzed, figures 4 and 6 display the number of space functions added during the computations at the level of the initial basis (6 time-space function couples). This number provides an indicator of the total computing cost inasmuch as this phase constitutes the algorithm's most costly stage. It can be observed that for the majority of cases processed, at most one space function gets added. The basis of initial functions therefore enables conducting many computations "with flaws" at a much lower cost than that of a full-scale computation: within the cases presented herein, the computing time necessary for obtaining the solution on the "flawed" bar is between 10% and 20% of that associated with a fullscale computation. 5. CONCLUSION These initial numerical examples have exhibited the algorithm's very satisfactory behavior when applied to the case of multiple solutions in the analysis of buckling. The basis of space functions generated by an initial solution on the
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scheme (see Figure1).The iterative procedure starts with an initial S 0 belonging to A d , for example the elastic response of the structure over [0, T].Then, successively, elements belonging to Γ Γ Γ Γ and to A d are built up until the practical convergence.